{
"cells": [
{
"cell_type": "markdown",
"id": "1aaff07b-c682-4c12-92c7-40b06ff882d9",
"metadata": {},
"source": [
"(lecture_17)=\n",
"# Measurement and Misclassification\n",
":::{post} Jan 7, 2024\n",
":tags: statistical rethinking, bayesian inference, measurement error\n",
":category: intermediate\n",
":author: Dustin Stansbury\n",
":::\n",
"\n",
"This notebook is part of the PyMC port of the [Statistical Rethinking 2023](https://github.com/rmcelreath/stat_rethinking_2023) lecture series by Richard McElreath.\n",
"\n",
"[Video - Lecture 17 - Measurement and Misclassification](https://youtu.be/mt9WKbQJrI4)# [Lecture 17 - Measurement & Misclassification](https://www.youtube.com/watch?v=mt9WKbQJrI4)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "015e420d-9c89-4c5f-8885-d7d619ba13a4",
"metadata": {},
"outputs": [],
"source": [
"# Ignore warnings\n",
"import warnings\n",
"\n",
"import arviz as az\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pymc as pm\n",
"import pytensor.tensor as pt\n",
"import statsmodels.formula.api as smf\n",
"import utils as utils\n",
"import xarray as xr\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib import style\n",
"from scipy import stats as stats\n",
"\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n",
"# Set matplotlib style\n",
"STYLE = \"statistical-rethinking-2023.mplstyle\"\n",
"style.use(STYLE)"
]
},
{
"cell_type": "markdown",
"id": "3829d401-d400-4b28-ad3e-4b87372e378e",
"metadata": {},
"source": [
"# Probability, Intuition, and Pancakes 🥞\n",
"\n",
"McElreath poses a re-dressing of the [classic Monty Hall Problem](https://en.wikipedia.org/wiki/Monty_Hall_problem). The original problem uses an old gameshow called \"Let's Make a Deal\" (hosted by Monty Hall) as the backdrop for a scenario where the correct, optimal strategy for winning a game is given by following the rules of probability theory. What's interesting about the Monty Hall problem is that the optimal strategy doesn't align with our intuitions.\n",
"\n",
"In lecure, instead of opening doors to find donkeys or prizes, as was in the case of the Monty Hall problem, we have pancakes that are either burnt or perfectly cooked on either side. The thought experiment goes like this:\n",
"\n",
"- You have 3 pancakes:\n",
" - One (likely the first one you cooked) is burnt on both sides\n",
" - One (likely the next one cooked, after you're improving your cooking skills) is burnt on only one side\n",
" - One is cooked perfectly on both sides\n",
"- Say you are given a pancake at random and it is burned on one side\n",
"- What is the probability that the other side is burned?\n",
"\n",
"Most folks would say 1/2, which intuitively _feels_ correct. However, the correct answer is given by Bayes rule:\n",
"\n",
"If we define $U, D$ as observing upside $U$ or downsid $D$ hot being burnt and $U', D'$ as up or down sides being burnt\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"p(D' | U') &= \\frac{p(U', D')}{p(U')} &\\text{Bayes Rule} \\\\\n",
"p(U', D') &= 1/3 &\\text{only one out of three pancakes has both sides burnt} \\\\\n",
"p(U') &= (1/3 \\times 2/2) + (1/3 \\times 1/2) + (1/3 \\times 0) = 3/6 = 1/2 &\\text{probability of initially observing upside burnt} \\\\\n",
"p(D' | U') &= \\frac{1/3}{1/2} = 2/3\n",
"\\end{align*}\n",
"$$\n",
"\n",
"## Avoid being clever\n",
"\n",
"- Being clever is unreliable\n",
"- Being clever is opaque\n",
"- You'll rarely beat the axioms of probability theory\n",
"- Probability allows us to solve complex problems, if we stick to the rules\n"
]
},
{
"cell_type": "markdown",
"id": "d3f780fa-4a1c-4477-a4d5-77f4d5894ee2",
"metadata": {},
"source": [
"# Measurement Error\n",
"\n",
"- Many variables are proxies for what we want to measure (e.g. Descendant elemental confound)\n",
"- It's common practice to ignore measurement error\n",
" - assumes error is harmless, or will \"average out\"\n",
"- Better to draw out the measurement error, think causally, and fall back on probability theory (don't be clever)"
]
},
{
"cell_type": "markdown",
"id": "38a21cc1-4874-45d2-b1d4-8b7f0e3e7055",
"metadata": {},
"source": [
"## Myth: Measurement error can only decrease an effect, not increase\n",
"\n",
"- This is incorrect, measurement error has no predefined direction of causal effect\n",
"- It can, in some cases, _increase_ an effect, as we'll demonstrate below"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6fd3cd90-b700-4326-8cc1-3bf8b533b202",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"P \n",
"\n",
"P \n",
" \n",
"\n",
"\n",
"C \n",
"\n",
"C \n",
" \n",
"\n",
"\n",
"P->C \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"P* \n",
"\n",
"P* \n",
" \n",
"\n",
"\n",
"P->P* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"e \n",
"\n",
"e \n",
" \n",
"\n",
"\n",
"C->e \n",
" \n",
" \n",
"recall bias \n",
" \n",
"\n",
"\n",
"e->P* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"unobserved \n",
"\n",
"unobserved \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[(\"P\", \"C\"), (\"P\", \"P*\"), (\"e\", \"P*\"), (\"C\", \"e\")],\n",
" node_props={\n",
" \"P\": {\"style\": \"dashed\"},\n",
" \"unobserved\": {\"style\": \"dashed\"},\n",
" },\n",
" edge_props={(\"C\", \"e\"): {\"label\": \"recall bias\", \"color\": \"blue\", \"fontcolor\": \"blue\"}},\n",
" graph_direction=\"LR\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b88467a6-b18d-450d-bb0f-46c322bd601c",
"metadata": {},
"source": [
"- Child Income $C$\n",
"- Actual Parental Income $P$, unobserved\n",
"- Measured parental income $P^*$\n",
"- Error in Parental income reporting $P^*$ (e.g. due to recall bias)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d4a8038c-eaa5-4d74-a995-b71993281788",
"metadata": {},
"outputs": [],
"source": [
"def simulate_child_parent_income(beta_P=0, n_samples=500, title=None, random_seed=123):\n",
" np.random.seed(random_seed)\n",
" P = stats.norm().rvs(size=n_samples)\n",
" C = stats.norm.rvs(beta_P * P)\n",
" mu_P_star = 0.8 * P + 0.2 * C\n",
" P_star = stats.norm.rvs(mu_P_star)\n",
"\n",
" with pm.Model() as model:\n",
" sigma = pm.Exponential(\"sigma\", 1)\n",
" beta = pm.Normal(\"beta\", 0, 1)\n",
" alpha = pm.Normal(\"alpha\", 0, 1)\n",
" mu = alpha + beta * P_star\n",
" pm.Normal(\"C\", mu, sigma, observed=C)\n",
" inference = pm.sample()\n",
"\n",
" az.plot_dist(inference.posterior[\"beta\"])\n",
" plt.axvline(beta_P, color=\"k\", linestyle=\"--\", label=\"actual\")\n",
" plt.title(title)\n",
" plt.legend()\n",
"\n",
" return az.summary(inference, var_names=[\"alpha\", \"beta\", \"sigma\"])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a87b5077-cb1c-4647-81a5-001c1c7e7d2f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [sigma, beta, alpha]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c016896552b34b9fa2a0448127553a8a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" mean \n",
" sd \n",
" hdi_3% \n",
" hdi_97% \n",
" mcse_mean \n",
" mcse_sd \n",
" ess_bulk \n",
" ess_tail \n",
" r_hat \n",
" \n",
" \n",
" \n",
" \n",
" alpha \n",
" -0.043 \n",
" 0.044 \n",
" -0.123 \n",
" 0.043 \n",
" 0.001 \n",
" 0.001 \n",
" 6736.0 \n",
" 2944.0 \n",
" 1.0 \n",
" \n",
" \n",
" beta \n",
" 0.165 \n",
" 0.038 \n",
" 0.091 \n",
" 0.235 \n",
" 0.000 \n",
" 0.000 \n",
" 6331.0 \n",
" 3019.0 \n",
" 1.0 \n",
" \n",
" \n",
" sigma \n",
" 0.982 \n",
" 0.032 \n",
" 0.925 \n",
" 1.046 \n",
" 0.000 \n",
" 0.000 \n",
" 6682.0 \n",
" 2723.0 \n",
" 1.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n",
"alpha -0.043 0.044 -0.123 0.043 0.001 0.001 6736.0 2944.0 \n",
"beta 0.165 0.038 0.091 0.235 0.000 0.000 6331.0 3019.0 \n",
"sigma 0.982 0.032 0.925 1.046 0.000 0.000 6682.0 2723.0 \n",
"\n",
" r_hat \n",
"alpha 1.0 \n",
"beta 1.0 \n",
"sigma 1.0 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAi6xJREFUeJzs3Xd4U2UbBvD7ZHSkI92llD1SpkDZUGQjsuUDEVFAQEUFEQVBRUUUUVxMUcCBKDIUZA8ZgiAbAdmrtLSFtnSkI22SJuf7oyRSm0Jbmp6kuX/X9V0fnnOScydPAk9P3/O+giiKIoiIiIiIqMzJpA5ARERERFRRsdkmIiIiIrITNttERERERHbCZpuIiIiIyE7YbBMRERER2QmbbSIiIiIiO2GzTURERERkJ2y2iYiIiIjshM02EREREZGdsNkmIiJyAhEREYiIiJA6BhGVEJttIifSpUsX6z+4H3300T2PXbZsmfVY/gNNcXFxmD9/PtauXSt1FCIil8Jmm8hJbdq0CSaTqcj9GzZsKMc05Oji4+OxYMECrFu3TuooREQuhc02kROqWbMmkpOT8ddff9ncf+3aNZw5cwY1a9Ys52RERER0NzbbRE6oX79+AIq+er1+/XoAQP/+/cstExERERXGZpvICbVq1QphYWHYuXMndDpdgX2iKGLjxo3w8PBAjx497vk8oihi8+bNeOaZZ9C6dWs0atQIXbt2xQcffIDk5GSbjzlw4ABmzJiBfv36oVWrVmjcuDG6deuGd999FwkJCTYfk5eXh2XLlmHQoEFo1qwZGjVqhKioKDzxxBOYN28eMjIyrMfGxcUhIiICXbp0KTJ3UePQ796+fft2DBs2DC1atEBERATi4uKsx6Wnp+OLL75Anz590LRpUzRr1gyPP/44Vq9eDbPZXOh5p06dioiICKxduxbx8fGYNGkS2rVrh2bNmmHIkCE4cOCA9diLFy9i/PjxaNu2LZo0aYJhw4bh5MmTRb6WvLw8/Pzzzxg6dChatGiBxo0bo2fPnvjiiy+QlZVV6Pi1a9ciIiICU6dOhcFgwPz589G9e3c0btwYHTt2xKxZswp9Jp5++mkMHz4cAHDkyJECY/nv9T7bcvXqVbzxxhvo0qULGjVqhNatW+O5557DwYMHbR5vuc8gLi4Ohw4dwpgxY9C6dWtERETg8OHDAIpft8uXL2Py5Ml4+OGH0ahRI7Rr1w7jx48v8v29u243btzA1KlT0aFDBzRo0ADz58+/72s9fPgwIiIi8PTTT8NkMmHx4sV49NFH8dBDD6FLly6YP38+8vLyAAC5ubmYM2eOtRbdunXDkiVLIIpioefNyMjAmjVr8MILL6B79+546KGH0Lx5cwwePBg//PCD9TmLSxRFfPDBB4iIiED37t0RHx9fYF9Jv+PHjh3DSy+9hPbt26Nhw4Zo1aoVHn30Ubz11lv3/CwTkW0KqQMQUen07dsXixcvxu+//17gCvbx48cRHx+PPn36wMvLq8jHG41GTJo0Cdu2bQMAhISEoFKlSoiJicHy5cuxbds2LF++vNBQlGeffRZmsxkBAQGoXLkyTCYT4uLisHLlSmzbtg0//fQT6tSpU+Axr776KrZv3w4AqFatGtRqNW7fvo3Tp0/j77//Rvfu3eHr61tWbw0WL16Mzz77DEFBQahRo0aB5uPy5csYPXo0EhMToVQqUb16dRgMBpw+fRqnTp3C/v37MXfuXAiCUOh54+LiMHv2bOj1etSsWRMJCQk4efIknnvuOSxduhRKpRLPPvssFAoFqlatitjYWBw7dgwjR47EmjVrULdu3QLPl5WVhbFjx+Lo0aOQyWQICwuDl5cXoqOj8dVXX+H333/H8uXLERgYWCiL0WjEqFGjcOzYMdSpUwfh4eGIiYnB999/j8uXL+Pbb7+1HqvRaJCeno5Lly7B29sbGo3Gui84OLjY7+uWLVvw+uuvw2g0wsvLC3Xq1MHt27exd+9e7Nu3D2+99Raefvppm4/dvHkz5syZAx8fH1SrVg0eHh6FjrlX3Xbt2oVXXnkFBoMBvr6+iIiIQEJCAnbs2IGdO3fivffew+OPP27z3NHR0Zg1axZyc3NRt25deHt726zvvUycOBHbt29H7dq1UblyZVy/fh0LFixAQkICpk+fjuHDh+PMmTOoU6cOgoODcePGDXz66afIycnByy+/XOC59uzZg2nTpkGpVCIkJMRanzNnzuD06dM4cOAAFi1aBJns/tfDTCYTpk2bhrVr10Kj0eDbb7+11rQ03/GdO3di/PjxMJvN8PPzQ0REBHJycnDr1i388ssvUKlUaNq0aYneOyKXJxKR0+jcubOo0WjEo0ePipcvXxY1Go04atSoAsdMmzZN1Gg04h9//CHevHlT1Gg0okajKfRcn376qajRaMQBAwaI586ds27PyckRp0+fLmo0GnHgwIGFHrdy5Urx1q1bBbbl5OSIixYtEjUajfjUU08V2PfPP/+IGo1G7Nixo3jlypUC+zIzM8XVq1eLCQkJ1m03btwQNRqN2Llz5yLfh6Jek2V7w4YNxVWrVolms1kURVE0Go2i0WgUs7OzxW7duokajUZ8//33xczMTOtjL1++LPbu3VvUaDTijz/+WOB5p0yZYn3eiRMnWh9nMpms71W/fv3Ezp07i7NmzRL1er0oiqKo1+vF559/XtRoNOKECRMK5Z04caKo0WjEESNGiLGxsdbt6enp4rhx40SNRiOOHz++wGN+/fVXa5ZevXqJ165ds+77+++/xcjISFGj0Yh79+4t8LhDhw7ZrE9xnT9/XmzUqJHYuHFjcdWqVaLJZLLu27VrlxgZGSnWr19fPH/+fIHHWT6z9evXF+fPny8ajUZRFEXRbDZb36f71e3WrVvW1/XBBx9YH2cymayfu4YNGxY6t6Vu9evXF8eOHSumpaVZ9+Xm5t73NVves4YNG4oPP/xwge/J4cOHxYYNG4oRERHi2LFjxT59+hSo4YYNG0SNRiM2atRITE9PL/Re7tmzx/o6LGJjY8Vhw4aJGo1GXLt2baE8//3c6/V6cfz48aJGoxEHDRpU4PWJYum+43369BE1Go34008/iXl5edbtZrNZPHTokLhr1677vm9EVBCbbSIncnezLYqiOGDAALF+/fpiYmKiKIr5//i2aNFCbNu2rWg0GotstlNSUsRGjRqJkZGR4s2bNwudx2Qyif/73/8KnKs4hg4dKmo0mgLN+KZNm0SNRiN++OGHxXqOsmi233//fZuP++GHH0SNRiO+9NJLNvefP39ejIiIELt27Vpgu6Vpa9++vajT6Qrsy8jIEBs3bmxtaiyNosXVq1dFjUYjRkZGFjqX5XXe3fRb6HQ6sWPHjmJERIQYFxdn3W5ptiMiIsTTp08XetysWbNsvgcP2mxbmv9ly5bZ3L98+XJRo9GIb7zxRoHtls/s888/X+Rz369un3/+uajRaMT+/fvb3P/ss8+KGo1GnDx5coHtd9ctOzv7Hq/ONst7ptFoxN9//73Q/ldffdVai7Nnzxba//jjj4sajUbcsWNHsc8ZExMjajQa8Zlnnim07+7PvU6nE0eNGmWt6X8/Q6X9jjdq1Ehs2bJlsfMS0f1xzDaRE+vfvz9MJhM2b94MIP/X0xkZGejduzcUiqJHie3duxcGgwFRUVGoVKlSof0ymQydOnUCkD/G97/++ecffPrppxg7diyeeuopDB06FEOHDsX169cBABcuXLAea3n+gwcPIj09vZSvtGSKujF0x44dAIDBgwfb3F+vXj2Eh4fjxo0buHXrVqH9ffr0gaenZ4FtPj4+qFKlCgBg4MCBhYYn1KpVCx4eHsjKykJaWpp1+86dOwEAPXv2hLe3d6FzeXp6om3bthBFEceOHSu0v379+mjcuHGh7ZZtd491flAGgwF79+6FXC7HwIEDbR5jGft99OhRm/sHDBhw3/MUVTfLmPhhw4bZ3G8Zj3732Pm79ejRAyqV6r7nL4qfnx+6detWaHu9evUAAA0aNECDBg0K7a9fvz4A4MaNG4X2GQwGbNy4EdOmTcPo0aPx5JNPYujQoZgyZQqAgt+h/8rMzMTo0aOxf/9+dOrUCUuXLi30GSrtdzwsLAwZGRlFvpdEVHIcs03kxHr37o3Zs2dj/fr1eOaZZ6yzkFhmKynKpUuXAACnTp3C0KFDbR6TkpICAEhMTLRuE0URM2bMwIoVK+75/Fqt1vrnZs2aoUmTJjh16hQ6deqEdu3aoWXLlmjZsiUaNmxY4rGzxVG7dm2b2y2ve+7cufjqq69sHmNpiBMTEws1KVWrVrX5mICAAFy9ehXVqlUrcn9CQgJ0Oh38/f0LZNm5cyf+/vtvm4+z3HB6dw2KkwUAsrOzbe4vjevXr0Ov11vHpNsi3rkR0FZWoOiaFOcYyw9x/70XwMIyFv727dvIysoq1HgW59z3cr/3+n77/3vDakJCAkaNGoXo6Ogiz3n3d+i/RowYgbNnz6J37974+OOPoVQqCx1T2u/4iBEjMGPGDIwaNQoNGzZEu3bt0Lx5c7Rs2dLmD4VEdH9stomcWHBwMNq2bYv9+/fj6NGj2LdvH2rVqmXziufdMjMzAQA3b97EzZs373msXq+3/nn9+vVYsWIFVCoVJk+ejPbt2yM0NNR6s9ukSZOwcePGArMpyGQyLFmyBAsWLMCGDRuwa9cu7Nq1CwAQHh6OcePGFXm1tLSKuoppmd3j7Nmz932O3NzcQtv+e1XbwvIDg62b/u7eL941M4WlBjExMYiJiblnlrtrYFHUayzOTXUlZclqNBpx4sSJex5rKytQ9Ht3t6Jek6VZtXWj6H+3Z2dnF2oKi3Pue7lf3e+3X/zPjCRTp05FdHQ0mjRpgvHjx6N+/fpQq9VQKpXIy8tDw4YN7zkjieXzotFobDbaQOm/48OGDYOXlxe+++47nD17FmfPnsWSJUvg7u6O/v374/XXX4ePj889n4+ICmKzTeTk+vfvj/3791tniSjO3NqWpmbs2LGYOHFisc+1ceNGAMCUKVPwxBNPFNpva+gFAKjVarz11lt48803ceHCBRw9ehQ7d+7E4cOH8cYbb0ClUqFnz54Aim5QLP57lbAkVCoVMjIysGPHDlSvXr3Uz1MWLDX44IMPihzW4igss9qEhoZi37595X5+lUqFzMxMpKSk2PztgeUKLYB7zsDjCBITE3H48GF4enpi8eLF8PPzK7D/fo0xACxZsgSjR4/GF198AQ8PD4wcObLQMaX9jgP5Q34GDBiA5ORkHD16FAcOHMCWLVuwevVqJCcnF/lbISKyjWO2iZxc9+7doVKpkJCQAEEQ0Ldv3/s+xvLr+MuXL5foXJZxwM2aNSu0z2g04urVq/d8vCAIqF+/PoYPH44ffvgBzz33HABgzZo11mMsVwlTU1NtPkdsbGyJMt/NMpygpK/bHiw1sPy6394eZLhO9erVoVQqkZycXG7j7u9Wo0YNAMCVK1ds7rfUMygoyOGHOliGBtWqVatQow3kz9N+P5GRkfj666/h6emJWbNm4aeffip0TGm/43cLDg5Gr169MHPmTKxZswYymQx79uxBUlJSqZ+TyBWx2SZycp6enhg1ahTatm2LIUOGIDw8/L6P6dixI5RKJfbt22cdD1sclmESd19JtFi7dm2RDXJRmjRpAgAF/vH29/eHj48PcnNzbTYKdzfmJWVZ5OeHH34o8sp5ebHccLdhw4YCN07ai6V2tobH3I+npyeioqJgNpuxfPnyso52X1FRUQBgs6kEYM1kOc6R3f0dsvUZXLp0abGep1WrVvjyyy/h7u6O999/v9D3orTf8aLUqVPHOnyEzTZRybDZJqoAxo8fj++//x7vvfdesY4PDQ3FiBEjYDQaMXr0aOtKfhaiKOL06dN49913C8yk0Lx5cwDAnDlzCjTW+/btw+zZs+Hu7l7oXBs2bMDChQsLzY6RlpZmbZLunslBEARr0/TRRx8VuNFv3bp1+PXXX4v1Gm0ZMmQIqlatisOHD2PSpEmFmobs7Gxs2bIFs2bNKvU5iqtx48Z49NFHkZ6ejlGjRuHcuXMF9ptMJhw+fBivvfYaDAbDA5/PMmPKlStXSvxDEQBMmDABbm5uWLRoERYvXlyoaU9KSsKyZcvw888/P3DW/xo6dCi8vb1x/vx5fPjhh9b3w2w2Y8mSJfjjjz+gVCrxzDPPlPm5y1qdOnWgVqtx69YtLFq0yNpw6/V6fPDBB4U+B/fSrl07zJ8/HwqFAu+88471BmmgdN/xrKwsTJw4EYcPHy6wkqrJZMIPP/wArVYLlUpVaKErIro3jtkmclETJ05EUlISNmzYgOHDhyM4OBhhYWEwGAy4ceOGtcm1TKsGAGPGjMHmzZtx6tQpdO7cGTVr1kRGRgbi4+PRunVrhISEWMd1W6SmpmLevHmYN28eQkNDERISAr1ej+joaBiNRoSGhmLChAkFHjN+/Hjs3bsX+/fvR1RUFGrWrImkpCQkJydj+vTpmD59eqles5eXF77++ms899xz2LRpE7Zs2YKaNWvC29sbWq0WN27cgMlksl5xt7eZM2dap1l77LHHULlyZQQHByMnJwexsbHWhvbDDz984HMFBASgTZs2OHToELp164Y6derA3d0dQUFB+OKLL+77+Pr16+Pzzz/H5MmT8dlnn2HBggWoVauWdXiJZaxxUbOVPIjQ0FDMnj0bEyZMwLJly/Dbb7+hWrVqSEhIQEpKCmQyGd5++23rVHyOTKlUYsKECZgxYwbmzp2LFStWIDQ0FNevX0d2djbef/99TJs2rdjP17FjR8yZMwevvPIK3njjDSiVSvTq1QtAyb/jZrMZW7ZswZYtW6BSqVCtWjUoFArEx8cjLS0NgiDgzTffdPhx8USOhle2iVyUQqHAJ598gsWLF1uHNJw/fx7JycmoUaMGnnrqqUJLOVeuXBkrV65Ejx49oFQqce3aNbi7u2P8+PFYunSpzbm9H3nkEUyaNAnt27eHXC7HpUuXkJSUBI1Gg1deeQWbNm1C5cqVCzymdu3a+Omnn9ChQwcIgoDo6GhUqVIFX331VZHTmBVX7dq1sX79erz22mto3LgxEhMTcf78eRiNRrRs2RJTpkzB559//kDnKC4vLy8sXboUn376KaKiopCTk4Nz584hLS0NERERePbZZ7FmzRqbvzEojc8++wwDBw6Et7c3zp49iyNHjuDUqVPFfnz37t2xefNmDB8+HOHh4YiOjsaVK1fg4eGB7t274+OPP7aOwy9rXbt2xdq1a9G3b1+4ubnhwoULEEUR3bt3x4oVKzBkyBC7nNcehg0bhk8++QT169dHeno6YmNj0ahRIyxevLhUN8t269YNn376KQBg8uTJ1jncS/od9/LywuzZs9G/f39UqlQJ8fHxuHLlCtRqNfr164fffvvN4W/mJXJEgij1wEUiIiIiogqKV7aJiIiIiOyEzTYRERERkZ2w2SYiIiIishM220REREREdsJmm4iIiIjITthsExERERHZCZttIiIiIiI7YbNNRERERGQnbLaJiCqwp59+GhERETh8+LDUUSqU7du34/HHH0fTpk0RERGBiIiIAvtXrlyJfv36oXHjxoiIiECXLl0kSkpEUiu8tjIRETmFw4cP48iRI2jVqhVat24tdZxSi4uLw7p16xAeHo6BAwdKHee+Dhw4gJdffhkAUKtWLfj5+RXYv3r1arz77ruQyWSoU6cOvL29ERwcXK4ZK8png6giYLNNROSkjhw5ggULFmDcuHFFNlRhYWGoWbMmPD09yzld8cXHx2PBggVo1aqVUzTbP//8MwBgypQpGDVqVJH758yZg0ceeaRcs1kU57NBROWDzTYRUQU2e/ZsqSNUONeuXQMAdOzYsVT7ici1cMw2ERFRCeTm5gIA3N3d77nfw8Oj3DIRkeMSRFEUpQ5BROUnLi4OXbt2RXh4OHbv3m3zGMvNXhcvXiywPT4+Hl9//TUOHDiAxMREKJVKBAQEoF69eujVqxd69+5doiyXL1/G4sWLcfjwYaSmpsLX1xfNmzfH6NGj0bRp0wLHDhw4EGfPnsXcuXPRs2dPm8+3fPlyfPDBB+jevTsWLFhQYN/Vq1exdOlSHD58GElJSfDy8kKTJk3wzDPPoG3btoWeq0uXLoiPj8euXbsQFxeHpUuX4p9//kF6ejp++OGHYv1qXhRFbNmyBb/88gvOnTuH7OxshIaGonPnznj++edtjuM9duwYvvvuO5w8eRLp6enw8vJCYGAgIiMjMXjwYOv78t8b8u722GOP4aOPPgKQf4PkkSNHCmWeOnUq1q1bh1mzZqF169b44osv8NdffyEnJwcajQYvv/wy2rdvDyD/c7BgwQIcO3YMOp0OjRo1wuTJkwvVCAAuXbqEbdu24cCBA4iPj0d6ejr8/PzQtGlTjBo1CpGRkQWOt+SzxdZn9PTp0/juu+9w7NgxpKWlwdfXFy1atMDYsWPRoEGDIt+TopSkRvfKOm7cOKxbtw7x8fE298+aNavAEJmSfh4tWbdt24a1a9fizJkzyMzMRFBQEOrUqYNevXpZn7+4nw0iKh8cRkJExRIXF4dBgwYhLS0Nnp6eqFmzJuRyOW7evImdO3ciLi6uRM32rl278Morr8BgMMDX1xcRERFISEjAjh07sHPnTrz33nt4/PHHrcf37dsXZ8+exebNm4tstjdv3gwAhXJs2bIFr7/+OoxGI7y8vFCnTh3cvn0be/fuxb59+/DWW2/h6aefLvI558yZAx8fH1SrVq3YVyuNRiMmTZqEbdu2AQBCQkJQqVIlxMTEYPny5di2bRuWL1+OmjVrWh+zc+dOjB8/HmazGX5+foiIiEBOTg5u3bqFX375BSqVytrgRkZG4ubNm7h58ybCwsIQFhZmfZ4aNWoUKyOQX9fZs2dDr9ejZs2aSEhIwMmTJ/Hcc89h6dKlUCqVePbZZ6FQKFC1alXExsbi2LFjGDlyJNasWYO6desWeL4PP/wQBw8ehK+vL4KDgxESEoKEhAT8/vvv2L17Nz7++GP07dvXerxGo0F6ejouXboEb29vaDQa677//jDy/fff46OPPoIoivDz80PdunWRkJCA7du3Y/fu3fj888/Ro0ePYr/2ktZIo9EgLy8PZ86cgcFgQKNGjeDm5gYgf2x8o0aNEBoaihMnTgBAgR8sAgMDrX8uzefRYDDg1Vdfxe+//259b+rVq4ekpCTs378ff/75p7XZLqvPBhGVEZGIXMqNGzdEjUYjdu7cuchjNBqNqNFoCmybMWOGqNFoxClTpohZWVkF9l25ckVcuXJlsTPcunVLjIyMFDUajfjBBx+Ier1eFEVRNJlM4qJFi0SNRiM2bNhQPH/+fIHH1KtXT2zcuLGYmZlp83VFRESIzZo1E3Nycqzbz58/LzZq1Ehs3LixuGrVKtFkMln37dq1S4yMjBTr169f4FyiKIqdO3cWNRqNWL9+fXH+/Pmi0WgURVEUzWazNe+9fPrpp6JGoxEHDBggnjt3zro9JydHnD59uqjRaMSBAwcWeEyfPn1EjUYj/vTTT2JeXp51u9lsFg8dOiTu2rWrwPHz5s0TNRqNOG/evCJzPPXUU6JGoxEPHTpUYPuUKVOs7/PEiROt76nJZLLm69evn9i5c2dx1qxZ1tes1+vF559/XtRoNOKECRMKnW/r1q3ihQsXCmwzm83i77//LjZt2lSMjIwsVL9Dhw6JGo1GfOqpp4p8HXv37hUjIiLE1q1bi9u3by+wb/Xq1WKDBg3EZs2aiYmJiUU+x3+Vpkai+O9n48aNGzaf19b3x6K0n8eZM2eKGo1GbN26tbh3794C+27dulXoM1CczwYRlQ+O2SaiYrl+/ToAYOTIkfDy8iqwr3bt2hgyZEixn2vFihXIyspC/fr18dZbb1mvDspkMowdOxYdO3aE0WjEt99+a31MaGgoWrZsCb1eb726d7ctW7ZAFEV069atwNXnhQsXwmAwYNKkSXj88cchk/37116XLl0wceJEmEwm/PDDDzazPvzwwxg3bhwUivxfBAqCYM1blNTUVHz//ffw9vbGokWLUL9+fes+Dw8PvP3222jcuDHOnDmDY8eOWfddv34darUaTz75JORyuXW7IAho3bq1XeZq9vPzw8yZM+Ht7Q0gvwavvvoq3N3dceHCBajVakyZMsX6mt3c3PD6668DAP78889Cz9ezZ89CwxgEQUC3bt0wYsQIZGVlYc+ePSXOOWfOHIiiiJkzZxa6ej148GAMHz4c2dnZWLNmTbGer7Q1elCl+TwmJiZixYoVAIAFCxbg4YcfLvCcoaGhGD9+fJllJKKyxWabiIrF8qvo7du3Q3zAWz0OHDgAABg2bJjN/cOHDy9wnIVl+MGmTZsKPcayrU+fPtZtBoMBe/fuhVwuL3JKOUsDe/ToUZv7BwwYUNTLKNLevXthMBgQFRWFSpUqFdovk8nQqVMnACgwBjgsLAwZGRmFXrc99enTp9C0gD4+PqhSpQqA/LHygiAU2F+rVi14eHggKysLaWlphZ4zISEBixcvxoQJEzB8+HAMHToUQ4cOxdatWwEAFy5cKFHG+Ph4nD17FoGBgejatavNY+5Xx/8qbY0eRGk/j/v27YPRaETTpk3RokWLMslCROWHY7aJqFiGDRuG3377DV9++SXWr1+PqKgotGjRAq1bt0ZoaGiJnstylbxOnTo291vGAd++fRtZWVnWq66PPPII3nvvPRw6dAipqakICAgAAFy5cgUXL15EQEAA2rVrV+A8er3eOu7YFssPDomJiTb3165du0SvDci/SRAATp06haFDh9o8JiUlpdB5R4wYgRkzZmDUqFFo2LAh2rVrh+bNm6Nly5bW96CsVa1a1eb2gIAAXL16FdWqVStyf0JCAnQ6Hfz9/a3b161bh3fffRd6vb7Ic2q12hJltLyfer2+yPfTcr6i6ljUc5a0Rg+itJ/Hq1evAgCaNGlSJjmIqHyx2SaiYqlfvz5+/PFHzJ8/H4cOHcKqVauwatUqCIKA9u3b48033yx2Y6rT6QAUvGnsbndvz87Otjaavr6+ePjhh7Fr1y5s3brVemXcclW7Z8+e1uEeAJCZmQkg/0Y4y01rRSmqObS1GMzLL7+M5OTkQtsti5lYzmu5Sa245x02bBi8vLzw3Xff4ezZszh79iyWLFkCd3d39O/fH6+//jp8fHzu+XwlVdRiN5ar2UXdEGrZf/dvOWJjY/H222/DaDRi1KhR6NevH6pWrQovLy8IgoA1a9Zg2rRpyMvLK1FGy/uZlZVV6joW9ZwlrdGDKO3nMSsrC0D+55+InA+bbSIXY6tJupulEbaladOm+Oabb5CdnY0TJ07g8OHD2LRpE/bv349nnnkGmzZtKlZDoFKpkJmZiZSUFJtXTi1XFAEUGh/ep08f7Nq1C5s3b7Y221u2bAFQeBYSy2NDQ0Oxb9++++YqrjNnzhQ5xRuQ//oAYOzYsZg4cWKJnnvAgAEYMGAAkpOTcfToURw4cABbtmzB6tWrkZycjK+++uqBstvT1q1bYTQa0bt3b0yZMqXQ/vs1tUWxvJ+RkZHWH2ge1IPUqLRK+3m0PC4jI8MuuYjIvjhmm8jFWK5kpqam2twfGxt73+fw8vJChw4dMGnSJGzduhXVqlVDYmJisRsIy/RjV65csbn/8uXLAICgoKBCwye6dOkClUqFEydOICEhAadPn0ZMTAwqV66M5s2bFzi2evXqUCqVSE5ORnp6erGyFcfu3btx8eLFQv+zsAyPsbyO0ggODkavXr0wc+ZMrFmzBjKZDHv27EFSUpL1mP+OpZaa5QeQZs2a2dxf1Fjt+70Oy/t57do1mM3mB0hY+DkfpEYlVdrPoyXrqVOniv0YR/tsELkyNttELsbf3x8+Pj7Izc212WgUdzYHC09PT+vcyHc3gvcSFRUFAPjpp59s7l++fHmB4+7m4eGBbt26QRRFbN682TqEpFevXoUaDE9PT0RFRcFsNlufszx07NgRSqUS+/bts45PfxB16tSxDh+5+z22rGBoWbFQapY8t2/fLrTv6tWrRc5CYhmqUtTrqFGjhnU+7t9++61MspZ1jYqjtJ9HS9aTJ0/i+PHjxXqMo302iFwZm20iFyMIgrWJ/eijj5CdnW3dt27dOvz66682H/fuu+9iy5YtyMnJKbD96NGjOHjwIAAUewW/oUOHwtvbG+fPn8eHH34Ig8EAADCbzViyZAn++OMPKJVKPPPMMzYfb5lxZOPGjdYZLu5eKOVuEyZMgJubGxYtWoTFixcXaj6SkpKwbNmyMhueAOQPExgxYgSMRiNGjx6Nw4cPF9gviiJOnz6Nd999Fzdu3ACQPy534sSJOHz4cIGrt5Zp4LRaLVQqVYFFcCw3N/79998lHgdtD5bfLPz88884f/68dXt0dDReeeUVKJVKm4+zzHxy5cqVIn/jMmnSJAiCgBkzZmDNmjWFXu+NGzewaNEi7Nixo1hZS1OjslCaz2NISIh1yNT48eOxf//+Ao9JTEwstGKqo302iFwZx2wTuaDx48dj79692L9/P6KiolCzZk0kJSUhOTkZ06dPx/Tp0ws95uTJk1i5ciUUCgWqV68OLy8vpKSkWIcO9OvXD23atCnW+UNDQzF79mxMmDABy5Ytw2+//YZq1aohISEBKSkpkMlkePvtt1GvXj2bj2/fvj0CAgKsQzdq165d5LH169fH559/jsmTJ+Ozzz7DggULUKtWLeuv8y3jiIuaHaK0Jk6ciKSkJGzYsAHDhw9HcHAwwsLCYDAYcOPGDesPOZZpDs1mM7Zs2YItW7ZApVKhWrVqUCgUiI+PR1paGgRBwJtvvllgDHtUVBTUajWOHz+OTp06oWrVqlAoFOjQoQOee+65Mn09xdGtWzc0bdoUJ0+exP/+9z/UqFEDcrkcly9fRlBQEF544QXMmTOn0OMCAgLQpk0bHDp0CN26dUOdOnXg7u6OoKAgfPHFFwDyr+6+/fbbmDlzJqZNm4ZZs2ahRo0aEAQBt27dsl5Nt/XZLUpJa1QWSvt5fO2113Djxg3s2rULo0ePRkhICEJDQ5GcnIzExESIoohx48ZZj3e0zwaRK+OVbSIXVLt2bfz000/o0KEDBEFAdHQ0qlSpgq+++qrIadDeeOMNDB8+HBEREUhLS7NeuYyKisKiRYswe/bsEmXo2rUr1q5di759+8LNzQ0XLlyAKIro3r07VqxYcc9FchQKRYEl2++eW9uW7t27Y/PmzRg+fDjCw8MRHR2NK1euwMPDA927d8fHH39c5g2IQqHAJ598gsWLF6Nbt24AgPPnzyM5ORk1atTAU089VWApcC8vL8yePRv9+/dHpUqVEB8fjytXrkCtVqNfv3747bffMHjw4ALn8Pb2xjfffIOHH34YRqMRJ0+exJEjR3Dt2rUyfS3FpVAo8M033+Dpp59GYGAgYmNjkZGRgUGDBmHt2rX3nCLys88+w8CBA+Ht7Y2zZ8/iyJEjhcYoW6afHDx4MAICAnDlyhXExMTA398fffr0wdy5c0s0L3pJa1RWSvN5dHNzw8KFC/Hpp5+ibdu2MBgMuHDhAmQyGTp27IiPP/64wPGO9tkgcmWC+KCrUxARERERkU28sk1EREREZCdstomIiIiI7ITNNhERERGRnbDZJiIiIiKyEzbbRERERER2wmabiIiIiMhO2GzbYDabcebMGRw8eBAmk0nqOC5NFEWkp6eDM1RKj7VwDKyD42AtHAPr4DhYC9u4gqQNOTk5aNy4MQAgMzMT3t7eEidybfzSOg7WwjGwDo6DtXAMrIPjYC0K45VtIiIiIiI7YbNNRERERGQnbLaJiIiIiOyEzTYRERERkZ2w2SYiIiIishM220REREREdsKp/2xQKpV47bXXoNfroVQqpY5DRERETs5kMsFoNEodw65EUYTBYEBubi4EQZA6TqkplUrI5fIyez422za4ubnhk08+QXp6Otzc3KSOQ0RERE5KFEXcunUL6enpUkcpF2azGampqVLHeGB+fn6oVKlSmfzQwGabiIiIyE4sjXZISAhUKpVTX/G9H1EUYTKZIJfLnfZ1iqIInU6HpKQkAEBYWNgDPyebbRvMZjNiYmKQkZEBX1/fMv1VAhEREbkGk8lkbbQDAwOljmN3FaHZBgBPT08AQFJSEkJCQh64D2SzbUNOTg5q1aoFgMu1ExERUelYxmirVCqJk1BJWWpmNBofuNnmbCREREREduTMV3ldVVnWjM02EREREZGdsNkmIiIiIrKTEjfb69evxzvvvIOBAweiUaNGiIiIwNq1a4s8PisrC7NmzULnzp3RqFEjdO7cGbNmzUJWVtYDBSciIiIi55eTk4P58+fj8OHD5XK+qVOnokuXLuVyLqAUN0jOnTsX8fHx8Pf3R0hICOLj44s8VqfT4amnnsL58+fRvn179O7dGxcuXMD333+Pw4cPY8WKFbxpgIjIzkwZOuiOnEP2kfMwXL8J461UmHW5AACZlweUoQFQVgmGR8OaUDWtC/fa4RInJiJXkpOTgwULFmDcuHFo3bq11HHKXImb7Q8++ADVq1dHeHg4Fi9ejM8++6zIY5cuXYrz589jzJgxmDx5snX7vHnzsHDhQixduhQvv/xy6ZITEVGR8tIzkb56D9JW7ULOqauA2Vzsx7rVCYe6dzsEjnwUbtUr2TElEVHFV+Jmu127dsU6ThRFrFmzBiqVCi+99FKBfc8//zx+/PFH/PLLLxg/frzD3aWrUCjwwgsvwGAwQKHg7IhE5Dzy0jKRPGc1bi/dBDFHb93uVqMSvNo2gntENSgrB0LurYIoijBn5yDvVhr00QnIPRONnJOXYbgSj+S5a5A8/1eo+7ZD8EsDoWpRT8JXRVTxZGdnF7lPLpfDw8OjWMfKZDLrvNAlPVan05V6hEFMTAy++uorHD9+HImJifD19UWDBg0wYcIE1K9fv8CxGRkZ+PLLL/H7778jMTERPj4+aNSoEaZOnQp3d3d07doVALBgwQIsWLAAAPDYY4/ho48+wtSpU3HkyBHs3r27wHPOnz8fCxYswMWLF63bfvrpJ2zZsgXXrl1DTk4Oqlatin79+mHkyJFQKpWlep1lwW6d5PXr15GUlISoqKhChXR3d0eLFi2wa9cuxMTEoEaNGvaKUSru7u5YuHAh0tPT4e7uLnUcIqL7EkURqT9sx813v4E5I/8fW48GNRAw4lGoe7eFsnJQsZ7HlKFD5q5jSF2+HVl//A3t+v3Qrt8P30fbIOy9UXCvU8WeL4PIZdxrDY9evXph8+bN1v8OCQmBTqezeWzHjh3xxx9/WP+7Ro0auH37ts1jW7RogaNHj1r/u0GDBrh+/XrJgt+RlJQEPz8/vPbaawgICIBWq8W6deswdOhQrF27FrVr1waQf+/ek08+ifj4eIwZMwZNmjSBTqfD0aNHkZycjMjISCxduhRjxozBoEGDMHjwYABAQEBAiTPFxsaiT58+qFKlCpRKJS5cuICvvvoK165dw6xZs0r1OsuC3ZrtmJgYACiyka5evbr1uHs126IolnW0YrGcV6rzUz7WwXGwFo7BVh3yUrSIe3kuMrfl31zk0aAGQt8eAZ/uLa2/OSxu3WQ+nlAP6AD1gA7IORuN21+uQ/qaPcjYeggZvx9F8ITBCHntCcjcpbtK5Cj4nXAMjlyHu7OVNF9Jjn+QY0v7vrVo0QItWrSw/rfJZMLDDz+MPn36YNWqVXjjjTcAAMuWLcPly5fx7bffFhgd0b17d+ufGzZsCAAIDQ1FkyZNCmS7+3+2ct+9ferUqdY/m81mNG/eHH5+fnjzzTcxZcoUqNXqQs9blOLWrjijM+zWbGdmZgIo+ic3y3bLcUXRarXl/gUSRREpKSnWPzvaMBdXpNVqpY5Ad7AWjsFSB+PlOCQ/+ylMN5IBNwXUrz4On1GPwiyXPXitwv3hM3MUPJ55BOmzViD3j5NI/mwl0jfuR8AXL8GtXrUyeCXOj98Jx+CIdTAYDDCbzTCZTDCZTAX2paenF/k4uVxe4PiEhIQij5XJZAWOvXLlSrGPPX36dKFcxZWXl4dvv/0WGzduRGxsLPLy8qz7rl69an3effv2oUaNGmjdunWR57Jstyz3fjdLD1ic7efPn8eCBQvw999/F/o8XLt2DQ899NA9n/O/mcxmMzIyMpCbm1vkcf7+/kXus3D4AcmWn0LKU3Z2NjQaDYD8cUZcrl06oihCq9VCrVbzhx6JsRaO4e46ZO8/jfjhM2HOyIZbjUqotuwteDaqVfYnbeGH4F9nQrthP+InfwnjpTgkP/4eqix8Feq+7cv+fE6C3wnH4Mh1yM3NRWpqKuRyeaElv319fYv9PPY61sfHp9jH/tesWbOwYsUKjBkzBi1btrS+/9OmTYNer7e+3rS0NISFhd1zyXPLPkEQCh1nqen9tickJGD48OGoUaMG3nrrLYSHh8PNzQ3//PMPZsyYAYPBUOA8tp7zv5lkMhl8fX0LjJ8vDbs125YCFjWftmX7/QotxRfn7nMKguBwX15XxDo4DtbCMegOn8P1J9+DqNND1aYhaiyfBkWgfS9O+PXvAO/2DyH22Y+RtfckYkd+iErTRiB44uMu/Zngd8IxOGIdLHkcMduD2rhxIwYMGIDXXnvNuk0URaSnp8PX19f6egMCAnDr1q1ivX5b75O7uzuMRmOh7ZbfDFi279q1CzqdDgsWLEB4+L/Tl1puoLz7uS1/vlemsqyd3VaQtIzJLmrgvWVMt+U4IiIqHsM/0bj+xHSIOj18ujZHrXUf2r3RtlAEqVFzzfsIGjsAAHDrg2VImPoVxBJMLUhEzk8QhEIzfPzxxx9ITEwssK1Dhw64fv06Dh48WORzubm5AYDN4RpVqlRBSkpKgZs+DQYD9u/fXyjP3c8F5Df/q1evLuYrsh+7XdmuUaMGQkJCcOLEiUJTy+j1ehw7dgwhISFstomISsAQl4TkMZ/AnKmDV/vGqL7srXK/WVFQyFH5w+fgVqMSEqZ+hZQlG5GXkoGqX74KmRtvnCRyBZ06dcK6detQq1YtRERE4OzZs/jmm29QqVLBuflHjBiBrVu34sUXX8Rzzz2Hhx56CLm5uTh69Cg6deqENm3awNvbG+Hh4di1axfatm0LtVoNf39/VKlSBY8++ijmzZuHiRMnYsyYMdDr9Vi+fHmh8dbt2rWDUqnEq6++ijFjxsBgMODnn39GRkZGeb4tNtntyrYgCBg8eDB0Oh0WLlxYYN/XX38NrVaLwYMHV7hfqxAR2YspKwcxw2bAfFsLj4Y1UWPFu5CpHmws4YMIeq4fqi2ZAkGpgHbt3vxseqNkeYio/Lz11lvo168fFi9ejBdeeAG7d+/G/PnzUbVq1QLHeXt7Y8WKFRg0aBBWr16N559/Hm+//Taio6MREhJiPW7mzJnw9PTECy+8gEGDBlnn265atSoWLlyIzMxMvPzyy5g9ezZ69uyJAQMGFDhP7dq1MX/+fGRkZGD8+PF4//33Ua9ePbz11lt2fy/uRxBLONXHmjVrcPz4cQDApUuXcPbsWURGRlqvUHfr1g3dunUDkD9Z+pNPPmldrr1hw4a4cOEC9u3bh/r16zvscu3Z2dkFZkvhDZLSsYz/8vPz4w9mEmMtpCWKImJHfgjtxgOQBfqi7u65cK8aKnUsAEDmnhO4/vT7+cNaerZG9e/fdIkr3PxOOAZHrkNubi6io6NRs2bNB77JzhlYZhORy+UOV4uSKsvalXgYyfHjx7Fu3boC206cOIETJ04AAMLDw63NtkqlwvLly7FgwQJs374dR44cQVBQEEaOHIlx48Y5ZKNNROSIUn/YDu3GAxCUCgQtmgi3KiH3f1A58ekciZor3kX0E9ORue0wbjz3CaotnQJBUfSd/kRErqLEV7ZdgV6vx/PPPw+DwYBvv/3WJX4adVSOfMXC1bAW0tFficOlTuMh6vSo9N4oKJ/q6pB1yNx5DNefmgHRkAe/QZ1QddFrEO4xtZaz43fCMThyHXhl23mVZe3sNmbbmbm7u+O7777DwoULuVw7EUlKNJkQO/ZTiDo9vB9ugqAXH5M6UpF8urVAte/eBBRypP/yB+ImzOMsJUTk8thsExE5sJSlm5Bz4hJkvl6osvA1CDLH/mtb/WgbVFsyBZDJkLbid8RP/tIhl9EmIiovjv23tkREUUR2djays7P5jwQRScaYcBu3Zv4AAAh7dyTcwoMkTlQ8fv2jUHXRa4AgIPW7Lbg5bQn/LiUil+Xwy7VLQafTWVe25GwkRCSVhDcXw5yVA1WLeggY8ajUcUrEf3BniHoj4l6eg9uLfoPM0x2Vpo2QOhaRJPjDpvMpy5rxyjYRkQPK2n8a2g37AbkM4Z+Pc/jhI7YEPNUDlWe/AABI+nwVEj/9WeJEROXLssKiTqeTOAmVlKVm/10lszR4ZZuIyMGIZjNuvrMUABD4TC94NqolcaLSCxrTF2KuETffWYrED5dD5uGO4HEDpY5FVC7kcjn8/PyQlJQEIH9KZGefpeNeKsJsJKIoQqfTISkpCX5+fpCXwYxKbLaJiBxM+q97kXPyCmTengh9fZjUcR5Y8LiBMOfkInHWj7j5zlIInm4IGt1H6lhE5cKyfLml4a7ozGYzZE74m7j/8vPzK7T0fGmx2SYiciDmXANuvf89ACBk4uNQBKmlDVRGQiYNhTnXgOQvViNh8peQubsh4KkeUscisjtBEBAWFoaQkBAYjUap49iVKIrIyMiAr6+v017ZBvKHjpTFFW0LNttERA4k9acdMMYlQxkWiKCxA6SOU2YEQUClaSMg6vS4/fV6xE2YC8FDCf9BnaWORlQu5HJ5mTZwjkgUReTm5sLDw8Opm+2y5vzX+YmIKgizwYjkOWsAAMGvPA6ZZ8VaVEsQBIR9+BwCRj4KiCJuvPAZtBsPSB2LiMiu2GzbIJfLMWjQIPTr16/C/xRKRI4jbeUuGOOToQj1r7BDLARBQPinL8H/ia6AyYzYMR+z4SaiCo3Ntg0eHh5YvXo1vv/+e3h4eEgdh4hcgJhnQvKc1QCA4HH/q3BXte8myGSoMu8VqB97GKIxDzHPzELKD9ukjkVEZBdstomIHIB2/X4Yrt+CPNAXgSN7SR3H7gSFHNW+ngz/p3oAZjPiX5mHpLlrpI5FRFTm2GwTEUlMFEUkL1oHAAgc3QcyL9f4jZqgkKPK3AkInjAYAHDrve8Q//qXEI15EicjIio7bLZtyM7OhkwmQ0BAALKzs6WOQ0QVnO7IeeScuATBTYHAUb2ljlOuBEFA2LvPIGzGGABAytJNiH78HeSlZUqcjIiobLDZJiKS2O1FvwEA/AZ1hjLEX9owEgkeNxDVl0+DzMsDWXtP4kr3ici9dEPqWERED4zNNhGRhAw3EqHd9BcAIOjFAdKGkZi6dzvU3vYZlFVDYLiWgCvdJyJz5zGpYxERPRA220REErq9eCNgNsO7Y1N4NqgpdRzJeTasibo750DVpiHMmTpEPzEdyV+ugyiKUkcjIioVNttERBIxZeqQemfKu6AXBkgbxoEogv1Q67cPrTOV3Jy2BHHjvoA5Ry91NCKiEmOzTUQkkbTVu2HO1MGtTjh8urWQOo5DkbkpUWXuBFT+8DlAJkPazztx5dFJMMTckjoaEVGJsNkmIpKAKIpI/X4rACBoVG8IMv51/F+CICBo7ADU/PUDyAN9kXv6Ki53mYDM3SekjkZEVGz8290GuVyOXr16oXv37lyunYjsIufEJeSejYbgroTfkK5Sx3FoPh2bou6eefCM1MCUlonoIe8gZRlXnCQi58Bm2wYPDw9s2rQJq1at4nLtRGQXKcvyr2qr+0dB4e8jcRrH51YlBLU3fwL/J7oCJjPiJ87DrZk/8MZJInJ4bLaJiMqZKSMb6Wv3AoBLLM1eVmTuSlRZ+CpCJg0FACR9thJx476AmGeSOBkRUdHYbBMRlbP0X/6AqNPDXVMVqtYNpI7jVARBQKU3n0b4nJcBef6Nkzde+hyiiQ03ETkmNts2ZGdnw9vbG1WqVOFy7URUpkRRRMqdGyMDRjwKQRAkTuScAof3RPXv3gQUcqSv2YMb476AaDZLHYuIqBA220XQ6XTQ6XRSxyCiCibn78vIPXMNgrsS/kO6SB3Hqan7tEP1b6bmN9yrduPm9O+kjkREVAibbSKicpT643YAgLpveygCfCVO4/zUfduj6sJXAQC3F/yK20s3SpyIiKggNttEROXEnKNH+tp9AICAp3pInKbi8B/cGaFvDQcAJEz9Gpl//C1xIiKif7HZJiIqJxlbD8GckQ1llWB4RT0kdZwKJeTVIfAf2g0wmxH73GwYE25LHYmICACbbSKicpP2804AgP+QrlwxsowJgoDwT1+CR6NaMN3WImb0RxCNeVLHIiJis01EVB6MN1OQuSd/eIP/0G4Sp6mYZJ7uqP79m5D5qKA7fA7JC36VOhIREZttW2QyGTp27Ij27dtDxqtPRFQG0tbsBsxmqFo3gHutylLHqbDca1VG+OwXAACJs1dAfyVO4kRE5OrYSdrg6emJPXv2YOPGjfD09JQ6DhE5OVEUkfbzLgC8ql0e/B7vAu8uzSHqjYibOJ/zbxORpNhsExHZWc7fl6G/GAvB0x1+AzpIHafCEwQBVT4fB0HljuwD/yBt5S6pIxGRC2OzTURkZ2mr8ps9de+2kPt6SZzGNbhVC0Xo68MAALdm/gBzdq7EiYjIVbHZtiE7OxshISGoW7cul2snogcimkzQrt8PAPAb3FniNK4l6Pn+cKteCXk3U3izJBFJhs12EW7fvo2UlBSpYxCRk8s+8A/yktIg9/eBT6dmUsdxKTJ3JSq9MxIAkDT/Fxhv8u90Iip/bLaJiOwofd2fAAB1n3YQlAqJ07ge9YAOULWsD1GnR9JnK6WOQ0QuiM02EZGdiMY8aDceAACoH3tY4jSuSRAEVHp7BAAg9cftMMRzZUkiKl9stomI7CRr3ymYUjOgCPaDN5dnl4x31EPwatcIoiEPyXNXSx2HiFwMm20iIjtJX7cPAKDu1x6CQi5xGtcW+vqTAIDUH7bBmMCr20RUfthsExHZgVlvhHbTXwA4hMQReHVoAq+2DfOvbi9YK3UcInIhbLZtkMlkaNGiBZo1a8bl2omoVLL2nIA5IxuKsEB4tWkodRyXJwgCQiYOAZA/dtuUoZM4ERG5CnaSNnh6euLIkSPYtWsXl2snolKxDCHx6xcFgT+0OwTvrs3hrqkKc1YOUn/cLnUcInIR/BeAiKiMmXP0yNh6CACHkDgSQRAQNHYAAOD24g0Q80zSBiIil8Bmm4iojGXuPAZzVg6UVYKhallP6jh0F/8hXSAP8IUxNhHazQeljkNELoDNtg06nQ41a9ZEkyZNoNNxXB8RlYx1FpIBD0MQBInT0N1knu4IfOZRAEDK0o0SpyEiV8Bm2wZRFBETE4MbN25AFEWp4xCREzFn5yJjxxEAgN9jHSROQ7YEjOwNyGTIPvAPci/dkDoOEVVwbLaJiMpQxvbDEHV6uNWoBM+mdaWOQza4hQfBp0dLAPnzbhMR2RObbSKiMpT+258AAL+BHTmExIEFjswfSpL2806Ycw0SpyGiiozNNhFRGTFl6JD5+1EAnIXE0fl0bQ5llWCY0jKh3XhA6jhEVIGx2SYiKiMZWw9C1BvhXrcqPBrUkDoO3YMglyPg6UcAAKnLOec2EdkPm20iojJinYXksQ4cQuIE/Id2AwBk7z8NQ1ySxGmIqKJis22DIAho0KABIiIi+A8mERVLXnomsvb8DQDw4xASp+BWJQReUQ8BANLX7JE4DRFVVGy2bVCpVDhz5gwOHjwIlUoldRwicgIZmw5CNObBo0ENeERUkzoOFZP/410AAGkrd3OqVyKyi3JptkVRxI4dO/D0008jKioKTZo0wSOPPIJ33nkHN25wjlMicn7/DiHhVW1nou4XBcHDDfrLN5Bz8rLUcYioAiqXZvvjjz/G+PHjER0dja5du+Kpp55ClSpVsHr1avTv3x+XLl0qjxhERHaRd1uLrH0nAXAIibOR+6rg+2gbAEDaqt0SpyGiisjuzXZycjKWLVuG8PBwbNu2De+99x4mT56Mb775BlOnTkV2dja+++47e8coEZ1Oh0aNGqFt27Zcrp2I7ku76QBgMsOzSR2416osdRwqIf8h+UNJtL/9CdFkkjgNEVU0dm+24+PjYTabERkZCW9v7wL7OnXqBABITU21d4wSEUUR586dw8WLFzmGj4ju6+5ZSMj5eHdqBrnaG3lJacg+dE7qOERUwdi92a5evTqUSiVOnDiBrKysAvv27t0LAGjTpo29YxAR2YUxMRXZB84AAPwGcAiJM5K5KeHbK//fIe36PyVOQ0QVjcLeJ/D398fEiRMxe/Zs9OrVC126dIGXlxcuXbqEgwcPYsiQIXjqqaeKfLwUV5bvPqcoiry6LSHLe88aSI+1sC19/X7AbIZni3pQVg2x+/vDOtiHb/8opP28E9qNBxD24XMQ5PL7Poa1cAysg+NwxVoUZ4pouzfbADB69GiEhITgnXfewc8//2zd3qxZM/Tr1w9KpbLIx2q12nIvWnZ2doHz5+Xllev5qTCtVit1BLqDtSgoZU3+TXXuPVsgPT293M7LOpQtsUlNCL4q5CWmIXHXEXi0ql/sx7IWjoF1cByuVAt/f//7HlMuzfaXX36JL7/8EuPGjcOAAQPg6+uL8+fP46OPPsLw4cMxZ84c9OjRw+Zj1Wp1eUQs4O7mX61WFxprTuVHFEVotVqo1WouMCQx1qIwQ3wyDMcvAYKASkO6Q+nnZ/dzsg72k927HdJ+3gnTzpPw69H2vsezFo6BdXAcrIVtdm+2Dx48iLlz52LkyJEYO3asdXvz5s3x9ddfo2vXrpg1a1aRzbYUxbr7nIIg8APjAFgHx8Fa/Ctj/X4AgFebBnALDy7Xc7MOZU89oAPSft6JjE0HEP7R88UaSgKwFo6CdXAcrEVBdr9B0nITZOvWrQvtCwgIQEREBBISEhxqRhJBEFC9enVUrVqVHxYiKhIXsqlYvDs2zZ+VJDEN2Yc5KwkRlQ27N9tGoxFA0dP7Wba7ubnZO0qxqVQqREdH49SpU1yunYhsMsTcQs6JS4BMBnW/KKnjUBkoOCvJfonTEFFFYfdmOzIyEgDw/fffIzMzs8C+devWISYmBg0bNuS4aCJyKum/5U8R5x3VGMqQ+98gQ85B3T//ByftxgMQzWaJ0xBRRWD3Mds9e/bEypUrceTIEfTo0QNdunSBr68vLl68iAMHDsDNzQ1vvvmmvWMQEZUp6xASzq1doXh3bAaZtyfybqUi5+/LUDWPkDoSETk5u1/Zlsvl+OabbzBp0iSEhYVh8+bN+OGHH3DlyhX06dMHv/76K1q0aGHvGCWSk5ODVq1aoWvXrsjJyZE6DhE5GP2VOOSevgrIZVD3bSd1HCpDMnclfLo2BwBkbDskcRoiqgjKZeo/Nzc3PPvss3j22WfL43QPzGw249ixY9Y/ExHdzXJV26dzJBSB5T89KdmX76NtoF2/HxlbD6PSWyOkjkNETs7uV7aJiCoSURSR/mv+LEt+AztKnIbswad7S0AuQ+656zDE3JI6DhE5OTbbREQlkHv+OvSXbkBw/3fmCqpYFP4+8GrbCACQsZVDSYjowbDZJiIqAe3aO0NIureE3NdL4jRkL74989eGyNh2WOIkROTs2GwTERWTKIpIX3tnCAkXsqnQfB/N/61F1oF/kJeeeZ+jiYiKxmabiKiYck5cguH6Lci8PODbo5XUcciO3GuGwb1edcBkRubOY1LHISInxma7CEFBQQgMDJQ6BhE5EMtVbd+erSHz8pA4Ddmb76N3hpJs5VASIio9Nts2eHl5ISkpCZcvX4aXF8dkEhEgms3WVSPVnIXEJajvDCXJ3HkMZoNR4jRE5KzYbBMRFUP2obPIu5kCma8XfLo0lzoOlQPPSA0UIf4wZ+qgO3RW6jhE5KTYbBMRFYNlFhJ1n3aQuSslTkPlQZDJ/l1N8neO2yai0mGzbUNOTg46d+6Mvn37crl2IoKYZ0L6+vwhJFzIxrX4dG8JAMj8/ajESYjIWZXLcu3Oxmw2Y+/evdY/E5Fry9p3CqaUDMgDfeH9cBOp41A58uncDJDLoL90A4aYW3CrXknqSETkZHhlm4joPqxza/fvAEEhlzgNlSe52hterRsAADJ4dZuISoHNNhHRPZj1Rmg3/QUAUA/kQjau6N+hJBy3TUQlx2abiOgeMncfhzkjG4qwQHi1aSh1HJKA751mO+vPUzDn6CVOQ0TOhs02EdE9aC1DSAZ0gCDjX5muyL1+dSjDgyHmGpC1/7TUcYjIyfBfDiKiIpizc6HdeggAZyFxZYIgwKd7CwCclYSISo7NdhFUKhVUKpXUMYhIQhk7jkDU6eFWvRI8IzVSxyEJWcZtZ+w4ClEUJU5DRM6EzbYNXl5eyMrKQlxcHJdrJ3Jh6evuLGQz8GEIgiBxGpKSd4cmENwUMMYmQn/phtRxiMiJsNkmIrLBlJFtHTLAISQk9/aEV7vGAIDMXcclTkNEzoTNNhGRDdrNByHqjXDXVIVHgxpSxyEHYFm6nc02EZUEm20bcnNz0adPHwwZMgS5ublSxyEiCVhnIXmMQ0gon0+3/Jsks//6B2Yd/20gouLhcu02mEwmbNmyxfpnInIteSlaZP7xNwBAzSEkdIe7piqUVYJhjEtG1oF/rM03EdG98Mo2EdF/aDceAExmeDxUGx51q0gdhxyEIAjWBjtzJ1eTJKLiYbNNRPQf6b/eGULC5dnpPzhum4hKis02EdFdjAm3kf3XGQD547WJ7ub9cFNAIYfhWgL01xKkjkNEToDNNhHRXdLX7wdEEapW9eFWNVTqOORg5D4qeLVpCIBXt4moeNhsExHdxToLCW+MpCL4dMsfSpK1i+O2iej+2GwTEd1hiLkF3fGLgEwGdf8oqeOQg/Lpmn+TZNb+fyDqDRKnISJHx2bbBi8vL5jNZqSmpnK5diIXkn7nqrZ3h4egDA2QOA05Ko8GNaAMC4SYo4f+yAWp4xCRg2OzTUR0R/rafQAANW+MpHsQBAHed2Ylydl7SuI0ROTo2GwTEQHIvRCL3LPRgEIOdd/2UschB2cZSpK777TESYjI0bHZtiE3NxePP/44Ro4cyeXaiVxE+rr8q9o+XSKh8PeROA05Op9OTQG5DHlXE2CITZQ6DhE5MDbbNphMJvzyyy/YsGEDl2sncgGiKCJ97R8AOAsJFY9c7Q1Vy/oAOAUgEd0bm20icnk5p6/CcDUBgocbfB9tI3UcchLW1SS5dDsR3QObbSJyeZa5tX17tILcRyVxGnIWlmY7+89TMBuMEqchIkfFZpuIXJpoNlvHa/sN5CwkVHwejWtBFqSGOTsXukNnpY5DRA6KzTYRuTTd0QswxiVD5u0Jn+4tpY5DTkSQyeDR4SEAHLdNREVjs01ELs2ykI1v77aQebpLnIacjWfHJgA4bpuIisZmm4hclphngva3PwFwFhIqHfeoRoBMhtzzMTDE35Y6DhE5IDbbNqhUKmRmZuLGjRtQqXizFFFFlXXgH+Qlp0Pu7wPvjk2ljkNOSO7vA89IDQAgcxevbhNRYWy2bRAEAV5eXvDy8oIgCFLHISI7scxCou7bHjI3pcRpyFlZZiXJ4rhtIrKBzTYRuSSzwQjtxgMAOAsJPRjrfNt//A3RmCdxGiJyNGy2bdDr9XjmmWfw0ksvQa/XSx2HiOwga88JmNKzoAj1h1f7xlLHISfm2bQO5AG+MGfqoDt2Qeo4RORg2GzbkJeXh2XLluHnn39GXh6vUhBVROlr8+fWVvfvAEEulzgNOTNBLodPl0gAQAZnJSGi/2CzTUQux5xrQMbWQwAAv8c4hIQenE+3FgA43zYRFcZmm4hcTtYff8OclQNlWCBULetJHYcqAJ/O+Ve2c09fhTExVeI0RORI2GwTkctJX58/t7Zv3/YQZPxrkB6cItgPns3qAgAyd5+QOA0RORL+K0NELsWsNyJj62EAgN+ADhKnoYrEp8udWUk4bpuI7sJmm4hcStbev2HOyIaiUgBUrepLHYcqEMu47aw9JyCaTBKnISJHwWabiFyKdv1+APkL2XAICZUlVfMIyNXeMKVnQXf8ktRxiMhB8F8aG1QqFRITE3Hp0iUu105UgZgNRmRsyZ+FRN0vSuI0VNEICjm8OzcDwFlJiOhfbLZtEAQBwcHBCAoK4nLtRBVI9r5TMGmzoAjxh1ebBlLHoQrIuprkLo7bJqJ8bLaJyGWkW4aQ9GnHhWzILny65o/bzvn7MvJuayVOQ0SOgM22DXq9Hi+99BImT57M5dqJKgjRmIeMLQcBAOr+HEJC9qGsFACPRrUAUUTmHk4BSERstm3Ky8vDokWL8M0333C5dqIKIuvP0zClZUIepIZX20ZSx6EKzKcbh5IQ0b/YbBORS9BuuGsIiYJDSMh+LENJMnefgGg2S5yGiKSmKM+T/f7771ixYgXOnTuHnJwcBAUFoWnTppg8eTLCwsLKMwoRuRAxzwTt5r8AcBYSsj+vVvUh8/aE6bYWOaeuQNVMI3UkIpJQuTTboiji3XffxapVq1CtWjX06tULXl5eSEpKwtGjRxEfH89mm4jsJuvAPzClZEAe4AvvqIekjkMVnKBUwLtTM2Rs+guZO4+x2SZyceXSbC9fvhyrVq3CsGHD8NZbb0H+n1kAOC6aiOxJu/5PAIC6d1sOIaFy4dO1xZ1m+zhCJz8pdRwikpDdx2zn5uZi4cKFqFq1Kt58881CjTYAKBTlOpqFiFyIaDIhY7NlFpIOEqchV2GZb1t3/CLy0jIlTkNEUrJ7s33gwAGkp6ejW7duMJvN2LFjBxYvXoyff/4ZMTEx9j49Ebk43bGLyEtOh8zXC94dOISEyodblWC416sOmM3I4hSARC7N7peUz5w5AwCQy+Xo168foqOjrftkMhlGjhyJKVOmFPl4URTtHbEQDw8PXL16FZmZmfDw8JAkA+WzvPesgfSctRYZW/OXZ/fp3gJQyJ0u/385ax0qovvVwqdbc+gvxCBz13GoH3u4PKO5FH4nHIcr1qI4K43bvdlOSUkBAHz33Xdo0KAB1qxZg9q1a+P8+fN4++238e2336Jq1ap48knbY9q0Wq0kRfP394e/vz8yM/nrP0eg1XIlNkfhbLVI25I/C4miQ2Okp6dLG6YMOVsdKrKiaiG0isjfv/MYvFJTIcg426498TvhOFypFv7+/vc9xu7NtqVRViqVWLhwIUJDQwEALVq0wLx589CvXz989913RTbbarXa3hFtEkURWq0WarW6WD+1kH2wDo7DGWuhvxqPvCsJgEKO0H4dIFd7Sx3pgTljHSqq+9XC3K01Urw8YE5Oh0d8Gjwb15YgZcXH74TjYC1ss3uz7e2d/49bo0aNrI22Rd26dVG1alXExMQgIyMDvr6+hR4vRbEMBgPefPNN6PV6fPrpp3B3dy/3DFSQIAj84joIZ6pF5rYjAADv9o2h8POROE3ZcqY6VHRF1ULu4QavDk2Que0wsnYdh+qhOhKkcx38TjgO1qIgu/9Oq1atWgAAHx/b/9BZtufm5to7SrEZjUZ89tlnWLBgAYxGo9RxiKiUMrblj9f2fbSNxEnIVfl2u7Oa5K7jEichIqnYvdlu3bo1AODatWuF9hmNRsTGxkKlUiEgIMDeUYjIheSlZiD70DkAgG/P1hKnIVdlmQIw+/A5mDKyJU5DRFKwe7NdrVo1REVFISYmBmvWrCmwb/HixcjIyEC3bt041zYRlanM348CZjM8GtaEW7XQ+z+AyA7cqleCe90qgMmMrL0npY5DRBIolw733XffxRNPPIFp06Zh586dqFWrFs6dO4dDhw4hPDwcr7/+ennEICIXkrGFQ0jIMfh0aQ795Thk7jwGdd/2UschonJWLvMQVatWDb/++isGDhyIs2fPYvny5YiJicGwYcOwZs0aBAcHl0cMInIR5lwDMnfnj5H1fZRDSEhaPnfGbWfsPAbRbJY4DRGVt3IbuxEWFoZZs2aV1+mIyIVl7z8Nc3YuFGGB8GzCGSBIWl5RD0Hm7Ym8mynIOXUFqmYaqSMRUTniDPtEVOFkbDsMAPB9pBUXEiHJydyV8OmSf6OkZXgTEbkO/itkg6enJ/755x8cOHAAnp6eUschohIQRdG6RDvHa5OjsAxnsvwgSESug1OA2CCTydCwYUOkp6dDxqtiRE4l59QVGG+mQOblAe8OTaSOQwQA8OnRCpDLkHs2GoaYW3CrXknqSERUTthJElGFkrE1/8qhd+dIyDzcJE5DlE/h7wOvNg0B8Oo2kaths22DwWDA9OnT8dFHH8FgMEgdh4hKgKtGkqOyfCbZbBO5FjbbNhiNRsyYMQOzZ8/mcu1ETsRwIxG5/1wDZDL49mgpdRyiAizNdtaBf2DSZkmchojKC5ttIqowMrYdAQB4ta4PRaBa4jREBbnXDIN7vepAngkZO49JHYeIygmbbSKqMKyzkPTkEBJyTNZZSTgFIJHLYLNNRBWCKSMb2Qf+AcBVI8lxWX4QzNx5DGYDhykSuQI220RUIWTuPAbRmAf3ulXhXqeK1HGIbFI110AR4g9zps76wyERVWxstomoQrCuGsmr2uTABJkMvo+0AsBZSYhcBZttInJ6ojEPmb/n33Dm25PNNjk23153pgDccgiiKEqchojsjStI2uDh4YHDhw8jMzMTHh4eUschovvIPnQWJm0W5EFqqFrWkzoO0T15P9wUgsodxvhk5J65Bs/GtaWORER2xCvbNsjlcrRs2RKRkZGQy+VSxyGi+7DM7ODboxUEfmfJwck83eHTORLAvyueElHFxWabiJyaKIocr01OxzLcyTJdJRFVXGy2bTAYDPjkk08wb948LtdO5OD052NgiLkFwV0Jn06RUschKhbfHq0AmQw5p67AcCNR6jhEZEdstm0wGo2YMmUKpk+fzuXaiRyc5aq2d8emkHnxHgtyDopgP3i1bQgA0G78S+I0RGRPbLaJyKlptxwEAPg+2lbiJEQlo+4XBQDQbtgvcRIisic220TktIy3UpFz4hIAWOcuJnIW6j7tAAC6I+dhTLgtcRoishc220TktDK2HwEAeEZqoKwUIHEaopJRhgVC1boBAEC7iUNJiCoqNttE5LQytt2Z8u/RNhInISoddd/2ADiUhKgiY7NNRE7JnJ2LrL0nAQBqNtvkpNT98pvt7INnYUxKkzgNEdkDm20ickqZf5yAmGuAW/VKcK9fXeo4RKXiViUEnpEaQBSRsZlDSYgqIjbbNnh4eGD37t3YsGEDl2snclCWlfd8e7aGIAgSpyEqvX9nJTkgcRIisgc22zbI5XJ06tQJUVFRXK6dyAGJJhMyduTfHMlVI8nZWYaSZO0/jbwUrcRpiKissdkmIqejO3oBpttayNXe8GrbSOo4RA/EvUYYPB6qDZjMyNjC5duJKho22zYYjUYsXLgQS5cu5QqSRA7IsmqkT/cWEJQKidMQPTg/LnBDVGGx2bbBYDBg/PjxeP3112EwGKSOQ0T/cfd4baKKwDKUJHPvSeSlZUqchojKEpttInIq+itx0F++AUGpgE+3FlLHISoT7nWqwKNBDSDPBO1G3ihJVJGw2SYip2K5qu3VvjHkvl4SpyEqO36DOgEA0n/9Q9IcRFS22GwTkVPhqpFUUfn9ryMAIHv/PzAm3JY4DRGVFTbbROQ08lK0yD58HgDg27OVxGmIypZb1VCo2jQERBHpa/dJHYeIygibbSJyGpm/HwPMZng0qgW3qqFSxyEqc/4cSkJU4bDZJiKnod1yEABnIaGKS90/ClDIkXPqCnIv3ZA6DhGVATbbNri7u2Pjxo1YuXIl3N3dpY5DRADMuQZk7TkBAPDtxfHaVDEpAtXw6RIJAEj/5Q9pwxBRmWCzbYNCoUDv3r3Ro0cPKBRcMIPIEWT9eQrm7FwowgLh2aSO1HGI7ObuWUlEUZQ2DBE9MDbbROQUMrbemYWkZ2sIgiBxGiL78e3ZBoLKHYbom8g5flHqOET0gNhs22A0GvH9999jxYoVXK6dyAGIZrO12Vb3aitxGiL7knt7Qt27HQAg9eedEqchogfFZtsGg8GAUaNGYdy4cVyuncgB6I5dRF5iGmQ+Knh1eEjqOER25/9kdwBA+q97Yc7RS5yGiB4Em20icngZlllIerSEzE0pcRoi+/Pu8BCUVUNgzsi2zsJDRM6JzTYROTRRFKHd/BcAwJdDSMhFCDIZ/J/oBgBI++l3idMQ0YNgs01EDk1/8QYMVxMguCng062F1HGIyk3Ak/nNdtbekzDEJUmchohKi802ETk0y1Vt747NIPdRSZyGqPy4Va8Er6iHAFFE2spdUscholJis01EDs06Xrs3h5CQ6wm4c6Nk2s87Oec2kZNis01EDssQl4ycvy8DgsAl2sklqfu2h8zbE4bom8g+eEbqOERUCmy2bXB3d8eqVavw7bffcrl2IglZ5tZWtaoPZYi/xGmIyp/MywPqAR0A8EZJImfFZtsGhUKBwYMHY8CAAVyunUhCliEklgU+iFyRZSiJdsN+mLJyJE5DRCXFZpuIHFJeeiay9p8GwPHa5NpUrRvArU44zNm50P72p9RxiKiE2GzbkJeXhzVr1uC3335DXl6e1HGIXFLm9iOAyQyPBjXgXjNM6jhEkhEEAQHDegAAUpdtlTgNEZUUm20b9Ho9hgwZglGjRkGv5zK5RFLQbr4zCwkXsiFCwJPdISgV0B2/iJzTV6WOQ0QlwGabiByOOUePzN3HAQDqPhyvTaQI9oNv3/YAgJRvN0uchohKgs02ETmczD/+hqjTQ1klGB6Na0kdh8ghBI7qBQBI+2UPTBnZEqchouJis01EDidjU/6qkb692kIQBInTEDkGr7aN4B5RDaJOj7TVu6WOQ0TFxGabiByKaMyzzq/NISRE/xIEAYHP5F/dTvl2C1eUJHISbLaJyKFk7T0JU3oWFCH+8GrbUOo4RA7F/4muEFTu0F+Ige7QWanjEFExsNkmIoeSvn4/AEDdtx0EuVziNESORe7rBf//dQLAGyWJnEW5N9tLlixBREQEIiIicPLkyfI+fbG4ubnh22+/xYIFC+Dm5iZ1HCKXIRrzkLE5f7y2un8HidMQOaaAO0NJtBsOIC85XdowRHRf5dpsX716FfPmzYNKpSrP05aYUqnEyJEj8eSTT0KpVEodh8hlcAgJ0f2pmtaFZ6QGojEPqSt+lzoOEd1HuTXbJpMJU6ZMQb169dCtW7fyOi0ROREOISEqnsBRvQEAKUs3QcwzSZyGiO6l3JrtJUuW4MKFC/jwww8hd/B/RPPy8rB582bs2LGDy7UTlRMOISEqPr+BHaEI9oMxPhnaDfuljkNE91AuzfalS5ewYMECvPDCC6hbt255nPKB6PV69O3bF0888QSXaycqJxxCQlR8Mg8369jt24t+kzYMEd2Twt4nyMvLw9SpU1G7dm0899xzJX68FPOI3n1OURQ5l6mELO89ayA9e9ciff2fAADfPu0AmYw1LwK/E45D6loEPNMLyXNWQ3f8IrKOnINXy/qS5JCa1HWgf7liLYqz8Jrdm+2vvvoKFy9exOrVq0t1s6FWqy33omVn/7sMrlar5VASB6DVaqWOQHfYoxaiMQ/aO6tGyrs2RXp6epmfo6Lhd8JxSFYLNwGqfu2R/cte3Jy3BkHzX5Ymh4Pgd8JxuFIt/P3973uMXZvtCxcu4KuvvsKoUaPQsGHpfi2sVqvLONX93f1DgVqthre3d7lnoHyiKEKr1UKtVnPZbonZsxaZu47BrM2GIsQPod1b8+bIe+B3wnE4Qi08JjyOy7/sRc62o1Bl6OFWLVSSHFJyhDpQPtbCNrs221OmTEHVqlUxfvz4Uj+HFMW6+5yCIPAD4wBYB8dhj1po1x8AAKj7todMYfdfuFUI/E44Dilr4dmwJrw7NkXW3pNIWbIRlT94VpIcjoDfCcfBWhRk9yvbANC4cWOb+4cMGQIAWLhwIacDJHJRZoORs5AQPYCgFwYga+9JpC7fjtApwyD3cey1LIhcjV2b7UGDBtncfuzYMVy/fh1dunRBQEAAwsPD7RmDiBxY5q7j+bOQVArgLCREpeDTrQXc61aB/nIc0n7agaCxA6SORER3sWuzPXPmTJvbp06diuvXr+P5559H06ZN7RmhVNzc3DB//nzk5ORwuXYiO0tfswdA/rzBHKtNVHKCTIagsf0R/9pCJH+1HoFj+kJQ8LtE5CjKdbl2Z6FUKvHSSy9hzJgxXK6dyI5MmTpkbDsMAPAb1EnaMEROzH9IV8gDfWGMTUT6b/ukjkNEd2GzTUSSydh8EGKuAe51q8CzSR2p4xA5LZnKA0HP9wcAJM/9xaXmOSZydJI02x999BEuXrzokENIAMBkMuGPP/7A/v37YTKZpI5DVGGl/fIHAMDvf5145zrRAwoc0wcyb0/kno1G5s5jUschojt4ZduG3NxcdOnSBf369UNubq7UcYgqJGNSGrL++BsAh5AQlQWFnw8CRjwKAEieu0biNERkwWabiCSh/e1PwGyGZ6QG7rUqSx2HqEIIfmEABKUC2X+dQfbhc1LHISKw2SYiiVhmIfEf3FniJEQVh7JyEPwe7wIASJ73i8RpiAhgs01EEtBfiYPu+EVAJoN6ABeyISpLweP/BwgCMrYeQu6FWKnjELk8NttEVO7SVu4CAPh0bQ5laIDEaYgqFg9NVfj2bgsASJ7Pq9tEUmOzTUTlSjSZrM22/9BuEqchqphCJgwGAKSt2QNDXJLEaYhcG5ttIipXWXtPwZhwG3I/b/g+2kbqOEQVkqp5BLwfbgLkmXB74Tqp4xC5NLsu1+6slEolPv74Y+Tk5HAFSaIylvbz7wDyp/uTufP7RWQvwRMGI2vfKaQs34aQSU9AEaiWOhKRS+KVbRvc3NwwefJkvPzyy3Bzc5M6DlGFYdJmQbv5IAAOISGyN+9OzeDxUG2IOj1uL9kodRwil8Vmm4jKTfq6fRBzDfCoXx2eTetKHYeoQhMEwTp2O2XJRpizuUgbkRTYbNtgMplw9OhRnDhxgsu1E5WhtBU7AQD+Q7tzeXaicqDu1x5uNcNgSstE6vJtUschcklstm3Izc1F69at0a1bNy7XTlRGci/GQnfsAiCXwe9xLmRDVB4EuRzB4wcBAJIXrIXZYJQ4EZHrYbNNROUi9Yf8q2q+PVpBGeIvcRoi1+H/RFcoQv1hTLiN9F/3Sh2HyOWw2SYiuzPnGqxzaweMfFTiNESuRebhhqAXBgAAkueugWg2SxuIyMWw2SYiu9NuPABTWiaUVYLh0yVS6jhELidwZC/IfFTQX7qBjO1HpI5D5FLYbBOR3aUu2woACHj6EQhyucRpiFyP3NcLgaN7AwCSv1gNURQlTkTkOthsE5Fd5V66gey/zgAyGQKG9ZA6DpHLCnq+PwR3JXTHLiD74Bmp4xC5DDbbRGRXlqvavo+0grJykMRpiFyXMjTAuphU8txfJE5D5Dq4XLsNSqUS77zzDnJzc7lcO9EDKHBj5IieEqchouBx/0PqD9uR+ftR5JyNhmfDmlJHIqrweGXbBjc3N0yfPh1Tp07lcu1ED0C7/s/8GyPDg+HTtbnUcYhcnnutylD3jwKQPzMJEdkfm20isgtRFHF78QYA+dP98cZIIsdgWcI9fd0+GGJuSZyGqOJjs22D2WzG2bNncf78eZg5HylRqeiOXUTO35chuCsROIJzaxM5Cs+HasO7cyRgMiN54Vqp4xBVeGy2bcjJyUHjxo3Rvn175OTkSB2HyCmlLMm/qu03sCMUQWqJ0xDR3UJeyb+6nfrjDuQlp0sbhqiCY7NNRGXOeDMF6b/9CQAIfK6fxGmI6L+8oh6CZ6QGYq4BtxevlzoOUYXGZpuIylzK91uBPBNUrRtA1aSO1HGI6D8EQbCO3U5ZuhmmTJ3EiYgqLjbbRFSmzHojUr/fAgAI4lVtIofl27st3OtWgUmbhdRl26SOQ1RhsdkmojKl/W0f8pLToQwLhLpPO6njEFERBJkMweMHAQCSF62DWW+UOBFRxcRmm4jKzN3T/QWO7gNByXWziByZ3+DOUIQFIu9mCtLX7JE6DlGFxGabiMrM3dP9BQznipFEjk7mrkTwC48BAJLn/wLRZJI4EVHFw2bbBqVSiddeew3jxo3jcu1EJXD7zpy9nO6PyHkEjOgJudob+stxyNhySOo4RBUOm20b3Nzc8Mknn2DGjBlcrp2omPRX46HdeAAAEPzSQInTEFFxyX1UCBzTBwCQNHcNRFGUOBFRxcJmm4jKRPKCtYAowqdHS3g0qCF1HCIqgaDn+kHwcEPOiUvI/vOU1HGIKhQ22zaYzWZcv34dsbGxXK6dqBiMialIW7kTAKxz9xKR81AE+yHgqR4AgKS5v0ichqhiYbNtQ05ODmrVqoWmTZtyuXaiYrj99XqIeiNULetD1aah1HGIqBSCXxoIyGXI2nMCOaevSh2HqMJgs01ED8SUoUPKt/mL2ARPGARBECRORESl4Va9EvwGdAAAJM3j1W2issJmm4geSMr3m2HOyIa7pip8e7aWOg4RPYDgO8PAtL/9CX30TYnTEFUMbLaJqNTM2bn5N0YCCH55EAQZ/0ohcmaejWrBp2tzwGy2TuVJRA+G/zISUand/mYTTLe1cKsZBv/Hu0gdh4jKgOXqduqK35GXnC5tGKIKgM02EZWKKSsHyfPzx3WGTBoKQSGXOBERlQWv9o2hah4BMdeA24vXSx2HyOmx2SaiUkn5dhNMKRlwq1UZ/oM7Sx2HiMqIIAjWq9spSzfDlKmTOBGRc1NIHcARKRQKvPDCCzAYDFAo+BYR/Vf+Ve1fAQChvKpNVOH49moD97pVoL8ch9Rl2xA8jqvCEpUWr2zb4O7ujoULF+KTTz6Bu7u71HGIHE7K0o35V7VrV4bfoE5SxyGiMibIZAge9z8AwO1F62A2GCVOROS82GwTUYnkpWUi+c4Kc7yqTVRx+T3eBYqwQBhvpiB9zR6p4xA5LTbbNoiiiOTkZNy+fRuiKEodh8ihJM9ZDZM2Cx4NavCqNlEFJnNXInjsAABA8rxfIJrN0gYiclJstm3Q6XQIDQ2FRqOBTscbQ4gs8uKSkbJ4AwAgbPooCHJe1SaqyAJGPAqZrxf0l+OQsfWQ1HGInBKbbSIqNu0XayAa8uD9cBN4d20udRwisjO5rwqBo3sDAJLn/sLf9hKVApttIiqWnNNXoVv/FwCg0vRREARB4kREVB6Cnu8PwV0J3bELyD54Ruo4RE6HzTYR3Zcoirg1/VtAFKH+X0eomtaVOhIRlRNliD/8n+wOAEies0biNETOh802Ed1XxuaDyNp7EnBToNJbw6WOQ0TlLHjc/wCZDJk7jyHnbLTUcYicCpttIronsy4XCW8tBgD4PtsHbtUrSZyIiMqbe80wqPtHAcifmYSIio/NNhHdU9LcX2C8kQRllWD4vNBP6jhEJJGQO0u4p6/dC0NsosRpiJwHm20bFAoFRowYgaFDh3K5dnJp+us3kTwvf4xm2PtjIPPkiqpErsrzodrw7tQMMJmR/OU6qeMQOQ022za4u7vju+++w8KFC7lcO7m0m9OWQNQb4d2xKXz7tpc6DhFJLPjO1e3UH7bBmJgqcRoi58Bmm4hs0m48gIwthwCFHJVnjeVUf0QE74ebQNWyPsRcA5Ln/yp1HCKnwGbbBlEUkZ2djezsbE7gTy4pLz0T8a9/CQAIeXkQPOpVkzgRETkCQRAQ+vqTAICU77bAmJQmcSIix8dm2wadTgcfHx9UrVqVy7WTS7r5zjfIS0yDe90qCJk0VOo4RORAvLtEQtWiHsQcPa9uExWD3ZvtxMREfP/99xg1ahQ6deqERo0aoX379hg/fjxOnTpl79MTUQll7TuJtB93AACqzJ0AmYebxImIyJEUuLr97WZe3Sa6D7s328uXL8esWbNw48YNtGvXDs888wyaN2+OXbt24YknnsCWLVvsHYGIismcnYu4V+YBAAJH94ZXm4YSJyIiR+TdtTlUzSN4dZuoGOw+r91DDz2En376CS1atCiw/dixYxg5ciTee+89dOvWDW5uvHpGJLWEtxbDcP0WlOHBqPT2M1LHISIHJQgCQl5/EteHvIuUbzcj5OVBUAT7SR2LyCHZ/cp2jx49CjXaANCiRQu0bt0a6enpuHjxor1jENF9aDf/hdQftgGCgKpfvgq5r0rqSETkwHy6tYBnpAZijh5JvLpNVCRJb5C0LBjDhWOIpGW8lYq4CfnDR4LHDYR3hyYSJyIiRycIAkKnDAMApHyzifNuExVBsi43ISEBf/31F4KDg6HRaIo8Toqp9+4+pyiKnP5PQpb3njWwH9Fsxo1xn8OUmgGPxrUQ8sbTNt9v1sIxsA6Og7XIH7vt2aIeco5dQOInPyP8kxfLPQPr4DhcsRbFWYNCkmbbaDTi9ddfh8FgwKRJkyCXy4s8VqvVlnvRcnNz0a9fPwBAVlYW8vLyyvX8VJhWq5U6QoWV8dUGZO0+AcFdCb9PxyIjJxvIKfp41sIxsA6Ow9Vr4T3xf8gZNhOpP2yD27AuUNaoJEkOV6+DI3GlWvj7+9/3GEEs507WbDZjypQp2LBhAx5//HG8//779zxeqp+ORFGEVquFWq3mynkSYh3sK2vvSUQPehswmxH+xXgEDO9Z5LGshWNgHRwHa/Gv6MffQdau41D/ryOqLX69XM/NOjgOV6yFw13ZFkUR06ZNw4YNG9CvXz+89957932M1MUSBEHyDMQ62IMhLhmxz80GzGb4P9kdAcN7Fus9Zi0cA+vgOFgLIOydkbi86zi0v+5F7vhB8HyodrlnYB0cB2tRULndIGk2m/Hmm2/i119/RZ8+ffDRRx9BJuMClkRSMOuNiH3mQ5hua+HxUG2Ef/Ii/2IkolLzbFwbfoM6AQBuzvhe0ixEjqZcul2z2Yy33noLa9euRa9evTB79ux7jtOWWnZ2NmQyGQICApCdnS11HKIyd3PaYuiOX4Rc7Y3q378Jmae71JGIyMmFvvE0oJAja/dxZO45IXUcIodh92b77ka7Z8+e+OSTTxy60Saq6FJ/2oGUbzYDAKp+PQnuNcIkTkREFYF7zTAEje4DAEh442uIRk4uQASUw5jthQsXYu3atVCpVKhRowYWLVpU6Jhu3bqhfv369o5C5PKyDvyD+FcXAABCJj8J3x6tJE5ERBVJ6NRhSPv1D+gv3cDtJRsR/OJjUkcikpzdm+34+HgAgE6nw1dffWXzmPDwcDbbRHamvxqPmOEfQDTmQd0/CqFTnpQ6EhFVMHK1N8LeHom4CXOR+PFP8BvUCcqQ+0+NRlSRlfvUf84gOzsb3t7eAIDMzEzrn6n8iaKI9PR0+Pn58Qa+B5CXlokrj7wKw5V4eEZqUHvjxyUep81aOAbWwXGwFraJZjOudJ+InL8vw39YD1Sd/4p9z8c6OAzWwjZOB0JUwZkNRsSMnAnDlXgoqwSjxk/v8IZIIrIbQSZD5VljAQBpP+1A9tELEicikhabbaIKTBRFxE9aiOw/T0Pm7YkaP0+HMjRA6lhEVMF5taoP/6HdAABxL8+BWW+UOBGRdNhs2yCXy9GrVy90796dM6eQU0ue/yvSftwByGSo9s1UeDasKXUkInIRYe+PgSLYD/qLsUj6fJXUcYgkw2bbBg8PD2zatAmrVq2Ch4eH1HGISkW76S/ceu87AEDlmc/Ct3tLiRMRkStRBPii8scvAACSvliFnLPREicikgabbaIKKPvQ2fyl2EURgaN7I/C5flJHIiIXpO4fBd8+7YA8E+JengMxzyR1JKJyx2abqILJPR+D60++BzHXAJ+erVF51ljeFU5EkhAEAeGzX4Rc7Y2cvy8jed4vUkciKndstm2wTP1XpUoVLtdOTsUQfxvRg9+GKT0Lqpb1UX3pFAgK3ndARNJRVgpA5VnPAwBuzVrO2UnI5bDZLoJOp4NOp5M6BlGx5aVnInrw2zAm3Ia7pipq/PwuZCrec0BE0vMb0gV+/+sImMyIffZjmDJ4IYtcB5ttogrAnKPH9SdnQH8hBoqwQNT85X0oAnyljkVEBODOcJLPxsGteiUYYxMRN3E+uKYeuQo220ROTjSZEPvcbOgOnYXM1ws118yAW5UQqWMRERUg9/VCtSWvAwo5tOv2IfWH7VJHIioXbLaJnJgoioif/CUyNh+E4K5EjZ/egWcDzqVNRI5J1aIeKr01HACQ8PqXyD54RuJERPbHZpvIiSV98jNSv98KCAKqfT0Z3u0bSx2JiOiegsf/D+r+URCNebg+/AMYYhOljkRkV2y2iZzU7cUbkPjRjwCA8E9ehLpflMSJiIjuT5DJUHXhq/BsUgemlAxcHzodpkxOSEAVF5ttG2QyGTp27Ij27dtDJuNbRI4n9eedSJj6FQAg5PUnETiqt8SJiIiKT6byQPUf34Ei1B+552MQO2oWzAaj1LGI7IKdpA2enp7Ys2cPNm7cCE9PT6njEBWg3XgAcePnAACCxg5A6JRh0gYiIioFt/Ag1PjxHQie7sjcdRw3XvgMookrTFLFw2abyIlk7j6B2DEfA2Yz/If1QNjMZ7k6JBE5LVXzCNRY9hYEpQLadfsQP+lLTglIFQ6bbSInkX3oLK4//T5EYx7U/aNQZc54NtpE5PR8urVA1a8mAYKA1GVbcfOdb9hwU4XCZtuG7OxshISEoG7dulyunRyC7sQlRD8xHWKOPv8fpq8nQ5BzGXYiqhj8HnsY4V+MBwDcXrgWCW98DdFsljgVUdlQSB3AUd2+fVvqCEQAAN3xi7j2v2kwZ2TDq10jVP/+TcjclFLHIiIqU4HDewImE+JfW4iUxRtg1uWiyhfjeWGBnB6vbBM5sLsbbVWbhqix8j3IVB5SxyIisovAZ3qj6pevATIZ0n7cgdjnPoFZz1lKyLmx2SZyULrjF3Ft4Fv5V7TbNkTN1TMg9+bsOERUsfk/0RXVlk6xLut+7bE3kZeilToWUamx2SZyQNlHzuc32pk6eLVrhBqr2GgTkevwG9ABNVfPgMxHBd2hs7jS41XkXo6TOhZRqbDZJnIwmXtO4NrAN/9ttFe+x0abiFyOT6dmqLP9cyirhcIQfRNXe7yKrD9PSR2LqMTYbBM5EO2mv3B96HSIOj28uzTn0BEicmke9aqhzo7PoWpRDyZtFq79bxpuf/UbpwYkp8Jm2waZTIYWLVqgWbNmXK6dyk3qzzsRM/JDiIY8qPtFocaKd3gzJBG5PGWIP2qtnwX1wI5AngkJby5G7JiPYcrKkToaUbGwk7TB09MTR44cwa5du7hcO9mdKIpInv8r4l763LoyZLVvpnB6PyKiO2Se7qi25HVU/vA5642TV7q+gpwz16SORnRfbLaJJCQa8xD/2gLcfPcbAEDQCwNQZd4EzitLRPQfgiAgaOwA1N7wERRhgdBfvoEr3V5B8sK1XACHHBqbbSKJmDKyEf3EdKR+vxUQBITNfA5hHzzLJdiJiO7Bq01DaPYugO+jbSAa8nDrnW+Q/PQsGOKTpY5GZBObbRt0Oh1q1qyJJk2aQKfTSR2HKiBDbCKu9JyErD0nIKjcUf3HtxH8wgA22kRExaAIUqP6j28j/IuXIajcoT90Dpc7vIT0tXuljkZUCJttG0RRRExMDG7cuME7nqnM6Y5fxJXuE6G/EANFWCBqb/4E6kfbSB2LiMipCIKAwBE9UXfPfLg9VAtmbTZix3yMmBEzYbyZInU8Iis220TlKH39flztOwV5yenwaFQLdXZ8AVWTOlLHIiJyWu51whGy+l0Ev/YEIJdBu/EALrZ5Hre/2cSx3OQQ2GwTlQPRbMatmT8g9pkPIeYa4NOjJWpv+QRu4UFSRyMicnqCUoFKbz6NurvnwjNSA3OmDgmTv8TVnpOQcy5a6njk4thsE9mZKSMb14fNQNJnKwEAQS8+hho/vcPFaoiIyphn49qos/0zVP74Bci8PaE7dgGXO72Mm+99B7MuV+p45KLYbBPZUe7lOFzpPhGZ249A8HBD1a8mofIHz3JqPyIiOxHkcgQ92xeag1/Dt087IM+E5LlrcCnqRWTuPCZ1PHJBbLaJ7CRj+2Fc6fYK9JfjoAwPRu0tn8D/8S5SxyIicglu4UGo8cM0VP/xbSgrB8Fw/RaiH38H14fNgP76TanjkQths22DIAho0KABIiIiOBUblZhoNiPx059x/ckZMGfq4NW2IerungtV07pSRyMicjnqXm2hOfgVgl58DFDIkbH1EC61HYtbM5fBnM2hJWR/gsi57WwSRRHp6enw8/Njwy0hZ6uDKVOHGy99joxNfwEAAsf0QdgHz1aIpdedrRYVFevgOFgLx1CSOuRejEXC1K+QtfckAEBZOQhhM0ZD/djDrGEZ4HfCNl7ZJioj+uibuPLIa8jY9BcEpQLhc15G+OwXK0SjTURUEXhEVEPNtTNR/YdpUFYLhTHhNmLHfIxrfacg55+rUsejCorNNlEZyPj9KK50nZC/UE2oP2pt/BiBw3tKHYuIiP5DEASo+7RDxMGvEPrGUxA83ZH91xlc7vQy4ibMhTEpTeqIVMGw2bZBp9OhUaNGaNu2LZdrp3sSzWYkzl6B609Mhyk9C6rmEai7ay68WtWXOhoREd2DzNMdoZOfRMThr6Ee2BEQRaQu346LLcYgad4vMOuNUkekCoLNtg2iKOLcuXO4ePEil2unIpm0Wbg+bAYSP/oREEUEjHwUtTbNhrIyF6ohInIWblVCUH3pFNTe8gk8m9aBOSsHt6Z/i0vtxkK75SD7AHpgbLaJSiHnbDQud5mQP3+2uxJV5r+CKp+Ph8yd47OJiJyRV5uGqLNzDqosmAhFqD8M0TcR89T7iB74FlehpAfCZpuoBERRROpPO3Clx6swRN+EsmoIam/7DAHDekgdjYiIHpAgkyHgye6IOLIEwRMfh+CuRNbek7j88HjET1qIvBSt1BHJCbHZJiomkzYLsaM/Qtz4ORBz9PDuHIm6e+ZB1aSO1NGIiKgMyX1UCHt7JCIOfQ113/aA2YyUbzfjYotnkbzoN4jGPKkjkhNhs01UDNmHzuLSw+Og/e1PQCFHpXefQc01M6AI8JU6GhER2Ylb9Uqovuwt1Nr4MTwa1YJJm4Wbby3GpagXkfH7UanjkZNgs010D+ZcA259sAxX+0yB8UYS3GpUQp2tnyJkwmAIMn59iIhcgXf7xqi7Zy7C57wMRbAf9JfjcH3Iu4ge/DZyL8ZKHY8cHLsFGwRBQPXq1VG1alWugOTCsg+dxeWO45D0+SrAbIbf451R948FUDWPkDoaERGVM0EuR+Dwnog4ugTB4/8HQalA5q7juBT1IuKnfoW8tEypI5KD4nLtReCSo45BijqYMnW49f73SFm6CQCgCPVH+OwX88ftuTB+JxwD6+A4WAvHIFUd9NcScPOdpcjYcggAIPf3QejUpxD4TC8ICnm55XAk/E7YxivbRHeIeSakLNuGiy2ftTba/k/1gObgVy7faBMRUUHutSqjxo/voOa6D+FRvzpMaZlImLIIlzq8hMzdJ6SORw5EIXUAIqmJoojMHUdwa8b3yD0fAwBwq1UZ4Z+Ng0/HptKGIyIih+bTsSm89y5A6vJtuDVzOfQXYxE9aBp8ujZH6NSnOPSQ2GzbkpOTg4cffhgmkwn79++HSqWSOhLZgWgyQbvxLyR9sQq5/1wDAMj9vBH6+pMIGNUbMjcuUENERPcnKOQIfKY3/AZ2ROLsFbi9ZCMydx1H5q7j8OnREqGvD4MqUiN1TJIIx2zbkJ2dDW9vbwBAZmam9c9U/uwx/ivvthapK35H6g/bYLiWAACQeXkgcFRvBE98HAo/nzI5T0XDsXiOgXVwHKyFY3DEOuivJSDps5VIW7UbMJsBIL/pnvxkhb7S7Yi1cAS8sk0uwaw3InP3caT/8gcyNv8F0ZC/IIHczxuBz/VD0PP9ofBnk01ERA/OvVZlVF34KkJeHYKkz1chbdVuZO44iswdR6FqVR9Bz/eHuk87CEq2Ya6AVaYKK++2Fpl7/0bWruPQbjkEc0a2dZ9npAaBIx6F38COkHl5SJiSiIgqKvfa4f823Z+tRPqve6E7ch6xR85DGRaIgFG94T+kK9yqBEsdleyIw0hs4DASx1GSX0kZE25Dd+ISdEfPI/OPv63jsC2UYYFQP/Yw/AZ35hLrpcBfDzoG1sFxsBaOwZnqYLyVipTvtiD1+y3IS07P3ygI8GrXCH6DO8OvfxTkauftOZypFuWJzbYNbLYdh60vrilTB/3VeOgvx0F/6QZyz1+H7u/LyLuZUujxHo1qwbtTM/j2bAWvNg256uMD4F+ijoF1cByshWNwxjqY9UZo1+1D6o/bkf3XGet2wU0Br7aN4NO1BXy6Nod7vWpO85oA56xFeSi3Zvv06dOYP38+Tp48CaPRiDp16mDEiBHo27dveZy+RNhslx/RbIaoN0I0GGHWG2HO1MGkzYYpPQum9EwYk9KRFR0HWWoW8hJuw3D9Fow2mmoAgFwGj/o1oIrUwCuqMbwfbgpliH/5vqAKjH+JOgbWwXGwFo7B2etgiEtC+q97kb56t3X6WQtl5SB4tW0IVYt6UDWPgEfDmpB5ukuU9P6cvRb2Ui7N9uHDhzF69GgolUr07t0bPj4+2LFjB+Li4jBx4kSMHTvW3hFKJDs7GzVq1IAoirh+/Tqb7TKU889VxIz8EHlJaTDrjUCeqVTPowj2g3vdKnCvWxXumqpQNasLz8a1Of7ajviXqGNgHRwHa+EYKlIdci/HIWvXMWTuPoGs/ach5hoKHiAIcKtRCR71qsM9oirca4VDWSUYblWCoQwPlrwRr0i1KEt2b7bz8vLw6KOP4tatW1i1ahUaNGgAAMjKysITTzyB6OhobN68GTVq1LBnjBLjB8Y+Mn4/iutD3i1yv8zbE3K1N+R+3pCrvSAPVMMc5APvmuFwqxwEZdVQuNcN5/R8EuB3wjGwDo6DtXAMFbUO5hw9sg+fg+7Yhfz/Hb8IU0rGPR+jCPaDIiwQikA1FMHq/P8PUkMeqM7fd+e/FUFqyHxUZf5+VdRaPCi7z0Zy6NAhxMbGYuDAgdZGGwC8vb3x4osvYuLEiVi7di1effVVe0chB+DbvSXqn/sR5hw9BDclZO5KCG5KCO5KCG6KQl9OfnGJiMgVyTzd4dOpGXw6NQOQ/+9hXnI69BdjkXsxFvoLsTDE3IIhLhnGuCSYs3ORl5z+742X9yG4KfKb8ABfyAN8oPD3hTzQF4oAH8j9fa3b8//sA3mAL+RqL977VAp2b7aPHDkCAIiKiiq0r3379gWOIdegrBQgdQQiIiKnIggClCH+UIb4w7tDkwL7RFGESZsFY1wyjDdTkHdbC9NtLfJStPkNeIoWebfz/2dK0cKcnQvRkIe8myk2JxcokkwGub93fiPu7wO5nzdkKo87/3OH4OkOg0yE0d8PMk93CHIZIAAQBAACIBMgCAJEkwmiIS//ni1jHsx6I0SjMX+b4c7/G//9s9mYd2ebEaLRlL/9zjZBIUfom09D/WibMn2/y5Ldm+3r168DAKpXr15on1qthr+/P2JiYgrts5BispScnBz06tULeXl52L59O5drl5Cl/pw0R3qshWNgHRwHa+EYWId8crU35GpveDSsed9jzTn6O424Fqa0DJhSM5GXmgFTagbyUjP/3Xbn/02pmTBn5wBmM0wpGfcdznLvvWUva+9J+PZsXc5nzVec37rbvdnOysoCAPj42B5j6+3tjVu3bhX5eK1WW+5foOzsbOzduxcAkJaWBoPBcJ9HkL1ptVqpI9AdrIVjYB0cB2vhGFiHEvJ2A7yDgZr5C+oo7vyvqFssRb0R5jszhZnTsmBOz4JZmw0xRw8x1wBRp4c5Vw8xJ//PYq4eMIuACEAUIeLOn81mCHI54KbIHz7qpgSUd/6stPy3vPCf7/zP8t9QKiAo5BDclXBrUhvp6enl8rb9l7///Wc9c/gVJNVqdbmfU6lUFjg/ZyORjiiK0Gq1UKvVHLMtMdbCMbAOjoO1cAysQzkKvfdKl6yFbXZvtu+er9qWrKysIq96A8W7PF/W7j6nIAj8wDgA1sFxsBaOgXVwHKyFY2AdHAdrUZDdbym1TOlna1y2VqtFWlqazfHcRERERETOzu7NdsuWLQEA+/fvL7TvwIEDAIBWrVrZOwYRERERUbmze7Pdtm1bVK1aFZs2bcL58+et27OysvDll19CoVDgscces3cMIiIiIqJyZ/cx2wqFAh988AHGjBmDJ598En369IG3t7d1ufZXXnkFNWvef5qa8sbp/oiIiIjoQZXLbCRt2rTBihUrMG/ePGzduhVGoxF16tTBhAkT0K9fv/KIUCJeXl7IyspCeno6vLy8pI5DRERERE6q3Kb+e+ihh7B06dLyOh0RERERkeS4wD0RERERkZ2w2bYhNzcXffr0wZAhQ5Cbmyt1HCIiIiJyUg6/gqQUTCYTtmzZYv0zEREREVFp8Mo2EREREZGdsNkmIiIiIrITNttERERERHbCZpuIiIiIyE7YbBMRERER2QmbbSIiIiIiOxFEURSlDkFEREREVBHxyjYRERERkZ2w2SYiIiIishM220REREREdsJmm4iIiIjITthsExERERHZCZttIiIiIiI7UUgdoKydPn0a8+fPx8mTJ2E0GlGnTh2MGDECffv2LfZzmM1mrFixAqtWrUJMTAxUKhVat26NiRMnokaNGnY7b0UjRS26dOmC+Ph4m881ZMgQzJgxo7Qvx2k9aB1SUlLwyy+/4OzZszhz5oz1/b148aJdz1sRSVELficKe9A6HDt2DDt37sSRI0cQHx8PnU6H8PBwdO3aFc8//zx8fX3tct6KSIpa8DtR2IPW4fDhw1i9ejXOnTuH5ORkGI1GVKpUCZGRkXj22WdRq1Ytu5zXWVSoebYPHz6M0aNHQ6lUonfv3vDx8cGOHTsQFxeHiRMnYuzYscV6nrfffhurV69GnTp10LFjR6SkpGDLli1wd3fHypUrUadOHbuctyKRqhZdunRBRkYGRowYUei5GjVqhM6dO5fJ63MWZVGHw4cPY/jw4RAEAdWrV0diYiJycnLu2eDxO1GYVLXgd6KgsqhD+/btkZaWhubNm6N+/foQBAFHjhzBuXPnUK1aNaxcuRKBgYFlft6KRqpa8DtRUFnU4YsvvsD69evx0EMPITQ0FEqlEteuXcO+ffsgl8uxZMkStGnTpszP6zTECsJoNIrdunUTGzVqJJ49e9a6PTMzU+zdu7fYoEEDMTo6+r7Pc/DgQVGj0YhPPvmkqNfrrdv/+usvMSIiQhw2bJhdzluRSFULURTFzp07i507dy6T1+HsyqoOycnJ4pEjR8TMzExRFEXxkUceETUajd3PW5FIVQtR5HfibmVVh6+//lpMTEwssM1sNovvvvuuqNFoxOnTp9vlvBWJVLUQRX4n7lZWdcjNzbW5/a+//hI1Go04cOBAu5zXWVSYMduHDh1CbGws+vTpgwYNGli3e3t748UXX0ReXh7Wrl173+dZs2YNAOCVV16Bm5ubdXvbtm0RFRWFo0ePIjo6uszPW5FIVQsqqKzqEBQUhJYtW8Lb27tcz1uRSFULKqis6vDcc88hJCSkwDZBEPDiiy8CAI4ePWqX81YkUtWCCiqrOri7u9vc3rZtW6jVasTGxtrlvM6iwozZPnLkCAAgKiqq0L727dsXOOZeDh8+DJVKhcjIyEL7oqKi8Oeff+Lo0aOoWbNmmZ63IpGqFhYGgwHr1q1DYmIifH19ERkZiXr16pXmpTg1qT6b/E4UJvV7wu9EPnvXQaHI/ydVLpeX63mdkVS1sOB3Ip+96/D3339Dq9WiefPm5XpeR1Nhmu3r168DAKpXr15on1qthr+/P2JiYu75HDqdDsnJydBoNDa/oJYb8iznKqvzVjRS1cIiOTkZU6dOLbCtQ4cOmD17NgIC/t/e/YQ0GYdxAP8q6WGsw5Sg2EEYSlCbCbN3eVx6kIggwUOHtMNAig3tIgQR6Dk05tsh8CYoItHBQ4iHKBNqIxWFhf+CcAMZuBgto4a9HWJz85025X33e/f6/dzcXn7P9n7fBx5f3r1vTXFfwgREHZvsCTXR+4Q98Y/eObx8+RLA/rBQqrrlSFQWGeyJf7TO4ePHjwiFQvj9+ze+fv2KN2/ewGaz4dGjR7rWNTrTDNupVAoAcPbs2YLvW61WbG9vH7nG9+/fs9setkZuLa3qmo2oLACgo6MDkiShvr4e1dXV2NzchCzLePfuHR48eICJiQlUVFQc6/uUK1HHJntCTeQ+YU/s0zOHz58/4/nz56itrYXP5ytZ3XIlKguAPZFL6xxCoRBkWc7+XVdXh6GhITidTl3rGp1prtkmAgC/3w9JklBTUwOr1YorV67gxYsXcLvdWFxcxNu3b0V/RKKSYk/ob2trCz09Pdjb28PQ0NCpOjNqNMVkwZ7QTyAQwOrqKhYXFzE1NQWHw4E7d+5genpa9EcTyjTDduZMZ+aM6EGpVOrQ/6AyMu8fPFuau0ZuLa3qmo2oLA5TWVmJjo4OAMDCwsJ/tzcLUccme0LNaPuEPaFdDrFYDN3d3UgkEggGg6rbm+lVt9yJyuIw7Altj02LxYLGxkbIsgyHw4EnT54gkUjoXteoTDNsZ67hLXSNTzKZxLdv3wpeG5TLYrHg3LlziEaj2NvbU72fucYo92EqWtQ1G1FZHMVmswEAfv78WdT2ZiDq2GRPqBlxn7An8p0kh2g0irt37yIej+PZs2eH3p/ZiPmLJiqLo7An8mlxbJ45cwYejwe7u7tYWVkpWV2jMc2wffXqVQDA+/fvVe/Nz88DACRJ+u86kiRhd3e34H+2mbUztbSsayaisjjK8vIyAMButxe1vRmIOjbZE2pG3CfsiXzHzSEajaKrqwvxeBzDw8Noa2srSV2zEJXFUdgT+bQ6NuPxOID9O8SUqq6hiL7Rt1bS6bTS2tqqOJ1OJRKJZF/PvUH6ly9fsq/v7OwoGxsbys7OTt46J3mozXHqngaislhfX1eSyaTq84TDYcXlcilOp1OJxWJafU3D0yqHg4p5qA17Ip+oLNgT+bTKYWtrS/F6vcqlS5eUmZkZzeueBqKyYE/k0yqHUCik/PnzR7X+3NyccvnyZcXtdis/fvw4cd1yZ6rHtX/48AE+nw9VVVW4efMmrFZr9tGffX19uH//fnbbkZERyLIMv9+PQCCQt87jx48xNTVV9CPCj1P3tBCRxcjICEZHR9HS0gK73Y7q6mqsra1hfn4elZWVGBgYQGdnZ8n2gRFolUPuLbJmZ2eRSqVw+/bt7Gv9/f15P0RiT6iJyII9oaZFDtevX0csFkNTU1PB+wQDUOXGnlATkQV7Qk2LHJqbm2Gz2eByuXD+/Hn8+vULq6urCIfDqKqqwtOnT9He3n7iuuXONLf+A4Br165hfHwcwWAQr1+/RjqdRn19PXp7e3Hr1q2i1xkcHMTFixcxOTmJsbExWCwWeL1ePHz4UPUAFS3rmomILDweDzY3NxGJRLL3+aytrcWNGzdw7949NDY2av01DU+rHF69enXka36/P2/YZk+oiciCPaGmRQ6xWAwAsLS0hKWlpYLbHBy22RNqIrJgT6hpkUMgEMDc3Bw+ffqERCKBiooKXLhwAZ2dneju7kZDQ4MudcuFqc5sExEREREZiWl+IElEREREZDQctomIiIiIdMJhm4iIiIhIJxy2iYiIiIh0wmGbiIiIiEgnHLaJiIiIiHTCYZuIiIiISCcctomIiIiIdMJhm4iIiIhIJxy2iYiIiIh0wmGbiIiIiEgnHLaJiIiIiHTyF4NrOl1bnU5HAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"simulate_child_parent_income(title=\"Measurement error makes\\nus over-estimate effect\")"
]
},
{
"cell_type": "markdown",
"id": "b64021fe-9c57-41eb-a11e-ca7591efbf5e",
"metadata": {},
"source": [
"In the scenario above, measurement error can cause us over-estimate the actual effect"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4a57fd6a-cc8f-4a61-b8a2-0588b1a54883",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [sigma, beta, alpha]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ea027e87cf44c0b934e262413e50740",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" mean \n",
" sd \n",
" hdi_3% \n",
" hdi_97% \n",
" mcse_mean \n",
" mcse_sd \n",
" ess_bulk \n",
" ess_tail \n",
" r_hat \n",
" \n",
" \n",
" \n",
" \n",
" alpha \n",
" -0.077 \n",
" 0.047 \n",
" -0.163 \n",
" 0.014 \n",
" 0.001 \n",
" 0.001 \n",
" 5738.0 \n",
" 3032.0 \n",
" 1.0 \n",
" \n",
" \n",
" beta \n",
" 0.541 \n",
" 0.036 \n",
" 0.474 \n",
" 0.608 \n",
" 0.000 \n",
" 0.000 \n",
" 6257.0 \n",
" 3416.0 \n",
" 1.0 \n",
" \n",
" \n",
" sigma \n",
" 1.052 \n",
" 0.034 \n",
" 0.994 \n",
" 1.118 \n",
" 0.000 \n",
" 0.000 \n",
" 5247.0 \n",
" 2873.0 \n",
" 1.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n",
"alpha -0.077 0.047 -0.163 0.014 0.001 0.001 5738.0 3032.0 \n",
"beta 0.541 0.036 0.474 0.608 0.000 0.000 6257.0 3416.0 \n",
"sigma 1.052 0.034 0.994 1.118 0.000 0.000 5247.0 2873.0 \n",
"\n",
" r_hat \n",
"alpha 1.0 \n",
"beta 1.0 \n",
"sigma 1.0 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAifZJREFUeJzs3Xd8U+X+B/BPVkeaNm2hLVCgzJRR9h6yQfYSRQQBAQWvcL0oKiL3/rjqFcQNqIjIVKaA7D0FoYAIyJ4dtNBFm7RJ26zz+6MkUttCW5qcJP28X6/7unBOkvPJN6fy7clznkciCIIAIiIiIiIqc1KxAxAREREReSo220REREREDsJmm4iIiIjIQdhsExERERE5CJttIiIiIiIHYbNNREREROQgbLaJiIiIiByEzTYRERERkYOw2SYiIiIichA220RERG4gMjISkZGRYscgohJis03kRrp162b/B3fOnDmPfOzy5cvtj+U/0HTnzh3Mnz8fGzduFDsKEVG5wmabyE1t27YNFoulyP1btmxxYhpydQkJCViwYAE2bdokdhQionKFzTaRG6pZsyZSUlLw22+/Fbr/1q1buHDhAmrWrOnkZERERPQwNttEbmjgwIEAir56vXnzZgDAoEGDnJaJiIiICmKzTeSGWrdujcqVK2Pfvn0wGAz59gmCgK1bt8LHxwe9evV65OsIgoDt27fjpZdeQps2bRAVFYXu3bvjww8/REpKSqHPOXbsGN5//30MHDgQrVu3RqNGjdCjRw/83//9HxITEwt9jtlsxvLlyzFs2DA0a9YMUVFR6NixI55//nnMmzcPOp3O/tg7d+4gMjIS3bp1KzJ3UePQH96+e/dujBw5Ei1btkRkZCTu3Lljf1xGRga++OIL9O/fH02bNkWzZs3w3HPPYd26dbBarQVed/r06YiMjMTGjRuRkJCAadOmoX379mjWrBmGDx+OY8eO2R979epVTJkyBe3atUOTJk0wcuRInD17tsj3YjabsXr1aowYMQItW7ZEo0aN0Lt3b3zxxRfIysoq8PiNGzciMjIS06dPh9FoxPz589GzZ080atQInTt3xuzZswucEy+++CJGjx4NADh58mS+sfyPqnNhbt68iXfffRfdunVDVFQU2rRpg1deeQXHjx8v9PG2+wzu3LmDEydOYMKECWjTpg0iIyMRHR0NoPif2/Xr1/HWW2+hU6dOiIqKQvv27TFlypQi6/vw5xYfH4/p06fjqaeeQoMGDTB//vzHvtfo6GhERkbixRdfhMViwaJFi9CnTx80btwY3bp1w/z582E2mwEAOTk5+PLLL+2fRY8ePfD9999DEIQCr6vT6bB+/Xq8+uqr6NmzJxo3bowWLVrg2WefxYoVK+yvWVyCIODDDz9EZGQkevbsiYSEhHz7Svozfvr0abz22mvo0KEDGjZsiNatW6NPnz547733HnkuE1Hh5GIHIKLSGTBgABYtWoS9e/fmu4L9+++/IyEhAf3794efn1+RzzeZTJg2bRp27doFAAgNDUWlSpUQGxuLlStXYteuXVi5cmWBoSgvv/wyrFYrgoODUaVKFVgsFty5cwdr1qzBrl278NNPP6FOnTr5nvPGG29g9+7dAIDq1atDrVYjNTUV58+fxx9//IGePXsiICCgrEqDRYsW4bPPPkPFihVRo0aNfM3H9evXMX78eCQlJUGhUCAiIgJGoxHnz5/HuXPncPToUXz11VeQSCQFXvfOnTuYO3cucnNzUbNmTSQmJuLs2bN45ZVXsHjxYigUCrz88suQy+WoVq0a4uLicPr0aYwdOxbr169H3bp1871eVlYWJk2ahFOnTkEqlaJy5crw8/PD7du3sXDhQuzduxcrV65EhQoVCmQxmUwYN24cTp8+jTp16iA8PByxsbFYtmwZrl+/jiVLltgfq9FokJGRgWvXrkGlUkGj0dj3hYSEFLuuO3bswNtvvw2TyQQ/Pz/UqVMHqampOHz4MI4cOYL33nsPL774YqHP3b59O7788kv4+/ujevXq8PHxKfCYR31u+/fvx7/+9S8YjUYEBAQgMjISiYmJ2LNnD/bt24f//ve/eO655wo99u3btzF79mzk5OSgbt26UKlUhX6+jzJ16lTs3r0btWvXRpUqVRATE4MFCxYgMTERs2bNwujRo3HhwgXUqVMHISEhiI+Px6effors7Gz885//zPdaBw8exMyZM6FQKBAaGmr/fC5cuIDz58/j2LFj+PbbbyGVPv56mMViwcyZM7Fx40ZoNBosWbLE/pmW5md83759mDJlCqxWKwIDAxEZGYns7Gzcu3cPP//8M5RKJZo2bVqi2hGVewIRuY2uXbsKGo1GOHXqlHD9+nVBo9EI48aNy/eYmTNnChqNRjh06JBw9+5dQaPRCBqNpsBrffrpp4JGoxEGDx4sXLp0yb49OztbmDVrlqDRaIShQ4cWeN6aNWuEe/fu5duWnZ0tfPvtt4JGoxFGjRqVb9+ff/4paDQaoXPnzsKNGzfy7cvMzBTWrVsnJCYm2rfFx8cLGo1G6Nq1a5F1KOo92bY3bNhQWLt2rWC1WgVBEASTySSYTCZBr9cLPXr0EDQajfDBBx8ImZmZ9udev35d6Nevn6DRaIQff/wx3+u+88479tedOnWq/XkWi8Veq4EDBwpdu3YVZs+eLeTm5gqCIAi5ubnCxIkTBY1GI7z++usF8k6dOlXQaDTCmDFjhLi4OPv2jIwMYfLkyYJGoxGmTJmS7zkbNmywZ+nbt69w69Yt+74//vhDaN68uaDRaITDhw/ne96JEycK/XyK6/Lly0JUVJTQqFEjYe3atYLFYrHv279/v9C8eXOhfv36wuXLl/M9z3bO1q9fX5g/f75gMpkEQRAEq9Vqr9PjPrd79+7Z39eHH35of57FYrGfdw0bNixwbNvnVr9+fWHSpElCenq6fV9OTs5j37OtZg0bNhQ6deqU7+ckOjpaaNiwoRAZGSlMmjRJ6N+/f77PcMuWLYJGoxGioqKEjIyMArU8ePCg/X3YxMXFCSNHjhQ0Go2wcePGAnn+ft7n5uYKU6ZMETQajTBs2LB8708QSvcz3r9/f0Gj0Qg//fSTYDab7dutVqtw4sQJYf/+/Y+tGxHlx2abyI083GwLgiAMHjxYqF+/vpCUlCQIQt4/vi1bthTatWsnmEymIpvttLQ0ISoqSmjevLlw9+7dAsexWCzCM888k+9YxTFixAhBo9Hka8a3bdsmaDQa4aOPPirWa5RFs/3BBx8U+rwVK1YIGo1GeO211wrdf/nyZSEyMlLo3r17vu22pq1Dhw6CwWDIt0+n0wmNGjWyNzW2RtHm5s2bgkajEZo3b17gWLb3+XDTb2MwGITOnTsLkZGRwp07d+zbbc12ZGSkcP78+QLPmz17dqE1eNJm29b8L1++vND9K1euFDQajfDuu+/m2247ZydOnFjkaz/uc/v8888FjUYjDBo0qND9L7/8sqDRaIS33nor3/aHPze9Xv+Id1c4W800Go2wd+/eAvvfeOMN+2dx8eLFAvufe+45QaPRCHv27Cn2MWNjYwWNRiO89NJLBfY9fN4bDAZh3Lhx9s/07+dQaX/Go6KihFatWhU7LxE9HsdsE7mxQYMGwWKxYPv27QDyvp7W6XTo168f5PKiR4kdPnwYRqMRHTt2RKVKlQrsl0ql6NKlC4C8Mb5/9+eff+LTTz/FpEmTMGrUKIwYMQIjRoxATEwMAODKlSv2x9pe//jx48jIyCjlOy2Zom4M3bNnDwDg2WefLXR/vXr1EB4ejvj4eNy7d6/A/v79+8PX1zffNn9/f1StWhUAMHTo0ALDE2rVqgUfHx9kZWUhPT3dvn3fvn0AgN69e0OlUhU4lq+vL9q1awdBEHD69OkC++vXr49GjRoV2G7b9vBY5ydlNBpx+PBhyGQyDB06tNDH2MZ+nzp1qtD9gwcPfuxxivrcbGPiR44cWeh+23j0h8fOP6xXr15QKpWPPX5RAgMD0aNHjwLb69WrBwBo0KABGjRoUGB//fr1AQDx8fEF9hmNRmzduhUzZ87E+PHj8cILL2DEiBF45513AOT/Gfq7zMxMjB8/HkePHkWXLl2wePHiAudQaX/GK1euDJ1OV2QtiajkOGabyI3169cPc+fOxebNm/HSSy/ZZyGxzVZSlGvXrgEAzp07hxEjRhT6mLS0NABAUlKSfZsgCHj//fexatWqR76+Vqu1/7lZs2Zo0qQJzp07hy5duqB9+/Zo1aoVWrVqhYYNG5Z47Gxx1K5du9Dttvf91VdfYeHChYU+xtYQJyUlFWhSqlWrVuhzgoODcfPmTVSvXr3I/YmJiTAYDAgKCsqXZd++ffjjjz8KfZ7thtOHP4PiZAEAvV5f6P7SiImJQW5urn1MemGEBzcCFpYVKPozKc5jbL/E/f1eABvbWPjU1FRkZWUVaDyLc+xHeVytH7f/7zesJiYmYty4cbh9+3aRx3z4Z+jvxowZg4sXL6Jfv374+OOPoVAoCjymtD/jY8aMwfvvv49x48ahYcOGaN++PVq0aIFWrVoV+kshET0em20iNxYSEoJ27drh6NGjOHXqFI4cOYJatWoVesXzYZmZmQCAu3fv4u7du498bG5urv3PmzdvxqpVq6BUKvHWW2+hQ4cOCAsLs9/sNm3aNGzdujXfbApSqRTff/89FixYgC1btmD//v3Yv38/ACA8PByTJ08u8mppaRV1FdM2u8fFixcf+xo5OTkFtv39qraN7ReGwm76e3i/8NDMFLbPIDY2FrGxsY/M8vBnYFPUeyzOTXUlZctqMplw5syZRz62sKxA0bV7WFHvydasFnaj6N+36/X6Ak1hcY79KI/73B+3X/jbjCTTp0/H7du30aRJE0yZMgX169eHWq2GQqGA2WxGw4YNHzkjie180Wg0hTbaQOl/xkeOHAk/Pz8sXboUFy9exMWLF/H999/D29sbgwYNwttvvw1/f/9Hvh4R5cdmm8jNDRo0CEePHrXPElGcubVtTc2kSZMwderUYh9r69atAIB33nkHzz//fIH9hQ29AAC1Wo333nsPM2bMwJUrV3Dq1Cns27cP0dHRePfdd6FUKtG7d28ARTcoNn+/SlgSSqUSOp0Oe/bsQURERKlfpyzYPoMPP/ywyGEtrsI2q01YWBiOHDni9OMrlUpkZmYiLS2t0G8PbFdoATxyBh5XkJSUhOjoaPj6+mLRokUIDAzMt/9xjTEAfP/99xg/fjy++OIL+Pj4YOzYsQUeU9qfcSBvyM/gwYORkpKCU6dO4dixY9ixYwfWrVuHlJSUIr8VIqLCccw2kZvr2bMnlEolEhMTIZFIMGDAgMc+x/Z1/PXr10t0LNs44GbNmhXYZzKZcPPmzUc+XyKRoH79+hg9ejRWrFiBV155BQCwfv16+2NsVwnv379f6GvExcWVKPPDbMMJSvq+HcH2Gdi+7ne0JxmuExERAYVCgZSUFKeNu39YjRo1AAA3btwodL/t86xYsaLLD3WwDQ2qVatWgUYbyJun/XGaN2+O7777Dr6+vpg9ezZ++umnAo8p7c/4w0JCQtC3b1/873//w/r16yGVSnHw4EEkJyeX+jWJyiM220RuztfXF+PGjUO7du0wfPhwhIeHP/Y5nTt3hkKhwJEjR+zjYYvDNkzi4SuJNhs3biyyQS5KkyZNACDfP95BQUHw9/dHTk5OoY3Cw415SdkW+VmxYkWRV86dxXbD3ZYtW/LdOOkots+usOExj+Pr64uOHTvCarVi5cqVZR3tsTp27AgAhTaVAOyZbI9zZQ//DBV2Di5evLhYr9O6dWt888038Pb2xgcffFDg56K0P+NFqVOnjn34CJttopJhs03kAaZMmYJly5bhv//9b7EeHxYWhjFjxsBkMmH8+PH2lfxsBEHA+fPn8X//93/5ZlJo0aIFAODLL7/M11gfOXIEc+fOhbe3d4FjbdmyBV9//XWB2THS09PtTdLDMzlIJBJ70zRnzpx8N/pt2rQJGzZsKNZ7LMzw4cNRrVo1REdHY9q0aQWaBr1ejx07dmD27NmlPkZxNWrUCH369EFGRgbGjRuHS5cu5dtvsVgQHR2NN998E0aj8YmPZ5sx5caNGyX+pQgAXn/9dXh5eeHbb7/FokWLCjTtycnJWL58OVavXv3EWf9uxIgRUKlUuHz5Mj766CN7PaxWK77//nscOnQICoUCL730Upkfu6zVqVMHarUa9+7dw7fffmtvuHNzc/Hhhx8WOA8epX379pg/fz7kcjn+85//2G+QBkr3M56VlYWpU6ciOjo630qqFosFK1asgFarhVKpLLDQFRE9GsdsE5VTU6dORXJyMrZs2YLRo0cjJCQElStXhtFoRHx8vL3JtU2rBgATJkzA9u3bce7cOXTt2hU1a9aETqdDQkIC2rRpg9DQUPu4bpv79+9j3rx5mDdvHsLCwhAaGorc3Fzcvn0bJpMJYWFheP311/M9Z8qUKTh8+DCOHj2Kjh07ombNmkhOTkZKSgpmzZqFWbNmleo9+/n54bvvvsMrr7yCbdu2YceOHahZsyZUKhW0Wi3i4+NhsVjsV9wd7X//+599mrUhQ4agSpUqCAkJQXZ2NuLi4uwN7UcfffTExwoODkbbtm1x4sQJ9OjRA3Xq1IG3tzcqVqyIL7744rHPr1+/Pj7//HO89dZb+Oyzz7BgwQLUqlXLPrzENta4qNlKnkRYWBjmzp2L119/HcuXL8cvv/yC6tWrIzExEWlpaZBKpfj3v/9tn4rPlSkUCrz++ut4//338dVXX2HVqlUICwtDTEwM9Ho9PvjgA8ycObPYr9e5c2d8+eWX+Ne//oV3330XCoUCffv2BVDyn3Gr1YodO3Zgx44dUCqVqF69OuRyORISEpCeng6JRIIZM2a4/Lh4IlfDK9tE5ZRcLscnn3yCRYsW2Yc0XL58GSkpKahRowZGjRpVYCnnKlWqYM2aNejVqxcUCgVu3boFb29vTJkyBYsXLy50bu+nn34a06ZNQ4cOHSCTyXDt2jUkJydDo9HgX//6F7Zt24YqVarke07t2rXx008/4amnnoJEIsHt27dRtWpVLFy4sMhpzIqrdu3a2Lx5M9588000atQISUlJuHz5MkwmE1q1aoV33nkHn3/++RMdo7j8/PywePFifPrpp+jYsSOys7Nx6dIlpKenIzIyEi+//DLWr19f6DcGpfHZZ59h6NChUKlUuHjxIk6ePIlz584V+/k9e/bE9u3bMXr0aISHh+P27du4ceMGfHx80LNnT3z88cf2cfhlrXv37ti4cSMGDBgALy8vXLlyBYIgoGfPnli1ahWGDx/ukOM6wsiRI/HJJ5+gfv36yMjIQFxcHKKiorBo0aJS3Szbo0cPfPrppwCAt956yz6He0l/xv38/DB37lwMGjQIlSpVQkJCAm7cuAG1Wo2BAwfil19+cfmbeYlckUQQe+AiEREREZGH4pVtIiIiIiIHYbNNREREROQgbLaJiIiIiByEzTYRERERkYOw2SYiIiIichA220REREREDsJmm4iIiIjIQdhsExERERE5CJttIvJ4d+7cQWRkJLp16yZ2FJeyceNGREZGYvr06WJH8Sh37tzB1KlT0a5dO9SrVw+RkZHYuHGjff+VK1cwceJEtG7d2r4/OjpaxMRE5EgF11YmIiK3p9PpsHz5cvj7+2Ps2LFix3kiy5YtQ2ZmJsaMGYOAgACx4zyS0WjEmDFjcOfOHQQHB6NJkyaQSqWoUKECACAtLQ2jR4+GVqtFWFgYatWqBYlEAn9/f6dl9KRzg8gdsNkmIvJAOp0OCxYsQHh4eJENlb+/P2rWrImQkBDnhiuhFStWICEhAUOGDHH5ZvvXX3/FnTt3EBUVhdWrV8PLyyvf/u3bt0Or1aJ79+5YsGABpFLnf8FcnHODiMoOm20ionKqZ8+e6Nmzp9gxPMqtW7cAAG3bti3QaD+8v2PHjqI02kTkfPxJJyIiKiO5ubkAAB8fn1LtJyLPIxEEQRA7BBGVnTt37qB79+4IDw/HgQMHCn1MZGQkAODq1av5tickJOC7777DsWPHkJSUBIVCgeDgYNSrVw99+/ZFv379ipVh48aNePfddzFkyBDMmTOnwP7o6GiMHj0arVu3xsqVKwvdvnz5cqxcuRLr169HbGws/P390aVLF0ybNg3BwcGFHvfkyZP45ptvcP78eUgkEjRo0ACTJk1CRETEI2uSnZ2NlStXYteuXYiJiYHFYkGNGjUwYMAAjB49usAVyvnz52PBggWYPHkyRo4ciQULFuDQoUNISkrCgAEDCn3Phbl58yYWL16M6OhoJCcnw8/PD02aNMFLL72Edu3aFXh8eno6Fi1ahIMHDyIhIQEymQzBwcGoWbMmunXrhpEjRwIApk+fjk2bNhV5XNvnXtTn9PDnsGzZMvzwww/YtGkTEhISULFiRQwZMgSvvvoq5HI5cnJysHDhQmzfvh337t1DWFgYhg8fjgkTJkAikeQ7rk6nw+7du3HgwAHcuHHDfo7VqlULAwYMwAsvvAC5/K8vXG35irJixQq0adPG/veMjAwsXboU+/fvx507dyCRSFC3bl0MGzYMw4YNK9WV5OJ+Ro/KGh4ejiFDhmDBggWF7v/7z0FJz0ebW7duYenSpThx4gSSkpLg6+uL8PBwdOnSBc8//zxCQ0OLfW4QUdnhMBIiApDXpA8bNgzp6enw9fVFzZo1IZPJcPfuXezbtw937twpdrNdFt566y1s27YNNWrUQEREBG7fvo0NGzbg/Pnz2LhxY6FjYadNmwar1YrAwEBUrVoV165dw4QJEzB16tQij5OUlIRx48bhxo0bkMvlCA8Ph1wux40bN/DJJ5/gwIEDWLJkSaFXIu/fv49nnnkGSUlJqFOnDlQqVbEbuh07duDtt9+GyWSCn58f6tSpg9TUVBw+fBhHjhzBe++9hxdffNH++MzMTDz33HOIi4uDQqFAREQEvL29ce/ePRw7dgznzp2zN9s1atRAVFQULly4AC8vL0RFRRUrU2GmTp2K3bt3o3bt2qhSpQpiYmKwYMECJCYmYtasWRg9ejQuXLiAOnXqICQkBPHx8fj000+RnZ2Nf/7zn/le6+DBg5g5cyYUCgVCQ0Oh0WiQkZGBCxcu4Pz58zh27Bi+/fZbew0rVKiA5s2b48KFCzAajYiKisr3uT98U+H169cxfvx4ewMfEREBo9GI8+fP49y5czh69Ci++uqrAr8APEpJPiNb1rt37+Lu3buoXLkyKleuDAAICQlB5cqV0bx5c8TGxiItLQ01atSw/9Ko0Wjsxyzt+bhlyxbMmDEDJpMJPj4+qFOnDrKzs3H9+nVcvHgRVatWxdChQ8v03CCiYhKIyKPEx8cLGo1G6Nq1a5GP0Wg0gkajybft/fffFzQajfDOO+8IWVlZ+fbduHFDWLNmTbEzbNiwwf5ahTlx4oSg0WiEUaNGFbq9YcOGQseOHYVz587Z9926dUvo1KmToNFohFWrVuV73r1794SmTZsKGo1G+PTTTwWTySQIgiAYjUbho48+Eho2bFhoTSwWizB8+HBBo9EIU6dOFVJSUuz77t69K7zwwguCRqMR5syZk+958+bNEzQajVC/fn1h+PDhwt27d+37cnJyHlufy5cvC1FRUUKjRo2EtWvXChaLxb5v//79QvPmzYX69esLly9ftm//4YcfBI1GI4wbN05IT0/P93oJCQnC0qVL820rznlQ1Of08OfQqVMn4dKlS/Z90dHRQsOGDYXIyEhh0qRJQv/+/YW4uDj7/i1btggajUaIiooSMjIyCrzvgwcPCrm5ufm2x8XFCSNHjhQ0Go2wcePGAjm7du0qaDQaIT4+vtD3odfrhR49eggajUb44IMPhMzMTPu+69evC/369RM0Go3w448/FlmLvyvNZyQIf50b8+bNK/R133nnHUGj0QgbNmwosK+05+P58+ft5/jcuXMFvV5v32c0GoVt27YJp06dsm8rzrlBRGWHY7aJCAAQExMDABg7diz8/Pzy7atduzaGDx/utCwmkwn//ve/0bhxY/u2mjVrYsKECQCAI0eO5Hv86tWrYTAY0KhRI7z55pv2oQgKhQLvvvsuatWqVehxDh06hD/++AONGjXC3LlzUbFiRfu+SpUq4YsvvoBSqcSaNWuQk5NT4PkymQxfffUVKlWqZN/m7e392Pf39ddfw2g0Ytq0aXjuuefyXQ3v1q0bpk6dCovFghUrVti32z6fF154AYGBgfler0qVKg6ZVcL2OdSvX9++rXXr1nj66achCAIOHjyIjz/+GNWqVbPvHzBgAJo2bQqj0YiTJ0/me7169eqhS5cuBb6VqFatGj766CMAwNatW0ucc8OGDYiLi0PPnj0xc+ZMqFQq+746derg008/hUQiwdKlS4v9mqX5jJ5Uac/H+fPnw2Qy4ZlnnsFbb70FpVJp36dQKNCvXz+0bNmyzHISUcmw2SYiALB/5b17924IIt/KoVar0atXrwLbGzVqBCBvyMvDjh49CgAYMWJEoa/3wgsvFLp97969AIAhQ4bkGytsExoaikaNGsFgMODChQsF9rdv3x5hYWGPeCcFGY1GHD58GDKZDEOHDi30MbbFd06dOmXfZvt89u3bB7PZXKJjllZgYCB69OhRYHu9evUAAA0aNECDBg0K7Lc15/Hx8QX2GY1GbN26FTNnzsT48ePxwgsvYMSIEXjnnXcA5C34UlJ79uwBADz77LOF7q9Xrx7Cw8MRHx+Pe/fuPfb1SvsZPanSnI85OTn47bffAMD+yygRuRaO2SYiAMDIkSPxyy+/4JtvvsHmzZvRsWNHtGzZEm3atClxQ/mkHr5S+jDbwiB6vT7fdttV39q1axf6vKK2224GW7NmDbZt21boY2yvnZycXGBfUVfMHyUmJga5ublQKBR4+eWXC32M7ZedpKQk+7ahQ4fihx9+wMaNG3HkyBE89dRTaNGiBdq2bVtkvZ5UUa9rG2v8uP0GgyHf9sTERIwbNw63b98u8pharbbEOa9duwYA+Oqrr7Bw4cJCH5Oeng4gr6YPfxNRmNJ+Rk+qNOdjbGwsTCYTAgICSnU+EpHjsdkmIgB5VyN//PFHzJ8/HydOnMDatWuxdu1aSCQSdOjQATNmzCiyaS1rD38N/rCibm6zNXVFzVJia9L/LisrC8BfzdqjFDaMpLCcP//8MzZs2FBg+6RJk9C5c2dkZmYCyBuicebMmUce0zZNHACEhYVh7dq1+Oqrr3Do0CFs2rTJPqtE06ZNMX36dDRr1uyx76MkfH19C91u+xwet//v35BMnz4dt2/fRpMmTTBlyhTUr18farUaCoUCZrMZDRs2LNVVe9vnePHixcc+trDP8e9K+xk9qdKcj7bnOHMFSiIqGTbbRB6mqEbH5u9XGx/WtGlT/PDDD9Dr9Thz5gyio6Oxbds2HD16FC+99BK2bdtWrBX8HpchOzv7sa9REkqlEpmZmbh//z6qV69eYP/9+/eLfB4ALF26FO3bty+TLHfv3i20QUtLSwMA+3j4sLCwAmPPH6d27dqYN28ejEYj/vjjD5w6dQrbt2/H2bNnMW7cOGzduhVVq1Z98jfhAElJSYiOjoavry8WLVpUYNz53bt3S/3aSqUSOp0Oe/bsQURExBMmfbLP6EmU5ny0ZbX9gkBErodjtok8jO1qY1ENZlxc3GNfw8/PD0899RSmTZuGnTt3onr16khKSip24/G4DLGxscV6neKqUaMGgL9W5/u7mzdvFrrddqW+OFcSi2vKlCm4evVqgf/Zxv5GRERAoVAgJSUFGRkZpTqGl5cX2rRpg8mTJ2Pbtm1o3rw5DAYDtm/fbn9MSaa4c4bExEQAeUNv/t5oA082v7Ptc7x+/XqpX+NhZfEZlUZpzscaNWpAoVBAp9MVef7/naudG0Sejs02kYcJCgqCv78/cnJyCm0+1q9fX6LX8/X1tc8DXNi45cLYxvJevny5wLAAq9WKjRs3lijD43To0AFA3ljXwqxevbrQ7babMNeuXVumwwEexdfXFx07doTVas23kElpyWQy+42jD38+tnmYizNswhlsedLS0gr9xmPx4sWPfW5Rn5Htc1yxYkWZ3Nxb1p9RcZXmfPTx8UHHjh0BAEuWLCn2cwDXOTeIPB2bbSIPI5FI7P/4zpkzJ9/NhJs2bSp0PDEA/N///R927NhRYIjHqVOncPz4cQAodOaJwtSrVw+hoaFISUnB/Pnz7Q1Qbm4uPvrooyKvNJfWiBEjoFQqce7cOXz55Zf2Bt9kMuHjjz/GjRs3Cn1ez5490bRpU9y6dQuTJk0qcMXdaDTi0KFDj1zFsDRef/11eHl54dtvv8WiRYsKND3JyclYvnx5vl8SvvjiC6xfvx46nS7fY69du4adO3cCyP/5BAcHw8/PD2lpaWVe79KoU6cO1Go17t27h2+//TbfOfHhhx/i0qVLRT7X9svb36cStBk+fDiqVauG6OhoTJs2rcAvhXq9Hjt27MDs2bOLnbc0n9GTKu35+Nprr0GhUGD9+vX4/PPP8/0Mm0wm7NixA6dPn7Zvc7Vzg8jTccw2kQeaMmUKDh8+jKNHj6Jjx46oWbMmkpOTkZKSglmzZmHWrFkFnnP27FmsWbMGcrkcERER9n+MExISAAADBw5E27Zti3V8mUyGadOm4e2338bChQuxbt06++qDVqsVb7zxBj7++OMye7+VKlXCf//7X7z99tv49ttvsWbNGlStWhXx8fHQ6XSYOnUqPvvsswLPk0qlmD9/PiZOnIjffvsNvXr1QkREBAIDA6HX6+0zPTw833FZqF+/Pj7//HO89dZb+Oyzz7BgwQLUqlXLPnTBNn754Zkwrl+/joULF+I///kPqlWrBrVaDa1Wa2/I2rRpg0GDBtkfL5FI0Lt3b2zYsAFDhgxB3bp17WOCnXm11kahUOD111/H+++/j6+++gqrVq1CWFgYYmJioNfr8cEHH2DmzJmFPrdPnz44dOgQZs2ahVWrVtmHocyYMQP169eHn58fvvvuO7zyyivYtm0bduzYgZo1a0KlUkGr1SI+Ph4WiwVNmjQpdt7SfEZPqrTnY6NGjfC///0P7733Hr777jusWLECtWrVQk5ODu7cuYPc3FzMnj3bPte2q50bRJ6OzTaRB6pduzZ++uknfP755zhz5gxu376NyMhIfPDBB+jatWuhzfa7776L/fv34/fff8fdu3cRFxeH0NBQdOzYESNHjkTXrl1LlGHQoEHw8vLC999/jxs3buDOnTto164d/vWvf9lvFixLAwcORFhYGL7++mv8+eefuHXrFho2bIiJEyeiRo0ahTbbQN7cxWvXrsXPP/+MHTt24Nq1a0hMTETFihXRuHFjtG/fHn369CnzvD179sT27duxbNkyHD16FLdv34ZUKkVYWBh69uyJHj162OdyBoBXX30VtWvXRnR0NBITE5GYmIjg4GC0bt0azzzzDPr3719gbub33nsPfn5+2L9/P65evQqTyVTm76MkRo4cCX9/fyxZsgQ3btxAbm4uoqKiMH78eHTq1KnIZnvw4MHQ6XT4+eefERsbax/T/PBV/tq1a2Pz5s1YtWoV9u3bh5s3byI+Ph4hISFo1aoVOnfuXOjc7Y9S0s+oLJT2fBw0aBAaNmyIH374ASdOnMC1a9egUqlQp04ddOvWDU899VS+x7vauUHkySSC2KtXEBERERF5KI7ZJiIiIiJyEDbbREREREQOwmabiIiIiMhB2GwTERERETkIm20iIiIiIgdhs01ERERE5CBu2WwLgoCMjIwyWZaXHo/1di7W27lYb+divZ2L9XY+1tx5rFYrLly4gOPHj8NisYgdp0huu6gNT2LnYr2di/V2LtbbuVhv52K9nY81d47s7Gw0atQIAJCZmQmVSiVyosK55ZVtIiIiIiJ3wGabiIiIiMhB2GwTERERETkIm20iIiIiIgdhs01ERERE5CBstomIiIiIHMRtp/77O4vFApPJJHYMjyQIAoxGI3JyciCRSJ749RQKBWQyWRkkIyIiovJKoVDgzTffRG5uLhQKhdhxiuT2zbYgCLh37x4yMjLEjuLRrFYr7t+/X2avFxgYiEqVKpVJ805ERETlj5eXFz755BNkZGTAy8tL7DhFcvtm29Zoh4aGQqlUsnlzAEEQYLFYIJPJnri+giDAYDAgOTkZAFC5cuWyiEhERETkkty62bZYLPZGu0KFCmLH8Vhl2WwDgK+vLwAgOTkZoaGhHFJCREREJWa1WhEbGwudToeAgACX7Sfcutm2jdFWKpUiJ6GSsn1mJpPJZX84iIiIyHVlZ2ejVq1aALhcu8Nx6Ij74WdGRERE5YFHNNtERERERK6IzTYRERERkYOw2S4HsrOzMX/+fERHRzvleNOnT0e3bt2cciwiIiIiV+bWN0hS8WRnZ2PBggWYPHky2rRpI3YcoidizTHCGHsv739xSTCnamFJz4RFmwXBZAHMFggWCwSzBYLZCtj+bLHm2werAHlFNeSVK8AaEgBZp2ZQtY2C1M9H7LdIREQehM02Ebk8q9GEzF3RuL96H7IO/QEht+xXi9XN3wSJjxcCn+mCipMGwbdhzTI/BhERlT8e3Wzr9foi98lkMvj4+BTrsVKp1D43dEkfW1qxsbFYuHAhfv/9dyQlJSEgIAANGzbE1KlTERkZme+xOp0O33zzDfbu3YukpCT4+/sjKioK06dPh7e3N7p37w4AWLBgARYsWAAAGDJkCObMmYPp06fj5MmTOHDgQL7XnD9/PhYsWICrV6/at/3000/YuXMnbt26hezsbFSrVg0DBw7E2LFjXXqZVHJfgsmM+z/tQdLcVTDf+2sFU6m/El4RleAVEQZ5SCDkwQGQqVWQeMkBuQwSmQwSed7/IJfa/563L+/vAGBOzYAxIRWZl27BdOoqTPHJSP9pD9JX7UXwqF6o9O+xkFdUi/X2iYjoEeRyOV599VUYjUbI5a7b0rpusjLwqPkW+/bti+3bt9v/HhoaCoPBUOhjO3fujEOHDtn/XqNGDaSmphb62JYtW+LUqVOlC/yQ5ORkBAYG4s0330RwcDC0Wi02bdqE5557Dps2bbLPK5mVlYUXXngBCQkJmDBhApo0aQKDwYBTp04hJSUFzZs3x+LFizFhwgQMGzYMzz77LAAgODi4xJni4uLQv39/VK1aFQqFAleuXMHChQtx69YtzJ49+4nfM9HDcq7GIW7Cx8i5eBsAIK9cAUHPd0fQsK7wrle9zKaPFAQBXhkZUKvVyD51Banf/gLtlqO4v3I3tDtPoMaP/4Ff6/plciwiIio73t7e+Prrr5GRkQFvb2+x4xTJo5ttd9aqVSu0atXK/neLxYLOnTujf//+WLt2Ld59910AwPLly3H9+nUsXboU7du3tz++V69e9j83bNgQAFCpUiU0bdq01Jneffdde4NjtVrRsmVLBAYGYsaMGZg+fTrUal4BpLKR/vNB3Hl9HoTsXMiCAxD21ggEj+0LqbfjvkGRSCTwa9MAfm0aQH/iIhLeXICcy7G4NfhdVF84DeqBHR12bCIi8lwe3WxnZWUVue/vqxYmJycX+VipNP+kLTExMcV+bGmZzWYsXrwYW7ZsQVxcnH21TAC4efOm/c+//voratSoka/RdpRLly5h/vz5+OOPP5CRkZFvX0xMDJo0aeLwDOT50pbtRMIb8wEAqs5NUW3hNCjCSv5NzJPwa9sQtXd/jriXP0bm7pOIHT8HNVfPgn+Plk7NQURERRMEASkpKdBqtVCr1S67YJ5HN9t+fn6iP7a05syZg59++gkvv/wyWrVqZT+JZs6cidzcXPvj7t+/j8qVKzs8T2JiIkaNGoWaNWtixowZCA8Ph7e3N86fP4/3338fOTk5Ds9Ani9t2Q4kvJF3X0GFlwegyuyJkJTRL7AlJVP5osaP/0b8Pz5HxvqDiH3pI9TaPAfK5hpR8hARUX4GgwFhYWEAXHu5do9utt3Zli1bMHjwYLzxxhv5tqenpyMgIMD+9+DgYNy7d6/Ux/Hy8oLRaCywPT09Pd/fDxw4AIPBgPnz5yM8PNy+/cqVK6U+NtHDdLujkTDtGwBAxcnPoPJ/x4l+lUIik6Hq/H/BnJKBrEN/IObFD6A5NB/ykEBRcxERkfvgojYuSiKRFJjh49ChQ0hKSsq37amnnkJMTAyOHz9e5Gt5eXkBQKFXn6tWrYq0tLR8N3wajUYcPXq0QJ6HXwvI+/pm3bp1xXxHREXLPn8TsePnAFYrgkb1colG20bqpUDE8vfgrakG8900xE/+AoIgiB2LiIjcBK9su6guXbrYZx2JjIzExYsX8cMPP6BSpUr5HjdmzBjs3LkT//jHP/DKK6+gcePGyMnJwalTp9ClSxe0bdsWKpUK4eHh2L9/P9q1awe1Wo2goCBUrVoVffr0wbx58zB16lRMmDABubm5WLlyJSwWS77jtGvXDgqFAm+88QYmTJgAo9GI1atXQ6fTObMs5IEsmQbEjpsNwZALVZdmqPrZZJdptG1k/kpELJ2B612nIHPvKWg3HUHg0M5ixyIiIjfAK9su6r333sPAgQOxaNEivPrqqzhw4ADmz5+P6tWr53ucSqXCqlWrMGzYMKxbtw4TJ07Ev//9b9y+fRuhoaH2x/3vf/+Dr68vXn31VQwbNsw+33a1atXw9ddfIzMzE//85z8xd+5c9O7dG4MHD853nFq1amHevHnQ6XSYMmUKPvjgA9SrVw/vvfeew2tBni3h7W9gvJUIRXgIqi+ZDonCNa8B+NSPQOgbzwMAEt/9DuaMTJETERGRO5AIbvh9qCAIyMjIgI+PD2JiYlCzZs18C9RQ2RIEARaLBTKZrMyuOObk5OD27dv87AphO78DAwNd7gpvWcvYeBhxEz4GpFLU3vYx/No2dHqGktTbajTheucpyL0ahwrj+yH8k9eclNJzlKfz2xWw3s7HmjuPXq+33xTpyjdI8so2EYnCnJ6JxHe/AwCEvjFclEa7pKReCoR/mtdgpy3fhdxbiSInIiIiV8dmm4hEcfffi2FOyYC3phpC33xe7DjFpurQCP49WwFmC+59tFLsOERE5ZZcLseYMWMwYsQIz1quffPmzfj9999x4cIFXLt2DSaTCbNnz8bQoUMLfXxWVhbmz5+PPXv2ICUlBSEhIejVqxemTJnispf7icix9CcuIn3VXgBA1S//6dCVIR2h0r/H5N0oufEwDFOegbJJHbEjERGVO97e3li6dKnLL9de4ivbX331FdauXYvExMR8N+AVxmAwYNSoUVi2bBlq1qyJsWPHonbt2li2bBlGjRoFg8FQ6uBE5J4EQcDdfy8GAAS/+LRbDB/5O9+oWggc1gUAkPzZGnHDEBGRSytxs/3hhx/iwIEDOHHiBJ5//tFf/S5evBiXL1/GhAkTsGTJEkybNg2LFy/Ga6+9hsuXL2Px4sWlDk5E7km7+SgMv1+F1M8HYTNeFDtOqdlmJtFtP46c63dETkNEVP4IggC9Xg+9Xu/S6x+UuNlu3759vhUEiyIIAtavXw+lUonXXst/x/7EiROhVqvx888/l0lxXLnAVDh+ZuWT1WjCvQ+WAQAqvjYUirBgcQM9AZ961RHQpy0gCEiZ/7PYcYiIyh2DwQB/f39Uq1bNpUdLOOwGyZiYGCQnJ6N58+ZQKpX59nl7e6Nly5ZISkpCbGxsqY9hW2HRlQtMhbN9Zn9fJZM82/1lO2G8fRfy0CCETH5G7DhPLOT1ZwEAGWsPwJSY+phHExFReeSwWzdtTXSNGjUK3R8REWF/XFGPAQq/AmrbJpVKoVarkZycDEEQoFQqOaelg9jm2X5SgiDAYDAgJSUFarUaUqmUV7n/xlYPT6uLJdOApE9WAQBC3xkJqZ+PS7zHJ6m3slU9KNs1hOH4RaQt24Gwd913WIyzeOr57apYb+djzZ3n4RoLgiBKzYvTdzqs2c7MzFtdragZRx6ehPxRtFptkcXTarXw8fFBTk4O7t27x0bbTdh+MfLx8UFGRobYcVyWVqsVO0KZ0n23FZY0HeQ1KkHav7XLffalrbfviG4wHL+I1BW74DWhj8uugOlqPO38dnWst/Ox5o6n1+vtf9ZqtTCbzU7PEBQU9NjHuPy/Cmq1usA2QRCg1WqhVqshkUgQFBQEi8UCk8kkQkLPJwgCMjMz4e/vXya/0CgUijK5Su6p/n5+ewKrPgeJS3YCACpNG4GgihVETvSXJ613wLPdof1gJczJGZBGX4O6f3sHpPQcnnh+uzLW2/lYc+d5eCiqWq122SmlHdZs+/v7A8ibZ7swtu22xxXlUSeqRCKx75fL5S49obk7EwQBubm58PX15X84nOjh89vd3V+xC5ZULbwiKiHo2a4u+b5KW2+ZtxeCXuiJlK/W4/7yXQgc0MEB6TyPJ53f7oD1dj7W3PEerq8r19thN0jaxmTHxMQUut82ptv2OCLyTNYcI1IWbAAAhPzrOY8cZhE8pjcAIOvgGRhj74mchoiIXInDmu0aNWogNDQUZ86cKTBbSG5uLk6fPo3Q0FA220Qe7v6Pu2G+dx+K8BAEjegudhyH8K5RGarOTQFBQPraA2LHISIqF2QyGYYNG4aBAwe69PBUhzXbEokEzz77LAwGA77++ut8+7777jtotVo8++yzLnvJn4ienGAyI2Ve3hzUIa8Pg9TLc6d6DBqe94tE+roDnIWAiMgJfHx8sG7dOixbtgw+Pj5ixylSib/PXb9+PX7//XcAwLVr1+zbTp48CQDo0aMHevToAQCYMGECDhw4YF9JsmHDhrhy5QqOHDmC+vXrY8KECWX1PojIBWVsOQrTnRTIQwIRPOppseM4VED/9pBMWwDjrUQYTl+FX6t6YkciIiIXUOJm+/fff8emTZvybTtz5gzOnDkDAAgPD7c320qlEitXrsSCBQuwe/dunDx5EhUrVsTYsWMxefLkAovdEJHnEAQBqQs2AgAqTOgPqY+XyIkcS6byhbpfe2SsP4iMdfvZbBMREQBAIrjh952CICAjIwOBgYEchuIErLdzeUq9s46ex62B0yHx9Ub988sgr1BwGk9XUJb1ztz/O24/+2/IgvxR//KPHj1sprQ85fx2F6y387HmzqPX6/Ot2+KqU/85bMw2EZVvthlIgkf0cNlGu6ypujSFPDQIlvRMZB0+K3YcIiJyAWy2iajM5VyNQ+aeU4BEgoqvDhY7jtNIZDKoB+QtaqPdfFTkNERE5ArYbBNRmUv9Ju++joC+beFdO1zkNM6lHvQUAEC34zgEk/OXDiYiItfCZpuIypQpOR3pa/cDAEJeGypyGufza9cwbyhJRhaHkhAREZttIipbaYu3QTCaoWwRCWWbBmLHcbqHh5Jk/PKryGmIiEhsbLaJqMxYDTlIW7IdAFBx8jPl9k58DiUhIiKbEs+zTURUlPQ1+2G5r4NXRCWo+7cTO45obENJzMnpyDp8Fv49WoodiYjI48hkMvTt2xcmk6l8LtdOROWLYLEg5cGNkRVfHQyJC/+Hz9EkMhnU/R8MJeGsJEREDuHj44Nt27Zh7dq1Lr1cO5ttIioTul3RMN5KhEytQtALPcWOIzr1oI4AHgwlMVtETkNERGJhs01EZSLlwdLsweP6QqbyFTmN+PzaRUEW5A9LeiYMpy6LHYeIiETCZpuInpj+1BUYoi9BopCj4ssDxY7jEiRyGfx7tQIAaHdGi5yGiMjz2JZrr1q1KvR6vdhxisRmm4ieWOrCXwAAgcO6QFEpWNwwLiTg6TYAAN2uEyInISLyTAaDAQaDQewYj8Rmm4ieiDEhFdoteTcBVpw0SOQ0rsW/WwtIFHIYbyQg5/odseMQEZEI2GwT0RO5v3Q7YLHCr30UfBvVFjuOS5EFKOHXsTEAIHMXh5IQEZVHbLaJqNSs2blIW7YTAFBxIq9qFyag94OhJLvZbBMRlUdstomo1DJ+PgTLfR0U1UIR0Ket2HFcUkDv1gAA/YlLMN/XiZyGiIicjc02EZWKIAhIXbQFAFBhfH9I5OV3EZtH8aoWBp+GNQGrFZl7T4kdh4iInIzNNhGViv7Yn8i5eBsSpTeCRz8tdhyXZh9KwnHbRERlRiqVonPnzujQoQOkUtdtaV03GRG5tNTvNgMAgoZ3hzzQX+Q0rs02xCZz/++wGk0ipyEi8gy+vr44ePAgtm7dCl9f111Mjc02EZWYMfYedDvy5o7mIjaP59u0DuRhQbBmZUN/7E+x4xARkROx2SaiEktdvA0QBKi6NINPvepix3F5Eqn0oQVuOJSEiKg8YbNNRCViycrG/ZW7AXARm5LwfzpvVpLMvacgCILIaYiI3J9er0doaCjq1q3L5dqJyHOkr90Pq04Pr9pV4N+jpdhx3IbqqSaQeMlhjLmH3BsJYschIvIIqampSEtLEzvGI7HZJqJiE6xWpC3aCiBvrLbEhe/+djUylS/82jcCAE4BSERUjvBfSiIqtqyDfyD3ejykKl8Ejeghdhy349+zFQA220RE5QmbbSIqNtt0f8Eje0HmrxQ5jfsJ6Jk37EZ//AIsWdkipyEiImdgs01ExZJ74w4y950GJBJUeIXT/ZWGV+1weNWoBMFoRtav58SOQ0RETsBmm4iKJfX7vLHa/k+3hnfNyiKncU8SiYRDSYiIyhk220T0WBadHumr9wEAKk7kdH9PwjaDS+be05wCkIjoCUilUrRs2RLNmjVz6eXa5WIHICLXd//HPbBmZcO7XgRUnZqIHcetqTo2hsTHC6aEFORejoVPgxpiRyIicku+vr44efIkMjIyuFw7EbkvwWpF2g/bAAAVXxkIiUQiciL3JvX1huqpvF9YdPs4lISIyNOx2SaiR8o6cAbG23chDfBD0LNdxY7jEfx7/jWUhIiIPBubbSJ6pLSlOwAAwS/0hNTPR+Q0nsE2blsffQkWnesuMUxE5MoMBgNq1qyJJk2awGAwiB2nSGy2iahIxvgk6HafBAAEv9RX5DSew7tGZXjXrQqYLcg69IfYcYiI3JIgCIiNjUV8fLxL33DOZpuIinR/+S7AaoWqc1P41K0qdhyPYru6reNQEiIij8Zmm4gKZTWacH/lbgBAhXH9RE7jeezzbe875dJXZIiI6Mmw2SaiQum2/gZzSgbklSsgoE9bseN4HL92UZD6+cCclI6cP2+JHYeIiByEzTYRFSptSd50fxVG94ZELhM5jeeReiug6twUAKDjapJERB6LzTYRFZB96Tb0xy8CMimCR/cWO47Hsq8muY/jtomIPBVXkCSiAu4/mO5P3bcdFJUriJzGc9mabcOpKzCnZ0Ie5C9yIiIi9yGRSNCgQQNYLBaXXnCNV7aJKB9LpgHpaw8AACqM542RjuRVNRQ+9SMAqxWZB34XOw4RkVtRKpW4cOECjh8/DqVSKXacIrHZJqJ8MtYfhDUrG951q8LvwbLi5Dj+vVoDADL3cNw2EZEnYrNNRHaCICBtyXYAQIWX+rr013KeIqCXbQrA0xAsFpHTEBFRWWOzTUR2huhLyLkUA4mvN4JG9BA7TrmgbFUfskAVLOmZMJy6InYcIiK3YTAYEBUVhXbt2nG5diJyD2nLdwIAAp/pDJlaJXKa8kEil8G/ewsAnAKQiKgkBEHApUuXcPXqVZdeHIzNNhEBACw6PbRbjgHIm1ubnIfjtomIPBebbSICAGRsOAQhOxfe9SLg2yJS7Djlin/3FoBUipyLt2G8kyx2HCIiKkNstokIAHD/xz0AgOBRvXhjpJPJgwOgbJn3C04mh5IQEXkUNttEhOyLt5H9x3VIFHIEDe8mdpxyKeDpvKEkOg4lISLyKGy2iQj3V+4GAAT0aQt5BbXIacon27jtrCPnYM3OFTkNERGVFTbbROWcNdeEjPUHAeQNISFx+DSoAUWVihCyc5F19LzYcYiIXJ5EIkFERASqVavm0sMf2WwTlXO67b/Bkp4JRXgIVF2biR2n3JJIJPC3LXCz56TIaYiIXJ9SqcTt27dx7tw5LtdORK7LdmNk0IgekMhkIqcp3x4et+3Kc8YSEVHxyZ1xEEEQsHfvXqxcuRK3b99GZmYmKlWqhDZt2uDll19GtWrVnBGDiP7GGJ+ErMNnAQDBI3uKG4ageqoJJD5eMMUnI/dKHHzqR4gdiYiInpBTrmx//PHHmDJlCm7fvo3u3btj1KhRqFq1KtatW4dBgwbh2rVrzohBRH+TvvYAIAhQdWoCr4hKYscp96RKH6g6NgYA6DiUhIjokbKzs9G6dWt0794d2dnZYscpksOvbKekpGD58uUIDw/Hli1boFL9tQT0smXLMHv2bCxduhSzZ892dBQieoggCEhfux8AEPR8D5HTkI1/r1bI3HcamXtOIvT1Z8WOQ0TksqxWK06fPm3/s6ty+JXthIQEWK1WNG/ePF+jDQBdunQBANy/f9/RMYjobwynrsB4MxESpTcC+rcXOw49EPBgCkD9ycswZ2SKnIaIiJ6Uw5vtiIgIKBQKnDlzBllZWfn2HT58GADQtm1bR8cgor+xXdVWD+gAmcpX5DRk41U9DN71IgCLFVn7z4gdh4iInpDDh5EEBQVh6tSpmDt3Lvr27Ytu3brBz88P165dw/HjxzF8+HCMGjWqyOcXdke+bRvv1ncO1tu5nFFva64JGRvzftkNGt69XH+2rnh++/dsidwrsdDtjoZ6aCex45QpV6y3J2O9nY81d56HaywIgig1L8783k6ZjWT8+PEIDQ3Ff/7zH6xevdq+vVmzZhg4cCAUCkWRz9VqtUUWT6vVlnlWKhrr7VyOrLdhZzSsWj1klYJhiqqOjIwMhx3LXbjS+S1pXx+YD+j2n0Z62n1IZJ43S6sr1bs8YL2djzV3PL1eb/+zVquF2Wx2eoagoKDHPsYpzfY333yDb775BpMnT8bgwYMREBCAy5cvY86cORg9ejS+/PJL9OpV+Mp1anXBpaMFQYBWq4VarXbpFYM8BevtXM6od8a2EwCA4OHdEVQh2CHHcBeueH4L3VojTe0Ha3oWvG7eg1/rBmJHKjOuWG9Pxno7H2vuPA9frFWr1QXuDXQVDm+2jx8/jq+++gpjx47FpEmT7NtbtGiB7777Dt27d8fs2bOLbLYfdaJKJBKeyE7EejuXo+ptTslA5r7fAQBBz3fnZ/qAK53fEoUc/t1bQrvxMLL2noaqTUOxI5U5V6p3ecB6Ox9r7ngSiQQVK1aEIAguXW+HfzdpuwmyTZs2BfYFBwcjMjISiYmJnJGEyEkyNh4GzBb4NtfAJ7K62HGoCAEPlm7X7eZ820REhfHz80NycjKuX78OPz8/seMUyeHNtslkAlD09H627V5eXo6OQkQA0tc8mFt7eHeRk9Cj+HdvAUilyLl4G8Y7KWLHISKiUnJ4s928eXMAeQvYZGbmnzN206ZNiI2NRcOGDV12nA2RJ8m5FIPsczcgUcgR6GGzXHgaeQU1lC0jAQCZ+06JnIaIiErL4WO2e/fujTVr1uDkyZPo1asXunXrhoCAAFy9ehXHjh2Dl5cXZsyY4egYRAQgfd0BAHmrFMorFLz5mFxLQK/WMJy8DN3uk6gwtq/YcYiIXEp2djb69OkDs9mMPXv2QKlUih2pUA5vtmUyGX744QcsX74cO3fuxPbt22EymVChQgX0798fEydOhEajcXQMonJPsFiQvv4gAA4hcRf+vVvj3ofLkXX4LKz6HEj9fMSORETkMqxWq/3eQFdert0pU/95eXnh5Zdfxssvv+yMwxFRIfQnLsF8Nw0ytQr+PVuJHYeKwad+DXhFVIIx9h4yD56Bun97sSMREVEJed5KCURUKNuKkQH920PqXfRCUuQ6JBIJAvq2BQDodhwXOQ0REZUGm22ickAwmaHdfBQAEPhMZ5HTUEkE9GsHIG8KQMFsETkNERGVFJttonIg6/BZWO7rIA8JhKpjY7HjUAn4tW4AWXAALOmZ0J+4KHYcIiIqITbbROVAxqYjAAD1oI6QyGUip6GSkMhlCHi6NQBAt+OEyGmIiKik2GwTeThrjhHabb8BAAKHcgiJO7KN29buOA5BEEROQ0TkOpRKpctO+WfDZpvIw2XuOw1rpgGK8BAoW9cXOw6Vgn/X5pD4esMUl4ScSzFixyEicgl+fn7IysrCnTt3yvdy7UQkLtssJOohnSCR8kfeHUmVPvDv0gwAoNvOWUmIiNwJ/+Ul8mCWrGzodp8EAC7P7ubsUwDu5LhtIiJ3wmabyIPpdkdDyM6FV60q8G1SR+w49AQCnm4DSKXIPncDxjvJYschIhJdTk4O+vfvj+HDhyMnJ0fsOEVis03kwTI25A0hCRzaGRKJROQ09CTkFdXwa5M35l63M1rkNERE4rNYLNixYwf27t0Li8V11yFgs03kocwZmcja/zsAzkLiKQL6PFjghqtJEhG5DTbbRB5Kt+04BJMZPg1qwKdedbHjUBmwjdvOOvYnzBmZIqchIqLiYLNN5KFss5Dwqrbn8K5VBd71IgCzBZl7T4sdh4iIioHNNpEHMiWnI+vIOQCAmrOQeBR1vwezknAoCRGRW2CzTeSBtFuOAlYrfJtr4F2jsthxqAzZxm1n7v8d1lyTyGmIiOhx2GwTeSDt5qMAgMAhvKrtaXyb1oGicgVYs7KRdeSs2HGIiOgx2GwTeRhTcjr0v10AAKgHdRQ5DZU1iVT61wI3XE2SiMoxPz8/WK1W3L9/n8u1E5Hz6Lb/BggCfJtr4FU1VOw45AAB/TsAALQ7jkNw4blliYiIzTaRx9FuOQYAUA/kVW1PpWofBVmQPyypWuijL4kdh4iIHoHNNpEHMadqkXX0PABAPbCDyGnIUSQKOQJ6twEA6Lb+JnIaIiJx5OTk4LnnnsPYsWO5XDsROYd2x3HAYoVvkzqchcTDBfRvDwDQbvsNgiCInIaIyPksFgt+/vlnbNmyhcu1E5Fz/DWEhFe1PZ1/l2aQ+vnAlJCC7LPXxY5DRERFYLNN5CHM6Zn2qeDUA9hsezqprzf8e7QEwFlJiIhcGZttIg+h23kCMFvg07AmvOtUFTsOOYHaNisJx20TEbksNttEHkK7JW8hGw4hKT/8e7aCxEuO3OvxyLkaJ3YcIiIqBJttIg9g0WYh6+AfADjlX3kiC1BC1bkZgLwbJYmIyPWw2SbyALo9pyCYzPDWVINPZHWx45ATqR/MSqJjs01E5JLYbBN5ANsNcuoB7UVOQs4W0KctIJUi+9wNGOOTxI5DROQ0SqUSmZmZiI+Ph1KpFDtOkdhsE7k5a44RmftPAwAC+rYTOQ05m7yiGn7towAA2m2clYSIyg+JRAI/Pz/4+flBIpGIHadIbLaJ3FzWkbOw6nOgqFwBvk3rih2HRKDul/dLlm7bMZGTEBHR37HZJnJzthvjAvq1c+nf7MlxAvrlDR/Sn7gEU3K6yGmIiJwjNzcXL730El577TXk5uaKHadIbLaJ3JhgsUC3KxrAXw0XlT9eVUPg21wDCAJ0O06IHYeIyCnMZjOWL1+O1atXw2w2ix2nSGy2idyY4dQVWFK1kKlVUD0Yt0vlk31Wku2clYSIyJWw2SZyY9oHs5D4P90KEoVc5DQkJluznXXkHCzaLJHTEBGRDZttIjclCAJ0Ox5M+cdZSMo97zpV4R1ZHYLJDN2eU2LHISKiB9hsE7mp3MuxMN6+C4m3AqpuLcSOQy7AdnVbu5WzkhARuQo220RuSvtgbK6qa3PIVL4ipyFXoB7QAQCQuf93WA05IqchIiKAzTaR27LNOsEhJGTj06gWFNXDIGTnIvPgGbHjEBER2GwTuSXjnWRkn7sBSKUI6N1G7DjkIiQSyV9DSbZxVhIi8mxKpRJJSUm4du0al2snorJlu6rt16Y+5BXVIqchV2JrtjN3nYTVaBI5DRGR40gkEoSEhKBixYouvagbm20iN2SbhSSAQ0job5St6kEeGgSLNgv6o3+KHYeIqNxjs03kZswZmcg6ltdEsdmmv5PIZAjo2xYAoN3GWUmIyHPl5ubitddew1tvvcXl2omo7GTtPwNYrPCOrA7vmpXFjkMuSN0/b1YS3Y4TECwWkdMQETmG2WzGt99+ix9++IHLtRNR2dHtOQkACHi6tchJyFX5dWwEmVoFc3I6DKeuiB2HiKhcY7NN5EYEswWZe/NWB+QsJFQUqZcC/k+3AsBZSYiIxMZmm8iNGE5dhiUjC7Igfyhb1hM7Drkw21AS7bbfIAiCyGmIiMovNttEbkS3O28IiX+PlpDIZSKnIVfm3605JL7eMMUlIefPW2LHISIqt9hsE7kRW7Md0IvjtenRpEof+HdvAYBDSYiIxMRmm8hN5MbcRe7VOEAmhX+PFmLHITfA1SSJiMQnFzsAERVP5oOr2n7toiBTq0ROQ+4g4OnWgFyG3CuxyLl+Bz51q4odiYiozPj6+uLWrVvQ6XTw9fUVO06ReGWbyE1wCAmVlEytgqpTUwCAbjuvbhORZ5FKpahRowaqV68OqdR1W1rXTUZEdhadAXrbqpG92WxT8XEoCRGRuNhsE7mBrENnIJjM8KpdBd51OBSAii+gb1tAIkH2mWsw3kkROw4RUZkxGo1466238J///AdGo1HsOEVyarO9d+9evPTSS2jTpg0aN26Mbt264Y033sDdu3edGYPI7XAICZWWIjQIyjYNAAC6HcdFTkNEVHZMJhM+++wzLFiwACaTSew4RXJKsy0IAv7zn/9g8uTJuHPnDvr27YvRo0ejZcuW+OOPP5CQkOCMGERuSbBYoLOtGskl2qkUOJSEiEg8TpmNZOXKlVi7di1GjhyJ9957DzJZ/sU4zGazM2IQuSXDmeuwpGoh9VfCr12U2HHIDan7t8fdmd9D/9sFmFO1kFdUix2JiKjccPiV7ZycHHz99deoVq0aZsyYUaDRBgC5nDMQEhUlc080AMC/ewtIFPxZoZLzqh4G3yZ1AKsVup0nxI5DRFSuOLzZPnbsGDIyMtCjRw9YrVbs2bMHixYtwurVqxEbG+vowxO5Pd1uDiGhJxfAoSRERKJw+GWyCxcuAABkMhkGDhyI27dv2/dJpVKMHTsW77zzTpHPFwShyG2F7aOyx3o718P1Nt5JRs6FW4BUClX3FvwMHKC8nN8Bfdsh6X8rkHX4D5i1esgClKLkKC/1dhWst/Ox5s7zcI0FQRCl5hKJ5LGPcXiznZaWBgBYunQpGjRogPXr16N27dq4fPky/v3vf2PJkiWoVq0aXnjhhUKfr9VqiyyeVqt1WG4qiPV2Lq1Wi6zNRwAAXs3qIEsmABkZ4obyYJ5+fgth/pDXqgzzrbu498sh+A1sL2oeT6+3q2G9nY81dzy9Xm//s1arFeUewKCgoMc+xuHNtq1RVigU+PrrrxEWFgYAaNmyJebNm4eBAwdi6dKlRTbbanXBG3kEQYBWq4VarS7WbxT0ZFhv53q43hm/5i1kE9SnHQIDA8UN5qHK0/mdO6AjUr5aD8uRPxE4uq8oGcpTvV0B6+18rLnzBAQE4Pz588jMzESlSpUKvS/QFTi82VapVACAqKgoe6NtU7duXVSrVg2xsbHQ6XQICAgo8PxHnagSiYQnshOx3s4lZOci69fzAAB17zasvYOVh/M7oG87pHy1Hpn7TkMwmSH1UoiWpTzU25Ww3s7HmjueTCZDVFQUMjIyIJPJXLbeDr9BslatWgAAf3//Qvfbtufk5Dg6CpFbyfr1PIQcIxRVQ+BdP0LsOOQBlC00kIcFwZppgP7on2LHISIqFxzebLdp0wYAcOvWrQL7TCYT4uLioFQqERwc7OgoRG4lc8+DVSOfbu2yv62Te5FIpQh4Ou+/ybqdXE2SiNyb0WjErFmzMGfOnPK9XHv16tXRsWNHxMbGYv369fn2LVq0CDqdDj169OBc20QPEQQBmXvypvzz5xLtVIYC+rYFAOh2RnO2BCJyayaTCe+//z7mzp3r0su1O6XD/b//+z88//zzmDlzJvbt24datWrh0qVLOHHiBMLDw/H22287IwaR2zBdiYMpMRUSX2+oOjYWOw55EFWnppD6+cCUmIrsczegbFpX7EhERB7N4Ve2gbyr2xs2bMDQoUNx8eJFrFy5ErGxsRg5ciTWr1+PkJAQZ8Qgchs5B/4AAKg6N4XU11vkNORJpD5eUHVtDgDQ7eBqkkREjua0sRuVK1fG7NmznXU4IreWffAsACCAQ0jIAdR920G37Tfodp5ApRkvih2HiMijOeXKNhEVnzlVC+PZGwAA/56tRE5Dnsi/Z0tAKkXOxdswxt4TOw4RkUdjs03kYjL3nQYEAT6NasErvKLYccgDySuo4de2AQBAt5NDSYiIHInNNpGLydzLWUjI8QL65M1KomWzTUTkUGy2iVyIYDIjc//vAIAADiEhBwro2w4AoP/tAszpmSKnISIqOR8fH0RHR2Pfvn3w8fERO06R2GwTuRD9iYuwZhogDQ6Ab3NOyUaO412zMrzrRQAWa97QJSIiNyOTydCqVSs0b94cMplM7DhFYrNN5EJ0Dxay8enSBBIX/g8HeQa1bYGbHVxNkojIUdhsE7kQ2xLtvl2biZyEygPbuO3M/b/Dmuu6q68RERXGaDTik08+wbx588r3cu1EVDy5txKRe/0OIJfB56lGYsehcsC3WV3IKwXDmpUN/a/nxI5DRFQiJpMJ77zzDmbNmuXSy7Wz2SZyEbar2n7toiD1V4qchsoDiVSKgN5tAHBWEiIiR2GzTeQidLvzmm3/XpyFhJzHNpREtysagtUqchoiIs/DZpvIBVgyDdD/dgEAl2gn51J1agqpyhfmu2nIfrByKRERlR0220QuIOvQHxBMZnjVrgLvOuFix6FyROqtgH+3FgAA3U7OSkJEVNbYbBO5ANsQkoCevKpNzhdgnwKQ47aJiMoam20ikQnWvxYV8X+azTY5n3/PVoBMipzLsciNuSt2HCIij8Jmm0hk2WeuwZycDqnKF37tGoodh8oheZA//NpHAeDVbSJyHz4+Pjhw4AC2bNnC5dqJqGjaB6v3+fdsBamXQuQ0VF6pbbOScApAInITMpkMXbp0QceOHblcOxEVTbc9r9lW92snchIqzwL65p1/+uMXYb6vEzkNEZHnYLNNJKKca/HIvX4HEoUc/j04vzaJx6t6GHwa1gSsVmTuOSV2HCKixzKZTPj666+xePFiriBJRIXTPRhCourUBLIArhpJ4rItcGMb2kRE5MqMRiOmTJmCt99+G0ajUew4RWKzTSQi2xCSAA4hIRdgmwIw6+AZWHNc9x8uIiJ3wmabSCSmxFQYfr8KSCT2K4pEYvJtUgeKKhVh1ecg68hZseMQEXkENttEItHtigYAKFvWgyIsWOQ0RIBEIkFAnzYAOAUgEVFZYbNNJBKtfQgJr2qT6wjokzekSbc7GoLVKnIaIiL3x2abSAQWbRayfj0HAFD35Xhtch1+HRtB6q+EOSkdht+viR2HiMjtsdkmEoFu32nAbIG3phq861QVOw6RndRLAf8eLQEAup2clYSI6Emx2SYSgW7bbwAAdf/2IichKsg2KwnHbRORK/P29sbWrVuxZs0aeHt7ix2nSHKxAxCVN1ZDDjL3nQbw16p9RK4koEdLQC5D7rV45N5MgHftcLEjEREVIJfL0a9fP2RkZEAud92Wlle2iZwsc99pWPU5UFQLhW+zumLHISpAplZB1aERAF7dJiJ6Umy2iZws45dfAQCBg5+CRCIROQ1R4Wzfumh3stkmItdkMpmwbNkyrFq1isu1E1Eeqz4Huj0nAQDqwU+JnIaoaLb5tg0nL8OcqhU5DRFRQUajEePGjcPkyZO5XDsR5dHtPQXBkAuviErwbcohJOS6vKqGwqdxbcBqhW53tNhxiIjcFpttIifSPhhCouYQEnID6j4PZiXhUBIiolJjs03kJJasbOj2ngLAISTkHmxTAGYe/ANWQ47IaYiI3BObbSInydxzEkJ2LrxqVoZv49pixyF6LJ+oWlBUC4WQnYvMw2fFjkNE5JbYbBM5ScamIwA4hITch0QiQUAfLnBDRPQk2GwTOYH5vg6Ze/KGkAQ900XcMEQlYG+2d0dDsFhETkNE5H5cd7kdIg+i/eVXCCYzfBrVgk+DGmLHISo2VfsoyNQqWFK1MJy6Ar+2DcWOREQEIG+59rVr10Kv17v0cu28sk3kBOlr9gMAgoZ3FzkJUclIFHL492wJgLOSEJFrkcvlePbZZzF48GAu105UnuXeTIDh9BVAKkXgM53FjkNUYrahJFxNkoio5NhsEzlY+toDAAD/rs2gCAsWOQ1Ryfl3bwmJQg7jjQTkXIsXOw4REQDAbDZj/fr1+OWXX2A2m8WOUyQ220QOJFitSF+X12wHDu8mchqi0pEFKOH3VBMAgG7bbyKnISLKk5ubi+HDh2PcuHHIzc0VO06R2GwTOZAh+hJMcUmQqnyh7ttO7DhEpaYe2AEAkLH5V5GTEBG5FzbbRA50/8c9AAD1gA6QKn1ETkNUeur+7QG5DDl/3kLujTtixyEichtstokcxKLNQsYveVcBg0f3FjkN0ZORBwfAv3NTALCf10RE9HhstokcJH39QQjZufCuFwFl6/pixyF6YurBTwHImzeeiIiKh802kQMIgoD7y3YCACqM6c3l2ckjBPRrB4lCjpxLMci5Gid2HCIit8Bmm8gBDKevIudSDCQ+XpyFhDyGPNAfqi7NAADazUdFTkNE5B7YbBM5wP3leVe1Awc/BXmgv8hpiMqObSgJx20Tkdi8vLywZMkSLFiwAF5eXmLHKZLrrm1J5KYsOj0yNh0BAASP6SNyGqKype7bFglecuReiUXO5Vj41I8QOxIRlVMKhQJjx45FRkYGFAqF2HGKxCvbRGUsfdVe3hhJHkumVkHVrQUAXt0mIioONttEZUiwWJC6aAsAoOIrA3hjJHmkwIdmJREEQeQ0RFRemc1mbN++HXv27HHp5do5jISoDOl2n4Qx5h5kgSoEPccbI8kzBfRuC4m3ArnX45Fz4RZ8G9UWOxIRlUO5ubkYMGAAACAzM9Nlh5LwyjZRGUpduBkAEDy2D1eMJI8lC1Ai4Ok2AID0tQdETkNE5Nqc3mx///33iIyMRGRkJM6ePevswxM5TPaFW9AfPQ/IpKgwrr/YcYgcKuj57gCAjJ8PQTBbRE5DROS6nNps37x5E/PmzYNSqXTmYYmcwnZVWz2wI7yqhoichsix/Lu3gKxCAMzJ6cg8eEbsOERELstpzbbFYsE777yDevXqoUePHs46LJFTmJLuI2PDIQBAxYmDxA1D5AQShRyBz3QBwKEkRESP4rRm+/vvv8eVK1fw0UcfQSaTOeuwRE6R+s0mCLkmKFvWg7JVPbHjEDmFbSiJbsdxWHR6kdMQEbkmpzTb165dw4IFC/Dqq6+ibt26zjgkkdOY0zORtnQHACD0zeGc7o/KDd8mdeAdWR1CjpHLtxMRFcHhU/+ZzWZMnz4dtWvXxiuvvFLi5xc2h6ttG+d3dQ7W+9FSF22BNSsbPg1rQtWz1RPXifV2Ltb7yQQN74Z77y9D+tr9CBrV67GPZ72di/V2PtbceRQKBebPn4/s7GwoFApRal6cC2wOb7YXLlyIq1evYt26daWa/1Cr1RZZPK1W+6TxqARY74KsWdlIXfgLAMDvlX5lWiPW27lY79KR9GoOfLAc+t8uIPXPa5BXCy3W81hv52K9nY81d46RI0cCAAwGAwwGg9OPHxQU9NjHOLTZvnLlChYuXIhx48ahYcOGpXoNtVpdYJsgCNBqtVCr1fzK3glY76Kl/LgfVq0eXrWroPKIXpCUwf0IrLdzsd5PKDAQmZ2aIOvwWVh2/46K00Y88uGst3Ox3s7HmjuXO9Tboc32O++8g2rVqmHKlCmlfo1HFU4ikbhsYT0R652fNceI1G82AQBCX38OUnnZ/jix3s7Fepde0PPdkXX4LDLW7EfYtBHFqiPr7Vyst/Ox5o5nsVhw5MgRZGVloU+fPpCX8b/DZcXhV7YBoFGjRoXuHz58OADg66+/5nSA5HbSV+2FOSkdivAQBD7XVew4RKJR9++AhLe+gfH2XeiPnofqqSZiRyKiciAnJwfdunUDkLdcu0qlEjlR4RzabA8bNqzQ7adPn0ZMTAy6deuG4OBghIeHOzIGUZmz5pqQ/OU6AEDIlGcg9Sr5/QhEnkLq54PAZ7vi/tIdSFu+i802EdFDHNps/+9//yt0+/Tp0xETE4OJEyeiadOmjoxA5BD3V+yC6U4K5JUrIPjFp8WOQyS64NG9cX/pDui2HYM5TQt5hYL32xARlUdOXa6dyBNYDTlI/nwNACDszech9fUWORGR+JRN6sC3SR0IRjNXlCQiegibbaISSl28NW+sdvWwYs0rTFReBI/O+5bn/vJdnGOYiOgBUZrtOXPm4OrVqxxCQm7HotMj5aufAQBh74zkWG2ihwQ+0xUSpTdyr8fDEH1J7DhERC6BV7aJSiDlm02wpGfCu241BHEGEqJ8ZAFKBA7pDCDvvgYiImKzTVRs5vs6+7zaYe+OKpMFbIg8TfDo3gCAjF9+hTkjU+Q0ROTJFAoFPv74Y8yaNatUq5Q7i2vO/k3kglK+Wg9rVjZ8GtWCemAHseMQuSRly0j4NKiBnEsxyFh/CBVfHiB2JCLyUF5eXnjrrbeQkZEBLy8vseMUiVe2iYrBdO8+UhdvAwBUem80JFL+6BAVRiKRIHhMHwBA2pLtvFGSiMo9dgxExZD8+RoI2blQtqoP/56txI5D5NKChneD1M8HuVfjoD96Xuw4ROShLBYLTp06hTNnzsBisYgdp0hstokewxifhPvL8272qjRzNCQSiciJiFybLMAPQcO7AwDSHnwjRERU1nJyctCmTRv06NEDOTk5YscpEpttosdImrsagskMVacmXIaaqJgqjO8PANDuOA5jQqrIaYiIxMNmm+gRcm8mIH3NPgBA2IzRIqchch8+9SPg17ExYLHi/rIdYschIhINm22iR0iauwqwWOHfsxX8WtcXOw6RW7Fd3b6/YhesuSaR0xARiYPNNlERcq7EIePnQwDy5tUmopJR920LReUKMKdkQLvlqNhxiIhEwWabqAhJc34EBAEB/dtD2bSu2HGI3I5EIUfwS30B8EZJIiq/2GwTFSL7z5t5V+IkEoRNHyl2HCK3FTy6NyQKOQynLsNw7obYcYiInI7NNlEh7s3+EQCgHtIJvg1qipyGyH0pQoOgHtQRAK9uE1HZUigU+M9//oO3337bpZdrZ7NN9DeG01eQuSsakEoR9g6vahM9KduNkhkbDsF8XydyGiLyFF5eXpg1axamT5/O5dqJ3IntqnbQ8G7wqVtV5DRE7k/Zuj58GteGkGNE+o97xI5DRORUbLaJHqI/fgFZB88AchlC3xohdhwijyCRSFBx4iAAQNr3WyGYzCInIiJPYLVacfHiRVy+fBlWq1XsOEVis030gCAIuPfRSgBA8Khe8K5RWeRERJ4jcGhnyEMCYUpMRfae02LHISIPkJ2djUaNGqFDhw7Izs4WO06R2GwTPaD/7QL0x/6ExEuO0DeeFzsOkUeReivs0wBmLtslchoiIudhs030QPKnqwEAwaOehlfVEJHTEHmeCi/1hUQhh/HMdRh+vyp2HCIip2CzTYS8GUiyDp8FZFKE/HOY2HGIPJIiLBjqoZ0BAKmLtoichojIOdhsEwFI+nwtACDouW7wqh4mchoiz1Vx4kAAgPaXX2G6myZyGiIix2OzTeVe9oVbefNqSyQInfqc2HGIPJpvkzrwbhUJmC1IW8JFbojI87HZpnIv+cFVbfXgp+Bdh/NqEzma6qU+AIC0pTthzc4VOQ0RkWPJxQ5AJKaca/HQbj4KAAh9Y7jIaYjKB98eLaCoHgZTXBIyfj6E4BefFjsSEbkhhUKBN998E7m5uVyunchVpXy1HhAEBPRtC9+GNcWOQ1QuSGRSVJiQt4R76sJfIAiCyImIyB15eXnhk08+wfvvv8/l2olckTH2HtLXHQAAzqtN5GTBo3pB6ueDnMuxyDpyTuw4REQOw2abyq3keT8DFitUXZtD2VwjdhyickWmViHohZ4AgNTvNouchojckdVqRUxMDOLi4rhcO5GrMSWnI33VXgBA6Jscq00khoovDwAAZO4+idybCSKnISJ3k52djVq1aqFp06Zcrp3I1aR9vxVCrgnKFpHwaxcldhyicsm7TlX492oFCAJSv98qdhwiIodgs03ljiUrG2k/5M3vG/LPYZBIJCInIiq/Kk4cBABIX7UXFp1e5DRERGWPzTaVO+k/7oYlIwtetaogoG9bseMQlWuqLs3gHVkd1qxs3P9xj9hxiIjKHJttKlcEkxkp32wCAIRMHgqJTCZyIqLyTSKRoOKkwQCA1EVbIFgs4gYiIipjbLapXMnY/CtMd1Igq6hG0PDuYschIgBBz3aBLMgfprgk6HZFix2HiKhMsdmmckMQBKTM3wAAqPjKQEh9vUVOREQAIFX6IHhs3hLuqQs5DSAReRY221RuZB36Azl/3oJE6Y0K4/uLHYeIHlJhXH9ALoP+2J/I/vOm2HGIyA3I5XK8+uqrGD9+PORyudhxisRmm8oN21Xt4FFPQx7kL3IaInqYV3hFqAd2BMCr20RUPN7e3vj666/xySefwNvbdb+tZrNN5UL2+ZvIOvQHIJMi5B9DxI5DRIUImZQ3DWDGhkMwJaeLnIaIqGyw2aZyIWVB3lXtwMFPwat6mMhpiKgwypb1oGwRCcFoxv1lO8WOQ0QuThAEpKSkIDU1FYIgiB2nSGy2yeMZ45OQsekIACBkyjCR0xDRo9imAUxbsh3WXJO4YYjIpRkMBoSFhUGj0cBgMIgdp0hstsnjpX7zC2CxQtW5KXwb1xY7DhE9gnpgBygqV4A5OR3aB78kExG5Mzbb5NHM6ZlIW7kLQN7S7ETk2iQKOSpMyJstKGXhLy791TARUXGw2SaPlrZkOwRDLnwa1YKqSzOx4xBRMQSP6QOJjxdyzt+E4cRFseMQET0RNtvksazZuUhbtAUAEDLlGUgkEpETEVFxyIMD7Cu8pnz7i7hhiIieEJtt8ljpa/fDnJIBRdUQBA56Suw4RFQCFV8ZCADQ7TgBY1ySyGmIiEqPzTZ5JMFiQcrXGwEAIf8YAonCdVeWIqKCfOpH5A39slqR+v1WseMQEZUam23ySNptx2G8mQhZoApBo54WOw4RlULFVwcDAO6v3A1LVra4YYjI5cjlcowZMwYjRoxw6eXaXTcZUSkJgoCUL9cBACpMGACZylfkRERUGv7dW8CrTjiMNxKQvmYfKk4YIHYkInIh3t7eWLp0KTIyMrhcO5EzZR38A9nnbkCi9EbFiQPFjkNEpSSRSu1jt1O/2wzBahU5ERFRybHZJo+TbLuqPboP5BXUIqchoicR9HwPSAP8YLyZiMx9p8WOQ0QuRBAE6PV66PV6l56Tn802eRT9ycvQHz0PiUKOiq8NFTsOET0hmcoXwS/m3XeRunCzyGmIyJUYDAb4+/ujWrVqXK6dyFlsV7UDn+sGr/CKIqchorJQ8eUBgFSKrEN/IOdyrNhxiIhKhM02eYycSzHI3BUNSCRcmp3Ig3hVD0NA37YAgNQHC1UREbkLNtvkMZK/Wg8AUA/sAJ+6VUVOQ0RlKeTBNIDpa/fDfF8nbhgiohJw+NR/SUlJ2LlzJ44cOYJbt24hNTUVarUazZs3x4QJE9CkSRNHR6ByIDfmLjI2HgYAhE4dLnIaIipryrYN4dukDrLP3cD95Tv5c05EbsPhV7ZXrlyJ2bNnIz4+Hu3bt8dLL72EFi1aYP/+/Xj++eexY8cOR0egciBl/gbAYoWqWwv4Nq4tdhwiKmMSiQQVJw4CAKQt3gbBZBY5ERFR8Tj8ynbjxo3x008/oWXLlvm2nz59GmPHjsV///tf9OjRA15eXo6OQh7KlHQf6av2AgBCpz4nchoichT1kE64O2sJTHfToN1yDIHPdBY7EhHRYzn8ynavXr0KNNoA0LJlS7Rp0wYZGRm4evWqo2OQB0v99hcIuSYoW9WHX/soseMQkYNIvRWo8FJfAEDKt5tcel5dInI8mUyGYcOGYeDAgZDJZGLHKZKoN0ja1rF35fXsybWZU7VI+2EbgLyr2hKJRORERORIwS/1hcRbgewz16A/fkHsOEQkIh8fH6xbtw7Lli2Dj4+P2HGKJFqXm5iYiN9++w0hISHQaDRFPq6wKxe2bbyq4RyuXO+UBRtg1efAt0kdqHq1csmMJeXK9fZErLdzPWm95SGBCBrRA/eX7UTyF+vg147fZj0Kz2/nY82dS+x6F+cinyjNtslkwttvvw2j0Yhp06Y98tK/VqstsoBardZREakQrlZvS5oOqYu3AgD8Jg9yuXxPytPej6tjvZ3rSertPbonsGIXsvb/juRjZ+HVsEbZBfNQPL+djzV3LrHqHRQU9NjHOL3ZtlqtmDFjBk6dOoXnnnsOgwcPfuTj1Wp1gW2CIECr1UKtVnPYgBO4ar3vfrkRgiEXvs00qDSkq0tlexKuWm9PxXo7V5nUOzAQhiGdoN1wGDlLdiH0h+llG9KD8Px2PtbcefR6Pfz9/QEAOp0OKpVK5ESFc2qzLQgCZs6ciS1btmDgwIH473//+9jnPOpElUgkPJGdyJXqbU7JsI/VDps+ElKp563P5Er1Lg9Yb+d60nqH/us5aDcchnbzURhnJMC7DheyehSe387Hmjvew/V15Xo7rUOxXdHesGED+vfvjzlz5nhkg0TOkTzv57yr2s018O9RcLYbIvJsvg1rwv/p1oAgIHnez2LHISIqklO6XavVivfeew8bN25E3759MXfuXJeeooVcmynpPtKWbAcAhL0z0mV/kyUixwr9V968+hlrD8CYkCpyGiKiwjm82X640e7duzc++eQTNtr0RFK+XA8hOxfKFpG8qk1Ujvm1aQC/9lEQTGakfr1R7DhERIVy+Jjtr7/+Ghs3boRSqUSNGjXw7bffFnhMjx49UL9+fUdHIQ+QG3P3r6va743mVW2ici506nDc/u0C0pbtQMg/h0FRKVjsSERE+Ti82U5ISAAAGAwGLFy4sNDHhIeHs9mmYkn63woIJjNUXZvDv0szseMQkchU3ZpD2ao+DKcuI/nLdQifM0nsSERE+Ti82Z4zZw7mzJnj6MNQOWA4ex0ZGw4DACrPeknkNETkCiQSCcJmvIjbQ2bg/rIdCJk8FF5VQ8WORUROIJPJ0LdvX5hMJpceoszpQMht3PvvUgBA4LNd4duotshpiMhVqDo1gV/HxhCMZiR/tlbsOETkJD4+Pti2bRvWrl3r0su1s9kmt5B54AyyDp+FxEuOSu+NFjsOEbkQiUSCSjNeBADc/2kPcmPuipyIiOgvbLbJ5QlWK+7+dwkAoMK4/vCqHiZyIiJyNX5tG0LVtTlgtiD5k9VixyEismOzTS4vfc1+5Px5C1J/JULfHC52HCJyUbar2+lrDyDn+h2R0xCRo+n1eqhUKlStWhV6vV7sOEVis00uzaLT4977ywAAoW8+D3kFtbiBiMhlKVtEwr93G8BqRdKHy8WOQ0ROYDAYYDAYxI7xSGy2yaUlfbIa5uR0eNUJR8VJg8SOQ0QurvLMMYBUCu3WY9AfvyB2HCIiNtvkunKuxiH1u80AgPCPJkLqpRA5ERG5Op8GNRA8+mkAQOLM7yFYrSInIqLyjs02uSRBEJA4YxFgtiCgT1suy05ExRY2fRSkKl9k/3EdGT8fEjsOEZVzbLbJJel2nkDWwTOQeMlR+cOXxY5DRG5EERqE0Dfybqa+9/4yWA05IiciovKMzTa5HKshB3ff+x4AEDL5GXjXrCxyIiJyNxUnDYaiWihMialI+fYXseMQUTnGZptcTtLHP8EYew+K8BCETuVUf0RUclIfL1T6z1gAQMqX62C6myZuICIqc1KpFJ07d0aHDh0glbpuS+u6yahcMpy7gZSvNwEAwj97DVI/111+lYhcW+DQzlC2iIRVn4PEfy8WOw4RlTFfX18cPHgQW7duha+vr9hxisRmm1yGYDLjzj+/BKxWqId2RkCv1mJHIiI3JpFIUOXT1/KmAtx4GJkHz4gdiYjKITbb5DJSvtmEnD9vQRbkj/DZE8WOQ0QeQNmkDipM6A8ASHjrG1hzjCInIqLyhs02uYScSzFImr0SAFD5gwmQhwSKG4iIPEalGS9CHhYE461EpHy1Xuw4RFRG9Ho9QkNDUbduXS7XTvQoVqMJcZM+hWA0w79XKwSN6CF2JCLyILIAP1T58BUAQPIXa5FzJU7kRERUVlJTU5GW5to3QLPZJtElffwTci7cgiw4AFW/eh0SiUTsSETkYdRDO8G/R0sIRjPiJ38OwWwROxIRlRNstklU+hMXkfLVzwCAql9MgSIsWOREROSJJBIJqn75T8jUKmSfuYZkDichIidhs02iMd/XIe7luYDViqARPaAe0EHsSETkwRRVKqLKnLybr5PnrkL2hVsiJyKi8oDNNolCsFoRP+lTmBJS4FW7CqrMniR2JCIqBwKf64aAfu0gmMyI/8fnsBpNYkciIg/HZptEkfzFOmTuOw2Jjxcilr0HWYBS7EhEVA5IJBKEfzYZsuAA5Fy4heRPVosdiYg8HJttcrrMQ38gafaPAIDwT/4B34Y1RU5EROWJIjQI4Z++BgBI/nwtso6cFTcQEZWKVCpFy5Yt0axZMy7XTmSTe+MO4l6anTdO+4WeCB7ZS+xIRFQOBQ5+CkGjegGCgLhXPoEp6b7YkYiohHx9fXHy5Ens37+fy7UTAYA5IxO3R8yCRZsFZav69itLRERiCJ8zCT71I2BOTkf8pE8hWDgdIBGVPTbb5BSCyYy4l2bDeDMRiqohiFg5E1IfL7FjEVE5JlX6oPqSdyFReiPr8FkkfbxK7EhE5IHYbJPDCVYr4id/gazDZyH180GN1bOgCA0SOxYREXwiq6PqZ5MBAMmfrkbGL7+KnIiIistgMKBmzZpo0qQJDAaD2HGKxGabHEoQBCTOWISM9QcBuQzVl7zLGyKJyKUEDe+OipMGAwDiX/sc2edvihuIiIpFEATExsYiPj4egiCIHadIbLbJoZI/W4O0RVsAANW+eQMBPVuJnIiIqKDK74+HqlsLCNm5iBn5Pm+YJKIyw2abHCZt6XYkfbQSAFBlziQEDesqciIiosJJ5DJE/PAOvOqEw5SQgpjnZ8GS6bpfSxOR+2CzTQ6RtnQ7Et78GgAQOm0EKr4yUORERESPJlOrUHP1LMgqqpF97gZiR3/IFSaJ6Imx2aYyl/LtL/ZGu+KkwQh7d5TIiYiIise7djhqrv0vpH4+yDp8FvH/+ByC1Sp2LCJyY2y2qcwIgoDkz9fi7nuLAAAhrz+Lyv97GRKJRORkRETFp2ymQcTymYBcBu3Gw7gz5UvOwU1EpcZmm8qEYLEg8d3vcO/D5QCA0LdfQKX/jGWjTURuyb9bc1T/7i1AJkX66n1suIlckEQiQYMGDRAZGenS/YZc7ADk/qw5RsS/+im0m48CACr/7xWEvDpY3FBERE8ocEgnAEDcK3ORvmY/BIsV1RZMhUTBfzqJXIFSqcSFCxeQkZEBpVIpdpwi8b8Y9EQsOj1iRn0A/dHzkCjkqPbNmwh8prPYsYiIykTgkE6ARIK4lz9GxvqDMCenI2LZDMjUKrGjEZGb4DASKjVTYipu9nsb+qPnIVX5oub699loE5HHCRz8FGqs+j/7TZM3ek+DMS5J7FhE5CbYbFOp6E9dwfXuryPn4m3Iw4JQe/tcqDo1FTsWEZFDBPRshdrbP4G8cgXkXo3D9a7/hG7vKbFjEZVrBoMBUVFRaNeuHZdrJ89yf/U+3BrwNsxJ6fCpH4E6uz6Db6PaYsciInIo38a1UWfPF/BtWgeW9EzEDP8/3J21BILJLHY0onJJEARcunQJV69e5XLt5BkEswWJ7y3Cndc+h2A0I6BfO9Te9Rm8IiqJHY2IyCm8wiui9s7PUOHBQl0p837GjV5vIPvCLZGTEZGrYrNNxWJJSsetwe8i9dtfAAChb72AiOXvQebvunf/EhE5gtRbgfA5k/JulAxUIfvcDVzv9jru/W8FrNm5YscjIhfDZpseK+vwWdwbMAOG4xchVfmi+tIZqPTuKEikPH2IqPxSD+wIzfGFCOjfHjBbkPzZGlxt/UreNIFcdZKIHmC3REUSrFYkfbIKt5+ZCWuaDj4Na6Luga8QOKij2NGIiFyCIiwYNVbMRPWlM6AID4EpIQXx//gM17v8ExkbDkMwcyEcovKOzTYVypiQitvPzETS7B8BQYDfc11Qe/dn8K5TVexoREQuJ3BQR0SeXIRKs16CNMAPORduIe7lj3Gl+TikfLMJlkzXnSmBiByLzTblIwgC0n8+iOsd/4Gsw2ch8fVG1QVTETz7ZUh9vcWOR0TksqS+3gj957Ood+YHhL07CrKKapjupODuzO9xucEoxL/2ObKO/enSsyYQuROJRIKIiAhUq1bNpZdrlwhu+FMvCAIyMjIQGBjo0sV1N+Y0LRLe+gbaX34FAPg216Dat9PgXSec9XYint/OxXo7V3mqtzU7F+nrDiL1m03IvR5v3+5VoxICn+kC9aCO8GlY06F1KE/1dhWsuXO5Q73ZbBMEqxXpP+3F3f8uheW+DpDLEPbWCIROHQ6JXMZ6Oxnr7Vyst3OVx3oLggBD9CXcX7UX2l9+hTUr277Pq1YVqAd2gHpAB/g2rVvmNSmP9RYba+5c7lBvNtvlXPbF20h4cwEMJy8DAHwa1EDV+f+CspnG/hjW27lYb+divZ2rvNfbqs+BdudxaLccQ+a+0xByjPZ9ivAQBPRpg4A+beHXoRGkXoonPl55r7cYWHPncod6s9kup4x3kpE0dxXSV+8DLFZIVb4Ie2ckKk4cBIlclu+xrLdzsd7OxXo7F+v9F0tWNjL3noJ2y1Ho9p6CYPhrjm5pgB8CerZEQJ+28O/RCrKA0q1pwHo7H2vuPNnZ2ejUqRMsFguOHj0KpdI11/6Qix2AnMuckoHkL9Yhbck2CMa8JYbVAzqg8kcT4RVeUeR0RETlh0zli8AhnRA4pBOsOUZkHTkL3fbj0O2KhjklAxkbDiNjw2FIFHL4dWyMgL5tEdC7Lf9bTfSA1WrF6dOn7X92VWy2y4mcK3FIXbQZ6WsPQHiwwplfh0aoNHMM/No0EDkdEVH5JvXxQkCv1gjo1RqC1QrD6avQ7TgO3c4TyL1+B1kHzyDr4BkkvvUNfJvVRUCftlD3bQfv+hG8ekrk4jiMxIMJJjN0+04j7YftyDrwu327b3MNKr03GqouzYpVP9bbuVhv52K9nYv1Lrmca/HQ7TwB3Y4TMJy+Ajz0z7ZXjUoI6NMWAf3awa91Aw4DdAGsufPo9XqoVCoAQGZmpv3ProZXtj2MIAjI+fMW0lfvQ/qGQ7CkavN2SCQI6NcOFScNgl+7KP4HgIjITfhoqsFHUw2hrz8LU9J96HafhG7HcWQdPgtjzD2kfvsLUr/9BbLgAAQ83RoBfdvCv3tLSH28xI5ORGCz7REEkxn64xeg23USul0nYIy5Z98nDw1C4LNdUWF8P3jXqCxiSiIielKKsGBUGN0bFUb3hiUrG1kHz0C74zgyd5+E5b4u70LL6n2QqnzzhpoM6giheS2xYxOVa05rts+fP4/58+fj7NmzMJlMqFOnDsaMGYMBAwY4K4LHsBpNyD57A/rjF6D/7QL0Jy7C+tBSwBJvBQL6tEXQ893h361Fga8ViYjI/clUvlAPyJujWzBboD9xEbrtx6HdegymxFRkrD+IjPUHIVH5IqtvOwQOeQqqLs0h9X7yKQWJqPicMmY7Ojoa48ePh0KhQL9+/eDv7489e/bgzp07mDp1KiZNmlSi1ysv46EEQYA5JQPGW4nIuRKL7HM3kX3+BnIu3rbPJGIjDwmEf89WCOjdBqouzSBT+ZZpjvJQb1fBejsX6+1crLfj2W6w1P7yKzI2/wrz3TT7PmmAH9R928L/6Tbw79IUMrVrjnF1ZzzHnUev16NGjRoQBAExMTEuO2bb4c222WxGnz59cO/ePaxduxYNGuTNfJGVlYXnn38et2/fxvbt21GjRo1iv6annMjW7FyYk9NhSkqHOek+TMnpMN9LQ+6tuzDeSkTuzYR8K409TBYcAL/2UfBrFwW/9lHwbVQLEqnUITk9pd7ugvV2LtbbuVhv57JaLEg+cAqW/Weh3XIU5nv3/9opk0LZsh78uzWHX5sG8G0eWaYXasornuPO5Q71dvgwkhMnTiAuLg5Dhw61N9oAoFKp8I9//ANTp07Fxo0b8cYbbzg6SokY45JgTtMCVgEQBAhWAXgwh6NgtebbLhhNEHKMsOYaIWQ/9P/ZubDo9LBo9bDq9A/+nAWLVg9zmg5Wnf7xQSQSKKqGwLtuNfg2rgXfxnXg26QOvCLCHNZcExGRZ5BIpfBuGYnAHm1Q5aNXYIi+BO3W35C5/3fkXo+HIfoSDNGX8h4slcKnYQ0om2ngrakGn8jqUFQPgyIsGFJ/3xI1MoLJbP/3z5KRZf+3L+9/WXn/Jj7YZtXnwJprgmAyQd2vPSq+MtBB1SASh8Ob7ZMnTwIAOnbsWGBfhw4d8j3GVWQePIPbz8x0yrEkPl5QhAVDHhoEeVgQFKFB8IqoBK/aVeBdKxxeNSrxjnIiInpiEqk079vQdlEA8i4qZR74HVlHzsFw6gpMCSnI+fMWcv68VfC5Sm8oQoIgVflC4q2A1NcbEoUcgtkCwWwBTOa8C0wZWbDo9EV+K/s45nv32WyTx3F4sx0TEwMAiIiIKLBPrVYjKCgIsbGxRT6/sFEutm2OGgGjqBoKn6iasKRnARIAUikkUgkgkQBSCSQSqX07JBJIvOSQ+nhB4u0Fqa8XJD5ekHp7QeLrBZlaBVmAH2RqP8jUKkjVD/4c6A9FpWBI/ZWPvVog9lTojq435cd6Oxfr7Vyst3M9qt6KaqEIHtMHwWP6AABMCakwnL6M7IsxyL0Wj9xr8TAlpMCalQ3BkAtj7L0Cr/E4UpVv3r+DgSrI1H6QBuT9Wyiz/Vuo9oPUzxcSLwUkXnL4tWno9ucGz3Hnyc7ORt++fWE2m7F7925Rlmsvzjc+Dm+2s7KyAAD+/v6F7lepVLh3r+gfYK1WW+QJq9VqnzxgYSr6IWTzhw55aeuD/5kA5FhNgKPegwM4rN5UKNbbuVhv52K9natY9faTA50bwadzI/g8tNlqyIElOQPWVC2EHCOE3Lyhk4LJnDfblVwGiVyWd6EpwA9StR8kAcq8i0klnA1LDwAZGSV6jqviOe54er0ehw8fBgCkp6fDaDQ6PUNQUNBjH+Py82yr1eoC2wRBgFarhVqtdtnB8J6E9XYu1tu5WG/nYr2dq0zqHQigSqWyjOXReI47j0Lx1zSWarXaZWcjcXiz/fAymoXJysoq8qo38OjL8xKJhCeyE7HezsV6Oxfr7Vyst3Ox3s7Hmjvew/V15Xo7fDoL25R+hY3L1mq1SE9PL3Q8NxERERGRu3N4s92qVSsAwNGjRwvsO3bsGACgdevWjo5BREREROR0Dm+227Vrh2rVqmHbtm24fPmyfXtWVha++eYbyOVyDBkyxNExiIiIiIiczuFjtuVyOT788ENMmDABL7zwAvr37w+VSmVfrv1f//oXatas6egYRERERORhxJjur6ScMhtJ27ZtsWrVKsybNw87d+6EyWRCnTp18Prrr2PgQE5eT0REREQl4+fnh6ysLGRkZMDPz0/sOEVy2tR/jRs3xuLFi511OCIiIiIi0Tl8zDYRERERUXnFZpuIiIiI3E5OTg769++P4cOHIycnR+w4RXL5FSSJiIiIiP7OYrFgx44d9j+7Kl7ZJiIiIiJyEDbbREREREQOwmabiIiIiMhB2GwTERERETkIm20iIiIiIgdhs01ERERE5CASQRAEsUMQEREREXkiXtkmIiIiInIQNttERERERA7CZpuIiIiIyEHYbBMREREROQibbSIiIiIiB2GzTURERETkIHJnH/D8+fOYP38+zp49C5PJhDp16mDMmDEYMGBAqV7PZDJh2LBhuHLlCmrWrIldu3Y55bjuQox6d+vWDQkJCYU+f/jw4Xj//fdLdWx38KT1jo6OxujRo4vcv3btWjRt2rTMj+uuxKg3z+8nP8+ysrKwZMkS7NmzB/Hx8VAoFKhWrRq6d++OyZMnO+y47kaMevP8Ln29X3zxRZw8efKRj/n4448xePDgMj2uuxKj3mKd305ttqOjozF+/HgoFAr069cP/v7+2LNnD6ZNm4aEhARMmjSpxK/5zTffIC4uzunHdQdi1RsA/P39MWbMmALbo6KiSnxMd1GW9W7dujVat25dYHulSpUcelx3Ila9AZ7fT1LvxMREjBkzBvHx8Wjfvj06d+4Mo9GIuLg47N69u0Dzx/PbufUGeH6Xtt5Dhgwp9L8jZrMZ3333HaRSKdq1a1fmx3VHYtUbEOn8FpzEZDIJPXr0EKKiooSLFy/at2dmZgr9+vUTGjRoINy+fbtEr3nhwgWhQYMGwooVKwSNRiM8/fTTTjmuOxCr3oIgCF27dhW6du36JPHdTlnV+8SJE4JGoxHmzZvn1OO6G7HqLQg8v5+k3mazWXjmmWeExo0bC8ePHy/0OI44rrsRq96CwPPbEefZrl27BI1GI0ycONGpx3VVYtVbEMQ7v502ZvvEiROIi4tD//790aBBA/t2lUqFf/zjHzCbzdi4cWOxX89oNGL69Olo0qQJRo0a5bTjugux6l1eiXWe8fwuX+9bLGVV7927d+PPP//EuHHj0LZt2wL75fL8X7aW189ZrHqXV44+z9avXw8AGDZsmFOP66rEqreYnPaTZhtX07FjxwL7OnTokO8xxbFgwQLExsZi8+bNkEgkTjuuuxCr3jZGoxGbNm1CUlISAgIC0Lx5c9SrV6/Yx3M3ZV3vmJgYrFixAjk5OahSpQrat2+P4OBghx/XXYhVbxue338pSb137NgBAOjduzfu3r2LQ4cOITMzE9WqVUOnTp3g5+fnkOO6G7HqbcPz+y9Pep7du3cPx44dQ0hICLp06eK047oyseptI8b57bRmOyYmBgAQERFRYJ9arUZQUBBiY2OL9Vrnz5/H4sWLMXXqVNSsWdNpx3UnYtXbJiUlBdOnT8+37amnnsLcuXMf2cS4q7I+z7Zt24Zt27bZ/+7j44MpU6ZgwoQJDj2uuxCr3jY8v/9SknpfuHABAPD7779j9uzZMBqN9n3BwcH48ssv0aZNmzI/rrsRq942PL//8qTn2YYNG2C1WjFkyJAC3yTw/HZuvW3EOL+dNowkKysLQN7A9MKoVCpkZmY+9nWMRiPeffdd1K9fH+PGjXPacd2NWPUGgKFDh2LlypU4fvw4fv/9d6xbtw6dOnXCr7/+in/84x8QBKH4b8RNlFW9g4OD8fbbb2PHjh04e/Ysjhw5gk8++QRqtRqffPIJ1qxZ45Djuhux6g3w/C5MceudlpYGAPjwww8xZswYHD58GMePH8fMmTORmZmJ1157DcnJyWV+XHcjVr0Bnt+FKe15JgiCfThEYUMaeH47t96AeOe3282z/eWXXyI2NhYfffQRZDKZ2HE8XmnqPXnyZLRu3RrBwcFQqVRo0qQJvvvuO7Ro0QJ//PEHDh8+7ODU7qtu3boYP348ateuDV9fX4SFhWHgwIFYvHgxFAoF5s+fD6vVKnZMj1GaevP8Lj3bP2RdunTBtGnTUKlSJQQHB+PFF1/E2LFjkZmZiZ9//lnklJ6jNPXm+V12Tpw4gTt37qB169aFXsWlslWceot1fjut2VapVABQ5G8rWVlZRf6WY3Px4kUsW7YMkyZNQmRkpNOO647EqndRpFIphg4dCgA4c+bME72WK3L0eabRaNCkSROkpqbm+3qN57dz610Unt/Fq7ftdbp161ZgX9euXQH8NfShLI/rbsSqd1F4fpfuPHvcjXo8v51b76I44/x2WrNdo0YNACj0Hy6tVov09PTH/uZ39epVWCwWzJ8/H5GRkfn+BwC3b99GZGQkWrZsWabHdUdi1ftRgoKCAADZ2dkleCfuwRnnma1+/9/e/bRC98ZhAL+IyUJDWYhToqZj4VAWYtaSEmNh/NkoYTGKeAvEGzCWrMgLUCI2ipFmykI6CwYlUzaTJhtmcP8WTyOa5xl/5tznnjO/61M250zn27m6MjfN3Ofp6cnWuflIVd7feT37/W/p73y43e6Mc+ljz8/Pls91GlV5Z8N+/6xniUQC+/v7cLvd6O7utm2uE6jKOxvZ/bZtsd3W1gYAODo6yjgXCoUA4K+bk39UX18Pv9//1x/gz+d//H7/p6cFWTHXiVTlnc3Z2RkAQNO0796GY8ju2cvLC0zTRFFREWpqamybm69U5Z0N+/113unt56LRaMa59LGP+bHf9uadDfv9s55tbW0hmUyir68PZWVlts11AlV5ZyO933Zt6J1KpURnZ6cwDEOYpvl+/OMm5tfX1+/H4/G4iEajIh6Pf+v62R5q85O5hUJV3peXlyKRSGQcj0Qiorm5WRiGIWKx2C/uKL9Zlffp6al4e3vLuPbS0pLQdV1MTEzkNLdQqMqb/c4t79vbW2EYhvB6veL+/v7Tdfr7+4Wu6+L4+PjXcwuFqrzZb+veL30+n9B1/dNDW3KdWyhU5a2y30VC2PfV4pOTE0xOTqK0tBS9vb0oLy/H3t4e7u7uMDc3h6mpqffXBoNBrKysYHp6GjMzM19eu7GxEQ0NDdjd3c1pbiFRkXcwGMTq6iq8Xi80TYPL5cLFxQVCoRCKi4sxPz+PwcFBy+81H1iRd/qzla2traiursbj4yMikQhubm5QW1uLjY2NjL+82W/78ma/c/99sr6+jsXFRVRWVqKrqwsulwsHBweIxWIYHh7GwsLCr+cWEhV5s9/WvF+en59jYGAATU1NXz6chf22L2+V/bb18VEdHR3Y3NzE8vIydnZ2kEql4PF4MDs7C5/PV3BzVVNx3+3t7bi6uoJpmgiHw0gmk6iqqkJPTw/GxsbQ0tIiZW4+sCLvkZERHB4eIhwO4+HhASUlJairq0MgEMD4+DgqKiqkzHUiFXmz37n3bHR0FJqmYW1tDdvb23h9fYXH40EgEMDQ0JC0uU6jIm/225qepXd4+c4X9dhv+/JW2W9b/7NNRERERPR/4rh9tomIiIiInIKLbSIiIiIiSbjYJiIiIiKShIttIiIiIiJJuNgmIiIiIpKEi20iIiIiIkm42CYiIiIikoSLbSIiIiIiSbjYJiIiIiKShIttIiIiIiJJuNgmIiIiIpKEi20iIiIiIkn+A0zUEicPH92CAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"simulate_child_parent_income(beta_P=0.75, title=\"Measurement error makes\\nus under-estimate effect\")"
]
},
{
"cell_type": "markdown",
"id": "5d7ce87a-2123-4df0-992d-b28226c8981c",
"metadata": {},
"source": [
"In the scenario above, measurement error can cause us under-estimate the actual effect\n",
"\n",
"- What happens depends on the details of the context\n",
"- **There is no general rule to tell you what measurement error will do to your estimate**"
]
},
{
"cell_type": "markdown",
"id": "11b1a13a-2ffa-4d55-95d7-a093f0f864bf",
"metadata": {},
"source": [
"# Modeling Measurment\n",
"\n",
"## Revisiting the Wafflehouse Divorce Dataset"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6730d60c-a2d7-4ef0-bb03-17f05d6441f8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Location \n",
" Loc \n",
" Population \n",
" MedianAgeMarriage \n",
" Marriage \n",
" Marriage SE \n",
" Divorce \n",
" Divorce SE \n",
" WaffleHouses \n",
" South \n",
" Slaves1860 \n",
" Population1860 \n",
" PropSlaves1860 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" Alabama \n",
" AL \n",
" 4.78 \n",
" 25.3 \n",
" 20.2 \n",
" 1.27 \n",
" 12.7 \n",
" 0.79 \n",
" 128 \n",
" 1 \n",
" 435080 \n",
" 964201 \n",
" 0.45 \n",
" \n",
" \n",
" 1 \n",
" Alaska \n",
" AK \n",
" 0.71 \n",
" 25.2 \n",
" 26.0 \n",
" 2.93 \n",
" 12.5 \n",
" 2.05 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0.00 \n",
" \n",
" \n",
" 2 \n",
" Arizona \n",
" AZ \n",
" 6.33 \n",
" 25.8 \n",
" 20.3 \n",
" 0.98 \n",
" 10.8 \n",
" 0.74 \n",
" 18 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0.00 \n",
" \n",
" \n",
" 3 \n",
" Arkansas \n",
" AR \n",
" 2.92 \n",
" 24.3 \n",
" 26.4 \n",
" 1.70 \n",
" 13.5 \n",
" 1.22 \n",
" 41 \n",
" 1 \n",
" 111115 \n",
" 435450 \n",
" 0.26 \n",
" \n",
" \n",
" 4 \n",
" California \n",
" CA \n",
" 37.25 \n",
" 26.8 \n",
" 19.1 \n",
" 0.39 \n",
" 8.0 \n",
" 0.24 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 379994 \n",
" 0.00 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Location Loc Population MedianAgeMarriage Marriage Marriage SE \\\n",
"0 Alabama AL 4.78 25.3 20.2 1.27 \n",
"1 Alaska AK 0.71 25.2 26.0 2.93 \n",
"2 Arizona AZ 6.33 25.8 20.3 0.98 \n",
"3 Arkansas AR 2.92 24.3 26.4 1.70 \n",
"4 California CA 37.25 26.8 19.1 0.39 \n",
"\n",
" Divorce Divorce SE WaffleHouses South Slaves1860 Population1860 \\\n",
"0 12.7 0.79 128 1 435080 964201 \n",
"1 12.5 2.05 0 0 0 0 \n",
"2 10.8 0.74 18 0 0 0 \n",
"3 13.5 1.22 41 1 111115 435450 \n",
"4 8.0 0.24 0 0 0 379994 \n",
"\n",
" PropSlaves1860 \n",
"0 0.45 \n",
"1 0.00 \n",
"2 0.00 \n",
"3 0.26 \n",
"4 0.00 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"WAFFLE_DIVORCE = utils.load_data(\"WaffleDivorce\")\n",
"WAFFLE_DIVORCE.head()"
]
},
{
"cell_type": "markdown",
"id": "a573b8e1-5dd3-4500-9180-cdd3f637d8d5",
"metadata": {},
"source": [
"### Problems\n",
"- Imbalance in evidence\n",
"- Potential confounding\n",
" - e.g. population size"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fe562301-f463-48d1-b0e9-37e88f318afb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5jRJREFUeJzs3XmcXFWZP/7POXeptfc16SSdtZNAwr7JoiDBEf26gKAMuMviawCZcfzNuI066IzoDM4AKiMKaEQEERBFBhACsgwkkAAhkJC1u9Od3vfa7nbO749bVV3VVdVdXV29pZ/3vBjTVbdunbp1u/qpc5/zPExKKUEIIYQQQggpOj7bAyCEEEIIIeRoRcE2IYQQQggh04SCbUIIIYQQQqYJBduEEEIIIYRMEwq2CSGEEEIImSYUbBNCCCGEEDJNKNgmhBBCCCFkmlCwTQghhBBCyDShYJsQQgghhJBpQsE2IYTMc1/96lexdu1aPPTQQ7M9FEIIIWOosz0AQuaD9773vWhvb59wu+9///u4+OKLZ2BE5LbbbgMAXH/99bM8kqPHQw89hPb2dlx00UVYsmTJbA8Hu3fvxlNPPYX169dj06ZNsz0ckkNbWxsefvhhNDQ0FP3z75e//CVGRkbwmc98BqWlpUXdNyEzhYJtQiZh+fLlqKyszHl/VVXVDI5mYfvxj38MgIJtAKipqcGKFStQUlIypf08/PDD2LZtG0477bQ5E2z/+Mc/xkUXXUTB9hzW3t6OH//4xzjttNOKHmxv3rw5+QWQgm0yX1GwTcgkXHPNNTRzTeacf/zHf8Q//uM/zvYwCCGEZEE524QQQgghhEwTJqWUsz0IQua6RM72ZHOy165dCwB455138MQTT2Dz5s145513MDIygqeffhoAcP7556OhoQFbtmzB7373O9x///04ePAgIpEI3nnnneS+duzYgbvuugs7duzA8PAwKisrccYZZ+Caa67BqlWrMp77U5/6FLZt24bNmzejtLQUt99+O1599VX09/fj3//933HxxRdDSolHHnkEDzzwAN555x3EYjGUlZWhrq4OZ5xxBj796U+jvr4+r9ea+nzV1dW45ZZbsHXrVkSjUaxevRpXXnklPvCBD2R9rGVZuO+++/DII4/g4MGDEEJg2bJluPDCC/HZz34WPp8vue1tt92WTCHJ5umnn847BWJwcBCbN2/Gli1b0NraCikl6uvrceqpp+Kyyy7DMccck7b9wMAAfv7zn+Ppp59GR0cHPB4P1q1bh0svvRQf+tCHwBhL2/6hhx7C1772NVx00UW48cYb8bOf/Qx//OMf0dnZicrKSrz//e/HDTfcAL/fnzG2LVu24De/+Q127dqFUCiEkpIS1NTU4LTTTsPll1+e9p5/9atfxcMPP5xxfub7/m7duhWf/vSncx6nsfuNRqP49a9/jccffxzNzc1wHAfLly/Hhz70IXz605+Grutpj0+8Z9dddx0++9nP4tZbb8Vf/vIX9Pb2YtGiRfjoRz+Ka665Bqo6erF1vHUSp512Gn7961/nHG/C8PAwnnjiCWzZsgX79+9HV1cXNE3DypUr8aEPfQiXX3552nOmsm0bDz30EP70pz9h7969iEQiqK2txTHHHIOPfOQjaWkt+fyuAZM/f4DJnQeRSAR33XUXnnjiCRw+fBiO46CyshLLli3DOeecg8997nPQNG3C4wa4qSE/+9nP8OKLLyaPW2VlJdatW4cPfOAD+OAHP5j22rNJfK4V8l4kfndy2bx5M04//fTkz4ODg7j77rvx9NNPo62tDYwxrFmzBpdccgkuueQScJ4+t2jbNn7zm9/gT3/6Ew4cOADLslBeXo4lS5bgzDPPxGc/+1lKWyFFQ2kkhMyAO+64AzfffDOqq6uxfPnyrEHEt7/9bdx3331YtGgRVq5cidbW1uR99957L2688UZIKVFVVYW1a9eitbUVjzzyCB5//HHceuutOPfcc7M+9yuvvIKf/exnUFUVK1asSAvsfvjDH+Kuu+4CACxevBjLly/HwMAA9u7di7feegsnnXRS3sF2wltvvYXbbrsNjDEsX74cHR0deOutt/AP//APsCwLH/nIR9K2j8ViuOaaa/Dyyy8DAFatWgVVVbFv377kl5S7774bFRUVAIBFixbhpJNOwo4dOwAAJ510Utr+PB5PXuPcs2cPrrrqKnR3d4NzjpUrV0LTNBw+fBj3338/TNPETTfdlNy+paUFn/nMZ9DR0QFN09DU1ITh4WFs27YN27Ztw4svvoibbropa8BkWRY+//nP49VXX8Xq1avR0NCAlpYW/PKXv8S+ffuS70HCPffcg+9+97sA3HzsdevWIRQKoaWlBXv37sXSpUuzfsEaK9/3t6SkBCeddBL27t2LUCiEpqYmBIPB5H5S1yJ0dXXh85//PPbv3w9VVdHQ0ABVVbF//378x3/8B7Zs2YK77roLXq83YzwjIyP4xCc+gZaWFqxZswacc7S2tuLWW29FR0cHvve97yW33bBhAzRNQ3NzM6qqqtDY2Ji8r6mpacLXDgDPPPMMvvnNb0LTNNTW1qKpqQmDg4PYtWsXdu7ciRdffBG33357RiA2NDSEL37xi8lzrKGhAUuWLEFHRweefPJJvPXWW1lzyMf7XSvk/JnMeWDbNj73uc/h9ddfB+ccjY2NCAQC6O7uxquvvopt27bhsssuyyvYbmtrwyWXXIKBgQH4fD6sWLECiqKgo6MDTz31FNra2pLBduKY7t27F8FgMO29qampKfi9qKqqwkknnYRdu3bBNE1s2LAh7Utc6vqEffv24Qtf+EIygG9sbIRpmti5cyfeeOMNvPDCC7jlllvSju2Xv/xlPPHEEwCAZcuWoaysDL29vdi5cydee+01XHDBBRRsk+KRhJAJnXfeebKpqUk++OCDk3pcU1OTbGpqkscee6y8//77pRBCSimlZVnSsix5+PBh2dTUJNevXy9POOEE+dRTTyUfG41GpZRSvv322/KYY46RTU1N8uc//7l0HEdKKaVhGPI73/mObGpqkieffLLs6upKe+5PfvKTyX3/y7/8i4xEImn77uvrk+vWrZMnn3yyfPXVV9MeG4vF5KOPPip3796d92tNPN+xxx4rb7zxRhmLxaSUUgoh5H/8x3/IpqYmefbZZ0vbttMed9NNNyXv27VrV/L25uZm+f73v182NTXJG264IeexLcTIyIg899xzZVNTk/zCF74gOzo60u5/5ZVX5COPPJL8WQghL774YtnU1CQ/+clPyp6enuR9f/3rX+UJJ5wgm5qa5G9+85u0/Tz44IPJY/KBD3xAHjx4MHnfa6+9Jk866STZ1NQk//rXvyZvtyxLnnrqqfKYY46Rf/nLX9L2Z1mW3LJli9y2bVva7f/8z/+ccX4W8v4m3sOXX34563FzHEd+4hOfkE1NTfIf/uEf0o5DR0eHvPzyy2VTU5O86aab0h536623Jo/DFVdcITs7O5P3Pf3003L9+vWyqalJ7t+/P+vx++d//ues45nI7t275TPPPCMNw0i7vbW1VV5xxRWyqalJPvTQQxmP+7u/+zvZ1NQkN23aJF9//fW0+5qbm+XPf/7ztNsm+l0r5PyZ7Hnw+OOPy6amJvnhD38443zu6+uTv/zlL9PGNZ4bb7wxedxDoVDaffv375f33Xdf2m0vv/xy8rXlUuh7kfjsPXz4cNb9hsNhuWnTJtnU1CS/+93vypGRkeR9+/btkx/84AdlU1OTvOeee5K3v/nmm7KpqUm+5z3vyTjnRkZG5O9+9zt55MiRnK+FkMminG1CJuFrX/sa1q5dm/O/4eHhrI+77LLL8PGPfzw5s6KqatolU8dx8KUvfQnnn39+8rbEzOCdd94J27Zx/vnn48orr0zO/Oi6jm9961tYs2YNRkZG8Nvf/jbrc69Zswbf+c530lIxvF4vWltbIYTAGWecgZNPPjntMR6PBx/84Aexbt26SR+jVatW4Rvf+EZyhpkxhhtuuAE1NTXo7u5OS40JhULJcX/729/Gsccem7yvsbERP/jBDwAAjz/+eNpM/1Tdd999OHLkCFatWoWf/vSnGbP3p5xyCj784Q8nf37ppZewa9cu6LqOH/3oR6iurk7e9+53vxvXXnstAOAXv/gFZJbMPNu2cdNNN2HFihXJ20444QRceumlAIDnnnsuefvAwACGhobQ1NSUMXuqqirOO+88nHrqqRO+xul4f5999lm89tpr2LhxI374wx+mHYf6+nr813/9F/x+P+677z7EYrGMxyuKgv/8z/9EXV1d8rb3vve9yfP++eefn9R4JrJu3Tqce+65GWktS5cuxb//+78DAP70pz+l3bdz50489dRT0HUdP//5z3H88cen3d/Y2Igrr7wy6/Pl+l0r5PyZ7HnQ0tICAPjYxz6WcT5XVlbiM5/5TNq4xtPc3AwA+OxnP4tAIJB236pVq/CJT3wir/2kKuS9yMeDDz6I1tZWXHDBBfjmN7+ZdkVm9erV+M///E8wxnD33Xcnb08cq7/5m7/JuEIUDAZx6aWXYtGiRZMeCyG5UBoJIZMwUek/RVGy3j42dWIy27z44osA3NzIsRhj+NSnPoVvfetbePHFF3HDDTdkbPPhD3844zI5gOQfkzfeeANHjhzB4sWLJxxjPj72sY9lPJ+maVi7di16enpw+PDhZC709u3bEY1GsXjx4rQvGgnHHXccTjzxRLz22mt48cUXsWzZsqKMMZEvny2/OJsXXngBAPD+978/7dJ4wmWXXYZbbrkF7e3tOHjwYMYf8PXr12Pjxo0Zj0vc1tbWlrytsrISuq6jubkZe/bsKegLDzA97+9f/vIXAMBFF12UNde5trYWGzduxNatW7Fr1y6ccsopafefc845WdOSNm7ciCeffBKHDx+e8hjHMk0TTzzxBLZu3YqOjg5Eo9G0L0R79uxJ2z5xblxwwQVYvnz5pJ4r1+9aIefPZM+DxHH961//iksvvTTvwDqbxLnzxBNPYO3atVlTowox2fciH08++SQAJL+4jrVu3To0NDTg8OHD6OzsRH19ffJYvfTSSxgcHER5efnkXwwhk0DBNiGTUGjpv4nyaysqKrIG8cPDw+jv7x93H6tXrwYwOhuV73PX1dXh/e9/Px5//HG8733vw+mnn47TTjsNJ598Mk444YScC8cmkisgTuT9RiKR5G2HDh0CAKxcuTLnH/TVq1fjtddey/n6CnHw4EEA7uxyPhLPnTjWYwWDQSxatAgtLS1obm7OOOZLly7N+rjEex4Oh5O3KYqCT33qU7jzzjtx0UUX4aSTTsLpp5+OU045BSeffHLeOenT8f4mrkrcd999ePTRR7NukzhW3d3dGfdNdBxSz41iOHLkCD7/+c8nz7NshoaG0n5OnBtjZ7Tzket3rZDzZ7LnwaZNm9DQ0IAXXngB55xzDs455xyccsopOO2007BmzZpJvY4rrrgCf/jDH/DTn/4UjzzyCM4++2yccsopOP3009OuSkxGIe9FPvbu3QsAuOWWW/A///M/WbcZGBgA4K43qK+vx4knnojjjz8eb7zxBs4991yceeaZOPXUU3Hqqafi2GOPLdqXC0ISKNgmZAZkqzaRz/2pwUeuhjmJS9KpAVuq8Wa4fvjDH2L16tV44IEH8MILLyRn4CorK3HllVfic5/7XNaZuvHker7EflJnshKvL59GQbleXyFCoRAA5N0EJt9xtrS0ZB1nrvc317H9yle+grq6Otx777149dVX8eqrrwJwg7LLL78c119/fV4z8sV+fxPHLRHgjCdbGslExyFbCs5UfPWrX8WhQ4dw/PHH4/rrr8f69etRVlYGTdNg2zaOPfZY2Lad9pjEayxkcVyuc7/Q82cy54Hf78e9996LW265BU888QQee+wxPPbYYwDcIP8rX/kKzjvvvLxex/r163HPPffgtttuw8svv4z7778f999/PxhjOOuss/D1r389rwW6qQp5L/KReL/eeuutCbdNnJOcc/z85z/Hj3/8Y/zxj3/E008/nbyi0dDQgOuuu476KZCiomCbkDksNTjp6+tDbW1txja9vb0AkJFbmQ+Px4Prr78e119/PQ4cOIBXX30VzzzzDP7617/ihz/8IQDgC1/4QoGjn1ji9SVm77Pp6+sDUNjryyUQCGBoaAgjIyN5bT/T4+Sc4zOf+Qw+85nPoK2tDa+++iqee+45PPnkk7jjjjsQDofxrW99a8L9FPv9TRyHu+++G2eeeWZhL26GdHV1YevWrfD5fLjjjjsyUgU6OjqyPi7x/uVaf1GIQs+fyZ4H9fX1+P73v4/vfve7eOutt7B161Y88cQT2LVrF6699lr89re/zXvG/oQTTsCdd96JcDiMHTt2YOvWrXj00Ufxwgsv4HOf+xweffTRvL+QFPpe5MPv92N4eBhPPvlkWsWaiZSVleEb3/gGvv71r2PPnj145ZVX8NRTT2Hr1q342te+Br/fj/e///0Fj4uQVLRAkpA5rLS0NDkbduDAgazb7N+/HwAmnV86VmLh0//8z//g29/+NgDgd7/73ZT2OZHEgsEDBw7knNUs1utLlbic//rrr+e1feK5E2MZKxQKJQOGYo4TAJYsWYKPfvSj+NGPfoTbb78dgLsoTAgxqf0U4/1NzGbmM7NdDFO5nH/kyBEAbopStpzc1IW6qRLnxhtvvFHwc49VjPNnMueBqqo4/vjjcfXVV+PBBx/EBz/4QTiOgwcffHDSYw8EAjjnnHPwla98Bf/7v/+LZcuWoaurK21R70TvU6HvRT4S5+S+ffsKejxjDOvXr8enP/1pbN68GVdffTUA4IEHHih4TISMRcE2IXPc2WefDQBZm3hIKXHPPfekbVcMiVzmbHm3xXTyySfD5/Oho6MjeRk31ZtvvonXXnstefk6VaJaS7Z0hYkkqjvcc889ME1zwu3POeccAG5VlJ6enoz7E3W5GxoasHLlykmPJ1+J9yUWixWU3zp2P2Pf34mO6fve9z4A7us1DKPg589XIi+5kPc48Vr6+vqyfpH7xS9+kfVxiXPjqaeeKloFnGKfP5M9DxKz2VP9ffb5fMk62qn7mui8KfS9SH1srvMtcU5u3ry5KGlIxTpWhKSiYJuQOe7zn/88VFXF008/jbvuuis5k2WaJv7t3/4Ne/fuRUlJCf72b/92Uvt96aWX8IMf/CBjti0cDif/+KWW4psOwWAwOe4bb7wRb7/9dvK+1tZWfPWrXwUAXHjhhRkLLxOL7XJ1rxvPxz/+cTQ0NGDfvn24/vrr0dXVlXb/q6++ij/+8Y/Jn8844wxs3LgRpmniy1/+cvKSP+BWmkh0tLzqqqumvLhq//79+Na3voWdO3emBQ+maSZnNBsaGpJNfnIp5P1NHNNXXnkl6z4vuOACnHDCCTh48CC++MUvJkuopY7x2WefHbfz32QkxvPmm28iGo1O6rGrV69GWVkZOjs7cfvttyePpWEY+N73vpd2rqXasGEDLrjgAhiGgauuugo7d+5Mu7+lpQV33nnnpMZSyPkz2fPgl7/8JX75y18m08oSjhw5gt///vcAkNERNZdvf/vbeOyxxzKO+SuvvIKXXnopY1+Jjq379+/PmipT6HsBTPx7/olPfAJLly7F1q1b8ZWvfCUjSA6Hw3jsscfw/e9/P3nbH//4R/zkJz9JqwIEuAspE5Ma+R4rQvJBOduETMLPfvazcS8vXnjhheO2vS7E+vXr8Y1vfAM33ngjfvCDH+DOO+9MVi4YHh6Gruv4z//8z6wlxcYTDodx11134a677kJlZSUWL14M27bR0tKCaDSKkpKSogVN47nhhhuS+aUXXXQRVq9enewg6TgO1q1blzU/+cILL8S+ffvwxS9+EWvXrk3W1/3Rj3404bEIBoP46U9/iiuvvBLPPvsszj333GTnyra2NoyMjOCiiy5K1tpmjOHmm2/Gpz/9aWzbtg3nnnsu1qxZk+zmB7ilGy+77LIpHw/LspIL0kpLS7F06VJIKXH48GGMjIxA07RkGsh4Cnl/P/CBD+A3v/kNfv7zn+Mvf/kLampqwBjDVVddhXe/+93gnOO2227DNddcg//7v//D+973PjQ2NqK8vBzhcBgtLS2wLCutjvRUHHvssVi+fDmam5tx7rnnYsWKFdA0DevWrcM3vvGNcR+raRpuuOEG3Hjjjbjllltw7733oq6uDs3NzQiHw/jud7+Lb37zm1kf+2//9m/o7e3Fa6+9hksvvTQZ1HZ2dqK3txcNDQ2TynUv5PyZ7HnQ3t6OzZs34/vf/z4aGhpQVVWV3L/jOGhqasLnPve5vMb7+uuv47777oOqqslOlH19fcnOtx/+8IdxxhlnJLevrKzEGWecgZdffhmbNm3C6tWr4fF4UF1djf/6r/+a0ntx4YUX4tlnn8V3vvMd3Hvvvck0lK9//etYv349AoEAfvazn+Hqq6/Go48+isceewwrVqxAMBjE0NBQsm19aq56f38/br31Vtx6662oq6tDbW0tDMPAoUOHYFkW6urqspZRJaRQFGwTMgnNzc3jlqDbsGHDtDzv5ZdfjrVr1+Kuu+7Cjh07sGfPHlRUVODcc8/FNddck7Ok2HhOPvlkfPOb38SLL76Iffv24cCBA1BVFcuWLcM555yDz372s5MO4Avh9Xpx55134re//S0eeeQRHDx4EEIIrFq1Ch/4wAfw2c9+NmuVh6uvvhpCCPz5z3/G/v37k+kg+aY3rFu3Dn/6059w9913Y8uWLWhrawPnHPX19fh//+//ZQTOjY2NePjhh/Hzn/8cW7Zswb59+6DrOk499VRceuml+PCHP1yUkmGNjY343ve+hxdeeAF79uxJlkpbvHgxPvjBD+ILX/hCXvXGC3l/TznlFNx888341a9+hf379yfP9Ysuuii5TW1tLe6//378/ve/x2OPPYa9e/fiyJEjqK6uxnHHHYczzzwTF1544ZSPA+AuEPzZz36GH/3oR3j11Vexc+dOOI6T9+OvuOIKlJSU4K677sL+/fthGAY2bNiAL3zhC3j3u9+dM8ArKyvDr3/9a/zud7/Do48+in379qG3txc1NTX4m7/5m7Tjka/Jnj+TPQ8uu+wylJWV4eWXX0Zrayt2796NsrIybNy4ER/60IdwySWXJFMyJvK1r30NTz/9NLZv346Ojg60traitrYWZ599Nq644oqsVU1uvvlm3HzzzXjxxRfx1ltvwbZtNDQ0JO8v9L346Ec/iuHhYfz+979PtqkH0hewrlq1Co888gjuvfdePPXUUzhw4AAOHz6MmpoanHrqqXjPe96TTDcB3GY2lmXhpZdewqFDh7B3795kiswFF1yAK664glq1k6Jisti1lgghhBBCCCEAKGebEEIIIYSQaUPBNiGEEEIIIdOEgm1CCCGEEEKmCQXbhBBCCCGETBMKtgkhhBBCCJkmFGwTQgghhBAyTSjYJoQQQgghZJpQsE3mBSklBgcHQWXhSQKdEyQVnQ9kLDonyFizdU5QsE3mDfrAJGPROUFS0flAxqJzgow1G+cEBduEEEIIIYRMEwq2CSGEEEIImSYUbBNCCCGEEDJNKNgmhBBCCCFkmlCwTQghhBBCyDShYJsQQgghhJBpQsE2IYQQQggh04SCbUIIIYQQQqYJBduEEEIIIYRMEwq2CSGEEEIImSYUbBNCCCGEEDJN1NkeACGEEHK0EVEDZnMnnKEQAEApC0JfXg/u88zyyAghM42CbUIIIaSIrM5+RN88ADgieZszGILZ1g3fxlXQ6itncXSEkJlGaSSEEEJIkYiokRFoJzkC0TcPQESNmR8YIWTWULBNCCGEFInZ3Jk90E5whLsNIWTBoGCbEEIIKZJEjvZUtyGEHD0o2CaEEEKKRJpWUbYhhBw9aIEkIYQQkgeqMEIIKQQF24QQQsgEqMIIIaRQFGwvcDRTQwgh48unwohSFqDPTUJIVhRsL2A0U0MIIRPLt8KId33jzA2KEDJv0ALJBYpqwRJCSH6owgghZCoo2F6gqBYsIYTkhyqMEEKmgoLtBYpmagghhBBCph8F2wsUzdQQQgghhEw/CrYJIYQQQgiZJhRsE0IIIYQQMk0o2CaEEEIIIWSaULBNCCGEEELINKFgmxBCCCGEkGlCwTYhhBBCCCHThIJtQgghhBBCpgkF24QQQgghhEwTCrYJIYQQQgiZJhRsE0IIIYQQMk3mZLD9yCOP4Fvf+hYuvvhibNiwAWvXrsVDDz2U12MPHz6ME088EWvXrsW3vvWtaR4pIYQQQgghuamzPYBsbrnlFrS3t6OiogK1tbVob2/P63FSSnz961+f5tERQgghhBCSnzk5s/29730PW7Zswcsvv4zLLrss78f9+te/xo4dO3DDDTdM4+gIIYQQQgjJz5yc2T7zzDMn/ZiWlhb86Ec/wpVXXon169dPw6gIIYQQQgiZnDk5sz1ZQgh87Wtfw+LFi3HttdfO9nAIIYQQQggBMEdntifrV7/6FV577TXce++90HV9Uo+VUk7TqOY2KSd+7flsM1MS45gr4yGzj84Jkmo6z4fJfF7Ot8/Woxl9RpCxpuOcYIxNuM28D7YPHTqE//7v/8anP/1pnHjiiZN+/NDQ0IL8RYyFQpBRY9xtmLBhDw7OzIDyNDQ0NNtDIHMMnRMk1XScD5P5vJyvn61HM/qMIGMV85yoqKiYcJt5HWwn0kdqa2vx93//9wXto6ysrLiDmidCwSAEH//t534vguXlMzOgCUgpMTQ0hLKysry+RZKjH50TJNV0ng+T+bycb5+tRzP6jCBjzdY5Ma+D7c2bN+P111/Hr371K/h8voL2sVB/ARmb+LXns81MY4zNuTGR2UXnxOwTUQNmcyecoRAAQCkLQl9eD+7zzPhYpuN8mMzn5Xz9bD2a0WcEGWumz4l5HWzv2bMHUkp8+tOfznr//fffj/vvvx/nn38+fvrTn87w6Agh5OhndfYj+uYBwBHJ25zBEMy2bvg2roJWXzmLoyOEkNk3r4PtU089FYqiZNze09ODv/71r1i5ciVOOukkHHPMMbMwOkIIObqJqJERaCc5AtE3D0ApC8zKDDchhMwV8zrY/tjHPoaPfexjGbdv3boVf/3rX3HqqafixhtvnIWREULI0c9s7sweaCc4AmZzJ7zrG2duUIQQMsfMyWD7gQcewPbt2wEAe/fuTd62bds2AMCmTZuwadOmWRsfIYQQJHO0p7oNIYQczeZksL19+3Y8/PDDabft2LEDO3bsAAA0NDRQsE0IIbNMmlZRtiGEkKPZnAy2b7rpJtx0000FP/7000/HO++8U8QREUIIIYQQMnlzMtgmhBBC5iurZxDGO62wuwcgTBtM5VAqSuBdsxTa0trZHh4hZIZRsE0IIYQUgdnei4GH/gqrrSfjPmcwBPNQB5QSP4LnnYTgu2dhgISQWcFnewCEEELIfGe296Lntt/D7hwYdztnJILh/30Zof97c4ZGRgiZbTSzTQghZM5K7U453mJLKYFYKIRQMIhiN4aL7jwAYeR+bhGKIrz1bSilAdh9w5COM+7+mKKg57YHYexvh2d5fXEHWyRM12a1EyghRxMKtgkh895cahdOiidbd8pcpJSQUQOCq0VvwyxiJuQ4wXb07UOQMRPS7wEcBxAOmEeH3lADXuqHjBqw2nrhhCOj47VshJ7ZAfXS88D4HLzIHDGoEyghRULBNiFkXrM6+xHbdZDahR9lxu1OOYcIw4TdNZAWMKs15fAdtzrtNm1ZHYx97TCbjyRvc0YiMNt64FlWN6NjnhTqBErIlM3Br9OEEJIfETMzAu2keJAgosbMD4xM2YTdKecI+0gvADl6g8rhPXZlxmw1A4NnTQOUoD/tdmNv6wyMcorinUAJIYWhYJsQMi+JqIHY8zsRfesQYu+0wmzrhhib00tBwrw1XzpPOqFY2s9qXSW4lv2iMQOD1lCd/viBefI658n7QchcRGkkhJB5J5HLax88Au64QYwIRWH3DkFvrIdaUZLcloIEMp2kSF8Mqfi9427PfOn3S3v8xZSEkPmPgm1CyLySyOWVtgNpCSD1cr0jYLZ0gge84LoGYP62C1/oiz6VsiCcwbn/RYmp6X9GneEQgNw52GIknPYz1+fHn2GlLDjbQyBk3qI0EkLIvDJhLq8jYHePX+t4rrM6+xF6YSfMlk44gyF3wWdLJ0Iv7ITV2T/bw5sR+vJ6QJn7f6KUskDaz3b3YM51AlIImG29abepNRXTNraiUbj7fhBCCjL3P8kIISRFPmkhIhybcJu5atwqHAto0Sf3eeDbuGrOB9xqfRUYV0ZvkED09X0Z75GwbfeKjJF+u2fdspkYZuEUDt/GVQvmigoh02F+XL8ihJC4fNJC5nMebD4z92ZzJ7zrG2duULNEq6+EUhbIu6kNEza431v0pjbcq0Pk2KkCQGusg9XW66aUKAqciIHQS7ug1VZAKQtARGKwOgfc85IrgKKAqSrUmnLojfVFH28xUFMbQoqHgm1CCJlD8pm5X0iLPrnPk9cXCykl7MFBBMvLi97UBgBEJPfVBM/KxRj+35fBAz53LLbt/q9lw+4dAgAopaMl/5iqQl9ej5rrPgZ9SU3Rx0oImVvm9vU5QghZYPKauZ+niz6PVtznQdmHzoJaVZrX9kxTUPX5D1KgTcgCQcE2IYQQMkVKWQA1f/9xeI9dDqYq2TdigN5Yj/JLzoW3aenMDpAQMmsojYQQQggpAiXoQ8l7ToDvuFUwDrTD7h6EtGwwVYFSUQLPmiVQAj5wP+VAE7KQULC9wEkpYXcPQISikI4A8+rQaivAvfpsD40QQuYl7tHhO2YFcMxsj4QQMhdQsL1ACdNGdOcBxPY0wxmOpN3HFA595WL4T1k/S6MjhBBCCDk6ULC9AFkdfRi4/2k4AyNZ75eOgLGvDWZzJ5RSP0o2nTItq/sJIYQQQo52tEBygbG6B9Dz4wchRqITbyyB4cdexshTr07/wAghhBBCjkI0sz2DRNTIqznDdJESGPzdFth9w7D7hiGd0cYf3KeDaSqckQgg3duY4q6o77vzz7D7hqAvrp7xMScaK2iNdTP+3IQQQgghU0XB9gyxOvtzt2CeIWZbD6yufvcHxwGEA6UkAM+6ZVDKg2BgEKYFs6UTZnMHgNHmDJFX9kC94NSZH3TEgDMYgtnWDWdZFVBePvNjIIQQQggpEKWRzAARNWY90AaA2O7mtJ+5zwPfKeuglpeAwc3J5roG75ql8KxqSNvWbO10Z71nibQdmG+3QERzd3EjhBBCCJlrKNieAWZz56wH2lJKWG09abfpjfXgOZovaMvqATXl9JCA1d6TddsZ4wiYLZ2zOwZCSAYnHIXR3IHYO61ufekci68JIWQhojSSGeAMhWZ7CJCmlZajDQBqdXnO7bmqQK0oTXuMiJnTNby8OUPh2R4CIQTuF3izpQuR7e/AbO9OrvVIUGvK4V2/HL7jVs3OAAkhZI6gYHuhyFK6b2zwnXG/mN3ZeELI3CRtBwP3P42hP7+UXNcxlt0ziFDP6zAOtsN/yjooQd8Mj5IQQuYGSiOZAUpZcLaHAKapYJqWdpvdPZhze2FYGXW4eWD2/1gqZYHZHgIhC5oUAv33PIHIq+/ktb3dOYDe2x+eE1fGCCFkNtDM9gzQl9fDbOue1bxtxhg8KxYhtrc1eZvZ0gltURW4z5O2rYSEse8wIEavCzNFgb6sdsbGm5XCoTfWz+4YyJwjLRtWRx+srkFIw11Ay/xeSMuGd+0ycL9ngj3MT7NVSjTyxgGEX3wTANJKiDKFgwd9ENEYpDl61YwpCiLb96LzpntQ+t6Tpm1cUgKxUAihYBCMjZYN1ZfXZ3zGEULITKJgewZwnwe+jatmvSKJ55jGtGBb2jbCW9+GZ+ViqIurwFQFTv8IzEMdsPuHwPjo4knPqgZwjz4bwwYAMFWBfkwj/dEkSdIRsPa1wWzrBcSYlCjDRuTVPYju2AvvxpXwn3EsuK5l39E8ZPcPI/TCzhn/PJFCIPLqntHUEccBY4Bn9RKoDdXgigIpJezuAcTeOZz88iNtG7G3DsF/3Cpwv3d6xiYlZNSA4Krb8TalbKhv4ypo9ZXT8ryEEDIRCrZniFZfCaUsMKtNbTzL6uBZ3QCzuQuIN6yRjkBsXxuwry19Y64AigKmqmAKg//09bMyQ5ja1MYx8uh6SRYEaTsYeXIb7JZOKFnWIyS3EwKxt5rR+5OHUP3Fjx4VX9aEacE81AHv+uUz/tzm4W6IcPrvoXfjKmg15cmfGWPQ6iqhlPgRfmnX6IZSIvZOK/wnNs3QaOMcgeibB6CUBY6K958QMv9QsD2DuM8D7/rGWR2D/5R16LntQURe25dzYVMCU1Voi6tQ+ZkL4T9+9QyNMDspJUDB9pwzG6kM0Z0HEHr5LVhH+iBC0ayLf8FGl6MwRUF4626Y7b0o+9BZWTefDlNNY5BCwO4agAhFIQFwjwa1vhJ29wDkLF0hsw53p/3MywJpgXbafX4v1Poq2J39ydvMw90zH2wDbtnQ5s5Z//wlhCxMFGwvMNzvRc11H8ORb/1iwprVzKOh6gv/D75jV8zQ6Mh8MltdUc2OPlht8aBPSIC5awuU8lIopQGAASIchTRtJOrRSduG2dyB2O5meJYvmpmBFpjG4ERNRF/bi9juFohILO0+pqngfi+0pbOzfkLE0ptKqdVl426vVpelBdtyFptSzYUSrISQhYmC7QWIB7wo+/DZMPa3Iba7GWZLl7u6KE4pC8K7vhG+41dToE2yms2uqGO/JDLGoa9eAiUwmgvMaiugVJa4FTNSxhh7u2Xmgu2ESaQxmC2dGLjvKYgc3VqlZcNs6YTZ3AG1PAjvuhmeqR17WUDI7NvFybH3z9RlBUIImUMo2F6gGAP0hhroDTUQlu3OBDoSilcD83vBGAP3HD0LykhxzVZXVGFaaTOlAKDWV6YF2glK0A/PmiUw9owuCraO9MAJRWe+5nMeaQzm4S703P4HyOgEJfJUBTBthF7YCSklfDOYuz22/Kfd1Q995SIwZA+i7a7092q6FkfmYy6UYCWELEwUbBNwTQUvL5ntYZB5ZLYuyTtD4YzZVKWqNOf22qIqGGMW/zoDI5MOtoVpwe4egAjHIO3xm0HlYjR3wu4ZyHqfdAT67/0LxEg0rZweACh+D6BwOKEoIN1cbhlx0zGGH/0/OIMhKCX+gsY0kUTailpbAe7R3PKhuw4m7xcRA1ZrF/RlmSU57YFh2D0DaVWN9FWLp2WcE1I49OVTKxsqogaMvYdhtHYmjz/ze+FprIenaelRW2KSEDJ1FGwTQuaPsYEu52Cqkn1bAIxzcG96ycqJFgZnPOXAiJu6MsWZfKkqEJHsOcvGvrbRJlKOAwgHSnkpPGuXQi11GzkJw4Rx8Aistm4wjwYpBSAkjH1t05buJQ0LIhSF3TcEvbEeam0F1MpS2P3DyW1i77TCGYlCW1YHpcQHGbNgtnXDGpvuo6nwrGqYlnGOS+HwbVxVcCUSadkIPbcT0Tf3Zy5MHYnA7upHZPs78B2/CoEzNxZhwISQow0F24SQSVPKgnAGZ2F2e2ytbCEgTRssRw1tYdsQkRiUlJSosZ1UxyNMqyiBNjB+CkV0T3Paz0qJH/6T14Lx0fQM7tHdlBHGYLf3gpcFIKIG7L4hgLOcx6AYpGkjtvMA1MXVUOurYLb3ujO58RKiVmc/rM5+gCGxJhUASysh6jt5LdTy6UvlkBJgwgb3e4vW1EbETPTe8Qiiuw6OWwFGOg6iOw+i938egecYqnhCCElHwTYhZNJmqyuqWh4EVA6kdCi0ewagN2SvzmEd7k4J/tyZ7okqaKSyuweK8xoVDrW2IutdwjBhd6Wnl+grFqcF2qk8KxbDPtILpvBkOoxSWQrPJLqrCiOeFhOJQVrjz/Q7oaibey0kpJRQa8qhLamGsf+IOwvPR8ssIsd6Sc+KRQicsi7v8RWDNC3YPQM5U3cmfLwEhv/3JZjNXRmpPdkwRUHohZ0Iv/I2vBtXuY11cljI62GosydZiCjYJoRM2mx1RWUKh95QC+NQe/I2u2cQ3OOBUl2aXKgnIWF19sE8eARIWbynLa/PSCsZjwjHJt5oIgqH3lifM8ASWRZEKuN8IeAeDTyeWpIwmZJ6k0mLEbbjllmM58k7w2EoJX7oy+rAJBB5bR+YVwdTcgeW2rI6BM45DjJm5orFiyKjg+QUma1dMPbHz7N4ag/AoNVXQa1x3x+rexB2V9/oGGwbdvcA1OpyqJW51xIIKXOmFB31qLMnWYAo2CaEFGS2uqJ6mpbAaO10Z1E5AxiDeaQHvG8IvDwIBrjNbhQFAAOLpzEAgP/kdZNayMa9+oQzv7mMXVyYc7tsM9iOSKZoZOUIQEmZUc4zuBTG5NJixGAoa3k/Bga9sR7CsuEMhyGGI5DW6PvPFAXqoipoS2qhVZeBpc5+zxOx3S1pPzNVhe+UdVBTFqNq9VWwh+sRffWdtPKp5uGucYNtAursSRYUCrYJIQWbta6oUiKyYy8cx05r1y7DbrdFKArUSrfCDlNVaIuqEDh7Iyo+du6knkatqZiw+dNUMb/HDZZTgjW7ewD6kuypMU44ChGKQqkcrSCUb0m9yabFCCN91p170q8KcF0Dr6uEdlITZNSEsBxwlYN5PTnTYOYDETFgtnWl3eZZsyQt0E5QSwPwrF4MY1/K1ZbuQQjLBtfoT+y4qLMnWSDm33QDIWTB853YBO+G/Ctw+E9Zi/KL3j3p59GX16fPIE8DrqrQl9Wl3WYcPAKR5UqBlBLGO4fTbmNeHdqiqryea2xHygml5ilzBqUskHUbBgbu80At9bsLFOdxoA0A9uBIev45Z1DHOcbq4hqklxqXxUlBWgCosydZCCjYJoTMO4wxBE4/FvrGlRmNVlIppX4E33M8Ki6/oKBUhkRu+nQH3GM7QUrDRPjlt2G290DYDqSUsHsGEXl1N+y+wfTHNi0dt/xhUXAGtaYCbIHM1I6tpc48Gvg4aT1cVQB9zLGZhaZPhJC5aWF8chJCjkpKXSX0+mqIwRCsrn43b1xK8KAPwXdthLakBkrAO6UFczORm+5pWgrtrYOwOweSudrSshHb0wqkdMAEkFZOj+kq/KeuzzsPXa0qhTWJpjzM6wH3cyhlgQUTaAPISP+QURPCtMBzlZg0TMCwgdSJf22avwAdJaizJ1kIFs6nJyHkqMQYoFaUQK0YzWFmXh360uw5z4WYidx0/wmr0X3r7xF7q3nCxjtMVaEvrUHVVR+Gt2lp3s8hogZCL+zMf9ZVSkhjZha+ziVKZSmYwtNqa1uHu3M25TFb0/O7GVfAA7PXmn7eKEJnT0LmA0ojIYSQOUApC6L2S5dArS2fcFvm96D6ix+dVKANzFxazHzHPRr0lemt5c1DHbA6+iBTkrklJMz2HpjN6Yto1cVV46adEEy5sych8wnNbBNCyByhlAVRfvF7ENt7GMbbzTDb05vyqJWl8B6zHN6NqwpufT6ZtBju1SHGScFhugpICTZO7XLu0SZVbrFQYztITpX/5LUwD8WDaEVxu0S+3QyltRNqXSUgAbu7H04o5jb2SZSYVBR4VjbMiWMyF1FTG7IQUbBNCCFzCOMMnmV10OorYbb1wOkfdjs3lpdAb6xzy+1NMR94MmkxEzZfkRK+Y3NXhuF+D4LvPmESoyuMlBL24CCC5eVFaWoDuOk6ob++7u4/JbXHGRhx79c1qJVaclttURV8J62B/7jV4+53po4JIWRuoGCbEELmmNQuj4wxMMYghsOIvd0MvbEe+gKdFZ1pZR8+C9IwMfjw83ltHzh7I9Tq8kl19CRzm4gayatAAGhWnhSEgm1CCJlDxu3y6AiYLZ1Qx2nnToqHcY7yj78X9kAIkW1vwxkOZ91OKQvCf8axKL/4PQg//8a0tqUnM8fq7Ef0zQNpv4vUap4UgoJtQsiMopmi8dld/eNXC3GEuw2ZEYwx+I5phN5YB6u9F2ZrF0TUbVjDfV7ojXXQFlcnS0wyXQMmSL1hOUoIkrlDRI2MQDuJWs2TSaJgmxAy7RIBtnHoCIwDR8C9OtTaCnCPRjNFY+TTeZC6E848xhj0JTXQl9SMu51SFoQzOH5XRKotPfeZzTmuLiVQq3kyCRRsE0KmVeJSrIgaiL3dDDgCYjgMu28IemO9Wx+bZooAxL+UtPfA7h0CAHCPDl4edDsUppDW+HW4yezRl9fDbOvOHahRbel5IZ828tRqnuSLiq0SQqZN6qVYu3sgPQCJ5x+LRNOU+EzRQmV19iP0wk44AyOQMRMyZsIZCsE63AUnHJ3t4ZE8jVvLnGpLzxv5dIqdjm6y5Og0J2e2H3nkEWzfvh27du3C3r17YVkWvv/97+Piiy9O286yLGzZsgXPPPMM3njjDXR0dIAxhtWrV+OjH/0oLrvsMijUWICQWZN6KTZr6kM8CE90e1yoM0Xj5ocKCbt7AGypnjHDTeamsbXMAVqbQMhCNieD7VtuuQXt7e2oqKhAbW0t2tvbs27X2tqKL33pSwgEAjjjjDPw3ve+FyMjI3jmmWdw44034vnnn8ftt99etJqrhJDJSQ2epe1k3UZERoPwhTpTNGF+qJAQgyFwqkIyb0ymljkh5Og2J4Pt733ve2hsbERDQwPuuOMO3HzzzVm3CwaD+Pa3v42LLroIPp8veXskEsGnPvUpPPPMM3j88cdx4YUXztTQCSEp8roUS/nHec3oC8OcgZEQQggptjmZs33mmWeioWHiVsR1dXW4/PLL0wJtAPD7/fjc5z4HAHjllVemZYyEEFIsec3oO9mvDBBCCJnb5mSwXQyq6k7aU842IYQQQgiZLXMyjaQYHnzwQQDA2WefPe52Ui7MXl9STvza89lmpiTGMVfGQ/KTeg5JKSGz9NZjSN0m//My9TFgMmOjXPsUUQNmSyecIbcboFIWgN44uwvX8j5OyP84FXtc2e+Xae9fIfsolun8jJhvn5fENZVzgt7zo9N0fE7ksy7wqAy277//fjz33HM444wz8J73vGfcbYeGhhbkL0ssFIKMTtDlTNiwBwdnZkB5Ghoamu0hkElIPc/MWAzSyEyXYELACYfj/574nBt77hpG5nnMpIDIsk+newDm2y3pixHbAOw5BP2YRii1FZN4dcWTdpxMK3taiZBwYu42XFMwOAO/mxN9TpixGCCRfP+ymenPken4jJivn5fEVcg5Qe/50a2YnxMVFRP/3Tjqgu1nn30W3/3ud9HQ0ID/+I//mHD7srKFubo/FAxC8PHffu73IlhePjMDmoCUEkNDQygrK6PqMvNI6nnGvV5Ilpm5xj06vIGA++88zrnEPqWUMAF4PB6MPSWYR4dvzD5F1EC4dT80ry9zpwBYax8CSxfPygx36nGydQ0iS+UWrqnQvO7YFJ8P5TPwuznR5wT3esGA5PuXdZsZ+hyZzs+I+fZ5SVxTOSfoPT86zVYscVQF288//zyuv/56VFVV4Ve/+hVqa2snfMxCDdwYm/i157PNTGOMzbkxkdxSzyH3f7O/d6PbTP68ZAxgY/abep4ktrdaugBH5N6/I2C1dM1Kubaxx2ns60luh/yPU7HHlf1+Bkg5wTYz+zkyHZ8R8/XzkrgKOSfoPT+6zXQscdQskHzuuedw7bXXoqKiAps3b8bSpUtne0iEkGnGtIk/wpiuAaD2y4QQQmbHURFsJwLt0tJSbN68GY2N1EiAkIWA+bwTbqOUBQFQ+2VCCCGzY96nkSQC7bKyMmzevBnLly+f7SGRBU5EDWrTPEN4TTlYtCd390WFQ19eP7ODmioljzkQdWY/up1wFHbPIKRhgakKeHkJ1MqSGR0DIYTMV3My2H7ggQewfft2AMDevXuTt23btg0AsGnTJmzatAkHDhzAtddeC9M0cdppp+HPf/5zxr4aGhpw8cUXz9zgyYJmdfYj+uaBtODPGQzBbOuGb+MqaPWVszi6ow/XVWjL6mC1dmUG3AqHb+OqefUlR5gWRMSA3eeulGe6Cub3gY8JwJXgxDP6xWAe7kZk+zswD3dhbDVCtaoUzOeBvrhmRsZCCCHz1ZwMtrdv346HH3447bYdO3Zgx44dANwAetOmTejt7YVpui2MswXaAHDaaadRsE1mhIgaGYF2kiMQffMAlLLAvAr+5gO1ogRKwAe7ewAiEnNvqypF8Ozj5tWxtgdGYLZ0Ao6AtB1ASEjTBiIGUBaEosWrqCgcat30fmmTjoPB3z+LoT/9H6RtZx9v37D7RbKlC57VS8D92Y91ImeeEEIWqjkZbN9000246aabJtzu9NNPxzvvvDMDIyJkYmZzZ+50BgBwBMzmzlmpdjEf5UrHyYZ7NOhLR6sPcb9nXgXawrCSgTZTFSilQTjDIUBIt772UMgNZhXuNuDxTF8AK6XEwG+fRmR7Hp+tqgIxFMbQn/8PZR86C9yrZ2ySyJknhJCFak4G24TMR1TtonjGS8cR4VjWoG4+s7v6IR0HTv8IYgePQISikI4DZjuQigLu1cB0HZ5VgHWkF07f9DV3ir7djNCzr7vj6huGdNya30zh4EEvRNR0Z9wBQAiIiAHjUAcGHngG/pOa0nfGGaBw2D0DRR0j0zVaC0EImTco2CakSKjaRXFMlI5jHDoCz8oGMP3o+fgymjsRfmkXRDgKJxQFhPvahe1ARmIQI4AMG7BXN0AtD0JICREZv7tdIaSUiGzbPZo64jhgADyrG6AuqQFXFEgpYfcOIranFTJmgHk0QEhY7d1wViwaDX7js/BwRPHHGjFoLQQhZN44Kkr/EUKOHhOm4wgJuzv3TKkwLJitXQi//BbCL7+F2O4WiAnaLs+myI69CD33BkQ4mna7TORsx4mYgej2PbCKPEucymrvhTOc3nrdu2GFm7qiKADcZhBaTQUCp64H4wq4pkKpCIJ5PbB7BsGDPqi1FfCuXw61YporlsTXQszl95cQQo6eqSFCyLwgbBvOQAjStMA4By8LQgoBxt3v/vmk2iQWQo6VWGTINBVqdbm7v2lKP0nNKS/0ioV5pBdDj7wAZygM6djJ/UJId5GkM9q2XTIOeziM8Iu74GxYgYwe9XliqgIe8EKtrQAfs3jRbOtO+5kHfVDrKrLuh3t1qA3VsNt7wRQOJegDpIR37bKCxlWw+FoIz7oZfl5CCMkTBduETNJkFu6RUc5QGMb+Ntid/ZBiNIhkXIHV3gPf+kb4TmrK63KbtDIrZKQuMsTY9YMp6SfFWFyYLad8sqSUCD2zw30tQiRTR5iiQCn1QVg2pGG6wbcjAEhACEgImIc64F29pLDnBSBCUdi9Q9Ab69Nmn2XUTNtWrSnL2ToeANSqMtjtvcmfnVmaYaa1EISQuYyCbUImYfyFe1FwLy3WGktKidibBxF6cWfaTG0qEYog/MpuxPa1ofQD74KSo4zceOzugbzST1KrlhRi3JzySbC7B2D3DafdplaVg3k1wBbASAQyPgsthsIQxujsuRiJwAlHoQR8hQ/AETBbOsED3tEZ7jFxtRQy83GpRPoxYAXOthNCyNGMcrYJydNEC/fMQx0QtAAyQ2znAYS3vZ3RFCUbEYpi6JHnYQ+OTPp5cqWWTHabiUyYU54nY19b2s9M06AtqUnOJDM18fHMwEsDbmWPFFbKjHLBHJGW/86D6cG73TUAKXO/cVZXev44n0rwPwVUXpAQMpfRzDYheZooyJLxwEVfMrWZ07mgGPnIADD87OsIPfsaAMAZiQBy9PgpPg+ELQDbSMbhLL4Ib+C3TyFw9nHJPO5UZnMHICUkADMWA/d6wRiDeegIpBUvU+fzQCkLZOQlZ0s/maxipSzYA2NmtStL02aGmUcHDBuQEmAM3J/eNVKE0hdUFkqER7+A6MsXIfr6vuTPMmbCbO6AZ8XizPEPhmB39YFxJXmbZ8WiooxpUhROaVyEkDmNgu0Fiuma25luom1IUl4L98JTnzmdbcXIR04w9rQAifxsIQApoNZUQq0tB9dUSLgVN8RwxG3iEucMhWC190KrKc/Yp1uhQ0IaJqRhQTIOgEFadjLYBtxZ2Wx5yXOGnZ5Sw8bkkjPOoQS8cMIxQEowVUHq5QFZhPdnLK26DGptRdpst7G/DSIUg9ZYB6XUD2lYsNp63C+fqeNVFHialhZ9TONSOHwbV4H7POPOwBNCyGyiYHuBUsqCcAbHDx7p0my6vOpo29lzkueLYuUjA4AIR2F39afdptZVQl9UnfyZgYEHvPA0LUXkpbcgU/KSrcPdWYPtSUnJSy6WfH538sG09OBaRGJAZemYbdR4gGvCjplgSnymn3Nwn5YRoBdCrSpNa7UefNcGDP35JfeH+JUGq3sAVrZyi1wBFAVMVeE7YTXUypn5UkNNbQgh8wkF2wuUvrzeLfOVK6iiS7MLUrHykQHAbOtJy9NmnEOtzd58hCsK9OWLYLzTmrzN6R+GlLLgRXfCdiCGQhAx001hcQSUskBB+0o14e9OntSaclidfcmfnf4RiEVVGdsxzgFdAywbSnlZ/DYFvuPXwLdh5ZTGAIUjePZxGQGrtqgqGXAnG9zkwFQVJeediKor/18yDYgQQsgoWiC5QHGfB76NqwAlyymQcmmWLCzFLKEmY+ll5HjQC57tfItTq8vSHy9FwTnWTtSAdbgLzmAIMmbCGRiBMzACs7UL9sDkF1+mGvd3ZxI8Y+pRS+G4i2zHXB2RjuPOKqemSTDAu6aw0n9J4/yel2w6BeUfew+YMvEXHc+6Zaj6AgXahBCSC81sL2BafSWUskDWmtEUaJMpGzMjPVEZuaw5yAXMagtHQAyGwMcE7+6dWcrdFWDs704hi0h1vweelYthtnYDnAOSQ0RicPpGwPwecF2FMC3IcMyd4eeKm7YBQFtaB7XAFJt8UzCCZx8HZySC6Gt7EdvTmlbJhakKPKsa4FnfCM+yung+OSGEkGwo2F7guM8D7/rG2R4GmSOKlY8MICNPWoSjEJYNrmX/2LG70/O7maIUFMTJSDR9FhgA9+ijwWKRqsYU43fHu345uv/7d7D7hiEt90qAAwCODRF1Z/WZVwMDwBQVamUJuN+Dio+fh+C7T5jSc+dDCXjhP2ktfCc2QYSiEIYFpipQSvyj+eOEEELGRcE2mdMSJejsoRCMkRHEltTDs3wRzbxPk8nmIwvDgt09kAxkuT/eBtyjQVtSC6gcMuZARmJwBkOIvroHvDQApqrgJT6o1eVQNAXCMDOqW6i1FQXla7vVSlJwBqUskDYzO1eqxqg15ai+5iOIvL4/GWyPh/u9KH3/6W5r9BnEGINS4ocyB4u6EELIXEfBNpmzUkvQSSkhwmGYdiesth74Nq6CVp99sR0pXCIfOZ+KJPbAyGh79DgRisLuc8vtKeVBMEWB3dEBKSWkZcMxbQjTAvd54USisDr7wT0alKAP0nHSajZry+oKexGp6SqcQa2pABszmz6Xqsboy+oQfM/xiGzfCydbxQ8AjHEoNeUo/8jZs9Y4hhBCSGEo2CZz0kTdGqNvHoBSFqAZ7mmQTz6yMCxYnX1uEJsl9dnq6EVs50GIqAHJAIDF868lpO3AGQmP7osxOMMeaLUVyVJzWk0Z1JryrDPbTFfdutMeHUwK938ZiwfUDFAVMM6glAWhlAUyAu25SPF74T9uFYRhIfrGfoiRCKQQYJyDBzzgFaVQSwMUaJMFLbXZFkBrjMj8Mff/CpEFacISdI6A2dxJ+eYoXrfHybC7+tNnkMeI7W6BdaQPTNOgVpXD7h0cd3/SdmD3DEJbXA1e4ofvhDVgjMEZibiBp+O4ucJ51n6XQkJEYmmpI26daAlh2ZCGBfNwF5iigAd84KV+MMbA43Wrp1LHeSoBAfdo0OorIatKJ9yWkIUkW7MtZzAEs62brnSSOY+CbTIn5VOCrphl6uarYnZ7nAy7bzijtF+CiBow9h0GUzVACHCPCrWyFM5AyF1Ux5kb8CYfLwEpIUwLkBL+U9bCbO+F1dqV1lUygXEOpaYCSn1V9g6S8RSRsWUDxUjE/ePc0gkwDqW9J3mfEvRDW1oLz4rFEBEDiBgF/SGngICQ4qMrnWS+o2CbzEl5dWucoVncuaqY3R4na7z612Zbt/sPkRgXQ+BdGyBGIrC7B2D1DoEZBqTfAzEUdgNyn8dNkfDoiOzYB6dvMOf+7aEwnCE3DYWtWjTxWKV024u397hVPXx6xjZOKAJndzOsjj7oqxZDSaRrTOIPOQUEhEwPutJJ5rspBds9PT148skncejQIUSjUfzbv/0bAKC/vx9tbW1oamqC11u8NsmEkFHF7PZYLBISVntv2m3a0lpoNeUwowbUmnIoNWWQlgNpO5DhGMy2brcluZCwmjugVJSAaROX/LO7+iANA55T1ucsxy0hYR3uht0/lNf4xXAEw39+CWUfOms0KM7zDzkFBIRMD7rSSea7goPt3/zmN/jBD34A03QvBTPGksF2X18fPvGJT+Bf//Vf8fGPf7w4IyWEpJlLf1ySrdFHorD7hwHE24zD/ZAxW7vcnGnbgRQCMmpCOu6/RTgKETMhowakaUNYdtqiRqZwME2FNG33sUb8isZwBOJQB+zdrWBeDdK043W5GZimwB4MuU1iBt2OkdJ000uYabmLNaWAtIW72FJTAcbAOIfZ3ImB322B/+S1yTGYLZ2we7JXCkmIvt0CEY6Ou43RPLqf1LzwjOPpCIiBEdgDI5CWBUiA+z1QF1XCu64R3E+z42ThoCudZL4rKNjesmULvvvd72LDhg249tpr8dxzz+G+++5L3r9mzRqsXbsWTz31FAXbhBzlnHAUdvcAIBJ51/HZ3cQkL+du2ontQEQNOOHYmNbjDNIWbsMUBnd2WBFgCodSVQYe8IKBueUfR6Iw27rcP6yMu7netgAHIC0LMgZI2wZT3ODZGQqlLOQUABi43wse9EMtD0JCQkYM9wtCvKKJFA6sjl7Y/YuhxBvzCM10c7nHIUKR0S8CubaRcnQ/KXnhzkgEQHwmvqMX1pFeSJE+Sy5CEtHX9iH6+n541y+H/5R14H66ckgIIXNdQS3A7rzzTixevBibN2/Geeedh6qqqoxtmpqasH///ikPkBCSXb6VOaaTsJ1koA0AyNJVUEbdiiBSiMxAG9Jd1GilBKmMgYFBW1QNJeADA4vf7JYOhHT/J7kHKSHt9Bxy6diwe4cyGtywgBc84APj8X3Gg29tURVgOWlDM9u6kv8e2w2zqBwBq6MPwrQQ3XkQZpZAO42UMPYeRvetv4czHJm+cRFCCCmKgma2d+/ejY985CPw+/05t6mrq0NfX1/BAyOEuHKV9hOGheju5nFL8E0Xs7kD0nLgDIchQumpE9IWkJadrJFtHDwCfVE17O5BCCO9gokwbUjTgnQcwJFuTW5HAF4WnwEenU0WhglnYNgN1mV8O0gADCJmJQNoaYl4QG+7DZF0FeAccBzAMGH3D4NxljFu4diQ/TEIw31OZ9BNiwEDtLpKRN8Yf/LA6uiDnCCHnincrYYyRvStZjhDIYiY4c6OyyzvKePJ7xiMc9h9w4hsfwfBc45LpuxkUFUoQS/UuspkWcPJiO48ADHBbH2u/U6lfCIhhBxNCgq2pZRQ1fEf2t/fD13PXPVPCMnfRKX9tPqqjC6OMyFRZk9EYhndGJWAD/bAcPJnEYrC6h2CsOy0LwbStiHDMQBy9HbGwTgATRszuyvhDIbiM9rSvSYnEE/9UMB03U0picSSpf/cGXAJxCyAu81u4EhAEZCSZQTGjHNIRyaPpRTuFwGlLOiWGJwg6JSG6eaAj0flWVvFi6gBZ2DEbdgjRHLmnnk0MG9ioaYDJgSkFIDgkJYJu8dEbHcL9CW1OZ/S6RuC2dYDvbEeasXk+q2LmDm51JhUBZZPJISQo01BwfaKFSuwffv2nPfbto1XXnkFTU1NBQ+MkIUun9J+akUJuN8Lu3vADXzHKclXTEzTkOzWOGZmnZcHwcYs3nQGRyCiJpjKAQZIUwAiMdZ4d0kpwfT4AkfmzgIniJjp5oInulGCgWkcUlEAztzA3HbcDpRCZJ/ttx13HlxT3ZlgPqaECWPxXbtpLNBVKNXl4FlSY4ot28JKpaIETB+dNWaaCr2xDsa+ttEvFACsw93QltQk022ycgTMlk43X72AGe4pobKHhJAFrqBg+0Mf+hB+8IMf4Kc//Sn+7u/+Lu0+x3Hwgx/8AIcPH8ZVV11VlEESshDlW9qPezToS3PPbE4XaVjgAa874zx2TLoKq81tGiPjCyalZSdfD+MAePzjJxEjMjd/OhFPK6WB5P5E1EgLPCEkWMDnBuCGG7QzTQFLpHTHK3jAyQy6pWmDl3kyFheKoTCYroLH63Bzn2dGAm2ZmJFPCf6535v+ehO36xq0JbWwmjuStzmhCJzhCNSU45WVI2B3D8zKuUJlDwkhC1lBwfYnP/lJbNmyBbfddhseeeSRZLrIDTfcgF27dqG9vR1nnXUWLrnkkqIOlpCFZLZK+wnDSs6UA27gp9ZWZJ0R5WVBOMPhjJlktaoMYIB1uCdlY8VdsCjHrHAEi6dPSDddAwAME4xzMI/72eKMRNycawAi5gbSzLLiiyttMI/m5mpDjqafpE70JnKgbQHJLPfYps5s2w6cUMStRhKN55X7fBOW+xt9bRwibACamswdz5e0HPdwpAT2480AK2V+WFr6R7cIx4CJgm0grX39TJtLpSoJIWQmFTRto2ka7rzzTlx99dUYHBzEvn37IKXEE088gaGhIVx11VW4/fbbkwukCCHzgz0wgtjuZjfYDkUhQm5Zv9juZtgDIxnbc1WBWluRmZIBd1GhZ80ScJ/PzWW2bTcATixwlADAwLweqNXlbhpH4g4J2P3DcAZDboAuBKTjlgcc3Q+ARNoM48nHMd3Nc2a65gawaUG3cANuy47PtLt5585IJP4aJGR8fDzocRd75vOfaUMYBpzhcAGpPBJMHxOkZ5tRZ6MVVNjYLz6Ok7k9IYSQOaHgpja6ruMf/uEf8Pd///c4ePAghoaGEAwGsWrVKijKxN3fCCHjU8qCWVM0poswrNyLLcfJ+VUCPrClutvUJmaOpopoKtTqcvCgD+bhblidfW7nSCEAAXCNJ2eCma5BKQ0k602DuTPRIma4/0WMzJKBAm6et1cHUxikw8GD3vhCScMNTlUOWNINpJ1EIC/dmeyBETf3nMNthpPIX2EMvCwIPtkF3pyDQUJETSgeLXuFEEUZ7Y6pKOAeHapPR/SN/WlBurSdtMY+gPvFBgCkkJBRAyylsQ3L8zN3Nutyz4VSlYQQMhsKCraPHDmC0tJSBINBMMawatWqjG1CoRCGh4exePHiKQ+SkIVIX14Ps617xiqN2N0DE7Ybz5Xzy1UFvKos7bbE7Kt1pBd6Qw24rmVULgEApnKoNRWQ0m2t7gyMJPO8R5+AJ6tiSMcBYwzMqwG6ArXE595uOdCW1MDpd7suMl1za3BHYgCYW4vbEe4sOHMDVB5IT9dgjEGpKYdnZcOk00EAmaxGwv0eKCWZaR1MU6Avqx/7qHjuexiABBw35YIHfG7gr6nuQtR4LrnTP5zxPillE6eQQOHuVYjZoPCsnTIJIWQhKCiN5Pzzz8evfvWrcbe59957cf755xc0KEKIm7fr27gqe0rBNMgnn7eQnF8RMyfeCG6g61m5OGtAyL1jZpmldAuHpNzO/R7ActLSXRhj4D4vlMoSMK6M2UXm4kle4i8w0B4zPDP/VBIGFn/NEiLs1vkWI1E4fUNwBkOwewchQhGIqAF7OAzrSE/a45XK0olnrBUOvbF+5iuRxJ/bt3EVVSIhhCxYBdfZzvaHihBSXFp9JZSyQNamNsXGFJ4WvObahvs94F4dYoI1GYnAjumqOxOrKtmL06k8mTLBNAWeVYuh1pTB6hmC0zcEKQSYHt/GEW4ahqZBQkIMhQGvBqYokGHD7ajoOPEyfu6zKZVBqJVlMKWE3TscX8wp3bQRhYOBg5f6oJSVQAl6ocRnyidDWg6kJSBM94sF525eNVPTA3ymqRmz0MKyISKG+6WEM/c/4TYHgrAAXYMIx2AMHwFr64FSGgBTFTDNfa98xyzPPbM9xaY2+b7P3J8ZSFNTG0IIcRWcsz2Rzs5OBAJ5XNokhIyL+zwzVjIta3OS1LH4PQi++4S8twXc2We7y63qkW3xoJtaUef+Ox4QSsOCd238i33UgHAEZMxAbOdB2EOh5PpId/GkhBQ2YDlgKU1buE8H03V4mpaCqwrs/iGoZQ7g1cEAqJVlCJxxjJvzHc+vZh4Nvg0rJzpMaeyBETfXXQq3sgjc/GS1riKjkUzq8Uscj56fPgytuhxMSlhdA26XzWyz7orqLv5UGDyNddAaauA7fjUqP/P+aV2MPplzghBCSKa8g+0f//jHaT9v27Yt4zYAEEKgs7MTjz32GI477ripj5AQMq+ptRWwe4cKeixjDMzvdfPdSvxgJ6xB6IU3AEeAez0AUiukSMiIASjxqh26Ds/qBnBVgRM1IIbjiy+lhHQEWMCbMS6mKckZ8XxI04bZ2gkICat7ALBFsjGOiMRgtnRCb6xPztyPnV0Ovfgmom8cgN03DCndLyYyFHEb1Cg8nuOeaCfJIOG2rZcC0Fcugr6sFuHn38h7vJM1Xrt2pirgAS/0RsrFJoSQ8RQUbDPGsG3bNmzbti3n9rW1tfjKV74ytdERQuY9rmvQG+thtnRNeV9qVSk86xpht/dCOm59baTMlouY4S5yrCqDp2kJIAGrqx92V7+b+uYIIGYCjEEpC2SZaZeQeeaYA4DdOzTaztx2IIWEUhp0A/r4vu3uAbfuONJbmwvDcquQ2I6b+iIcqBUlUKvLIEbCEFHDTScxLDdXXrqVVBhXwFQFgbM2Qpr2pPLDJ2u8du0ScMtDjkSoHTshhIwj72B78+bNANzLup/5zGdw0UUX4aKLLsrYjnOO8vJyrFy5Ejxb6StCyIKjVpRAb6yDnUiTSKmmwTQlmSuemPkdL09YLQtALfVDra/EyJsH4Lxz2C2HZ9rgCocUAsIwEHu7Oe1xEgAcB0zRoJSXQMmyqJBpamYN63FIIdxZa4WDB3xumseYPO1cC0SN/W0Z1Vl8J62FGByBtGw4kRicgZBbEzxqwO4fhlIeBPPq4IoC81AnvE1L8x7rdJHUjp0QQsaVd7B92mmnJf993XXX4fTTT8epp546LYMihMwPznAYdt8QpGmDqQqUqjKo5dnrKXOfB2p1WcbtzKPBd+wKAIBSHoQ0rQnzhCElvMeugFy3FMrhXoRffNMt+SccOCNRt917MH2hY2KGVqkug3ddYzJPPGMsk8zZTuzXdJxkznaaHOUUrcPdaT+rtRVQS/0wB93UGMXvTftCYBzqcJvyxJmHu6c92GaamnNmO3UbasdOCCG5FbRA8rrrriv2OAgh84SUEsbBI4js2AvrSG/G/WpdBXzHrID32BVpJfR4wAsRio67b6UsmH+L9DjvukZwVcXgH18ARO5OilJIKAEf9FUN2RvOzDARTf9CoVaVj7u9UupPa3kuYxN8ISkC7p/4PUuUHaR27IQQkt2Uq5F0dHSgu7sbppn9UinNfhNy9BC2g/67H8Pwk6+4TWKysLsGMNI1AOPgEZS+//Tk7cmFkrka58Qbn0w22AYAz5olCJ57IqxDRxB5qxnSGp2NZZxDrat0F1oqfO6kt42t5T3OFwUAmRVK2PS/DrW2Anbf+O/ZrDXKIYSQeaLgYHvLli344Q9/iJaWlnG32717d6FPQQiZQ6QQCP3vy8kuiROx2nsx9Oj/oeSCU8BVNWWhZJaW8EVofMI9GvQViyEVDmnZUGsrwTh3SwByjuibByHCkYL3X2w84AVS+tNYXYMZ3SUTJCTsgRGwlAZHPDj9rde5Z/z3LLVRDrVjJ4SQ7AoKtrdu3YrrrrsO1dXVuOKKK3DPPffg1FNPxcqVK7Fjxw7s27cP5557LjZs2FDs8RJCshBRY8qNb8Yr8wYAxr7DMA50QK0qdUvVOe5MbKIEnIjE0nKWmaLA7huGMxJJ5mQnOCPh5MJBpdStx2/sbYWxt3XCcZjNHW61DwCWbcGsKodWN1oJg4GBaRrUEn/a43jQCxEZPyViJnlWLIbZ3Jn82RkcdssHZuH0j0BGDLCUhjue5YumfYyAu7iV+72wuweSHUS53wu1tmK0lCG1YydHIXtwBLHdLbA7+yAMC0xRoJT44VmzBPoM/f6Ro0NBwfYdd9wBv9+Phx56CNXV1bjnnntw+umn47rrroOUEnfccQduv/123HDDDcUeLyFkDKuzH9E3D+S+1J+nccu8CQHjwBHAEW76iOO47dXXLoW2qAqMc0gpYXf1I7anNS2Nw2ruhN5YB66OftwoJQEoJW6QzTwa4IjRknjjjANItEKXkIYJETNgOwNw+oYhYga4NlpJRFo2nKGwW/0EgAjFwEv8mekbs0RfvgjM60nLvY6+sR/M74VaEQTzaJAxC3bvIOzeQbCUtBHu90BbUjNjY+UeDfrS2ux3Ujt2cpSx+4cx9Oj/wTh4JOM+ZygEs60bzOtB8OyN1NCJ5KWgYHvXrl3YtGkTqqurk7cl2rczxnDNNdfg2WefxS233IL/+Z//Kc5ICSEZRNQoSqA9EbtrANKywPhoWTvfiWvSuiMyxqDVV4EFfIi8vCt5uxQO7CO9OVMkisIRsLsGkjPcImrAbOuOt2Z3ibBbpURbXOO2nQ/6Mkrv5Wo9nktqO3O3cQ1zu12GoxDxKwyK3+u2hdfUjP0HTj8G4RffBJTR42r3DMLu7h/zRNzN0Y4ff8/65RnVVmYatWMnRyOrow89t/8BZmv3uNvJmIHQs69DX1yN0g+dNa1dXMn8V1CwHY1GUVc3WjZL13WEQukr0U844QQ89NBDUxsdIWRcZnOWXNppYPcOpv2sVJWmBdqp1BI/1LpKOD2j3RntnqHpDbYBQAg4Q2FIx4EzOAKlugwiYkIapntfOArm0eAMDMOzegm8a5dl7KKQ1uPJMoVSwu4fhnO4e7SWOOfJmXRtcTX0huq0/QfOOR5qVSmG/vhi+oLTLIslGVegVJbAe8wKlJx/Ms2ozSCma8AE5SiZnn999lTFSAE72iVSy0Q4Bmc4BGk7YIoCXhpIfukc250VcNcUx0IhhILBvBrDOlETgw88AxGKpqXK5cIUBf33PgXzcDd8GydXMpQU31yeACgo2K6urkZ//+jMS11dHfbv35+2zeDgIJwJTlRCyNTMVLk1MSYIUKvLx91erSpLC7ZT00qmkzBMOCNROINh2L1DECkpGiJqggGQURNQOPwnrCna80opYbX3IrLjHTgj4fQ7OYczFIJ1pBfKB89Mu4sxhoq/3QTzcDcir+5OdmbPigH+k5rgO7FpMh3lc0oN8gDM2T9Sc4FSFoQzOP7vWiELRIuVAnY0k1LCaOmEcaAdTv9wxv1KeRD60jroy+oy6vNLKSGjBgRX85p5jmx9G068zn2iqytTVWgNNVAqgpCGDaujD87g6DikbSP0wk5oS2qzBvxkBkUMOINums9c62pbULC9bt067Nu3L/nz6aefjj/84Q/485//jPPOOw/bt2/HY489RgskCTlKMIwtUzdBcDA2eJiBMnWAm6dt7G+DiMTAfXrWbZzhEKKv7YdWU4HAmRumXHNb2g5Gnt2B0Na3cta+dgZDiA7uhxOKouSc45K1qQE34A6+61jojfWI7W5G+KW3IM2UhabxP/aeVYvhP2ntlMaakC3Im6t/pOYCfXm9m5Y0QdnKyZipFLD5TNg2Qs+8huhr+yBzlMZ0f7dCsDr74WlaCu7J/ns/EWk7iO1tTbtNKQ3Cd1ITuDYaKulLamC29yD29qHRx8Y/d8YuBCezZA52tS3or8x73/te7N69G+3t7QCAa665Bn6/H1/5yldw8skn4+qrr4bjOPj7v//7Yo6VEDLGTJVbS7RTT7C6+iHHmYYdW1VjMi3QmZbHHICiZNwkbAFj7+GMZjHZSCkR29OC0HNvJNebFEIKgZGnXsk7ncdq70Xvzx7JWm1FLQ8i+K4NKLngFATPPh7+MzYgePbxCJ57IrxNS9MC9KkYN8iL/5HK5xguJNzngW/jKkDJ8iezwAWiM5UCNl9JIRD6y6tu2ck8OH3DGH58G0SO+v8TMVs6MxZmezesSAu0E/SGGqg16fXljTGBOpll8a62c0VBM9uXXHIJLrnkkuTPS5cuxe9//3vcfffdOHz4MBYvXoy//du/xfr164s2UELmA2k7iO1pgXHwCEQoAincRXTakhq30+EkFt/lY8IZtwII24EYCrml+RL7FQLOSDQ5C+yMRBBR9kLLkk5iD4ZgtnYlt5VCQK0uh9nalfX5xgbXds/guJfsre4BMFWB3T8MKxKD4BxgzJ3RdhzIUAyAHM1/ZRxM5fFLzBLMtADGYQAwWrpgHDoCLd6YhWkqojsP5H2sRp57HcYh9wPdGRgZbafOGJiqxhdgymTwyriCoce2Irq7Bf7jViX3Yxw8Amm5QYLV2Z+xcBMAmMLdwENRoJT6IQyroMvWZmsX7L5h8EC8fN/YXGNqvZ6VVl8JpSxQtNSb2eq4KQwrWcYxcc7NRca+Nhj72gC4nzcyfjWNKRzMo0OaZlrNf8Y5jHdaMWSY8B6zPHm7GY1B8U38RTW27zCc/pHkzxISTt8wnL7M1BUAbnrYyGjdfmcwhOiug3m9NqapmeUzSdHNpa62U+4gmbBs2TJ8+9vfLtbuCJlXpJQwDrTDOHAESml6fWcRisDuHUT0jX3wrm2E/+R1bkOTIkjMuBXrcrQTjsLuHkhW8UhU1pCWDWk7kMJyZ7mFgHnoCMRwBGpNOZhXgzQs2L1DsHsGAUggEXdyDh70j/OHXabNKDG/F7JvKK2SSKrkrCtzv9wIVXFLEhoWGGfxmWoJMAZe4o//MWNgmurOKNu2GxQ77njM1m7wgDden1uBMxTO+rwZoxbS/QIR308itYYH/W4KC2PuazNtSMOEdAQgAWmZMPe3Q1tcnZw1E+Foska5jJlZg22oHCLs1rmW0Rgi29+B3lifc6FqLnbfMEQo6i4C6x3Kuo+59EdqLuE+z7z+EmIPjGRvUDTHuKVG20dTR4Rwqx01VEOpKE3+njuDIVhtPZCODQi38pHZ3AktXmpUxr90C84zU+HGEDErLVWF6dq4X0aYwgEhUsboli3NJzdcGlZ8EWb23z9y9CkojWT9+vX4x3/8x2KPhZB5SQqB0LOvwXjncPYgKbkhYOxvR/ctDxQ1mNHqKxE8+zjojfVQyoPgfk9B/0HhcAZGwBQFTFMhHQdiYNgNhIWEWl4C6QiIqAEpJMA57IFhxOKNaGLvtLqtvTmLV+Fw/9MaqsE9Gpim5v7Pqyf/U4I+aEtqwbI8RircrUKgqWCqAmgqeMALKZHWXRFgUCtL4/mb8T9+jIF7NfDS9NQbaRgQock3u7G7+gEr/f1OHP/RFYwM3OeBVl+V/pzxcohT4giYLZ0Zi1cnkhZA5NgHVcWYfjPdcVMY1rwItAHA6hpIr84DQF+5GGpVGVi8ug9jDGpFCfTVDWnbFfq7xdX01DQRMcZNlRu7GJNxZfLl/xK/f+P0FSCFm0tdbQua2Q4Gg1i0iLonkekjDAtmWzdEOObOqEoJMxYD93qTH2gzffktV2fD6O4WmAePQIxExi0mAbiloqI7D+DI1+9A+cfe4waMc4QzMJKcTZa2A2coAqZr4H4vmKpAqSkD83sgozE4oRi4zwOm5P7jwrgCtaEa3nXLxp1VYh4t68Ki1MvdgNu1UFo2onwfpOUkZ60UXYPV3pexT+RY+Mi9GmQk/aPPGY5ACfqzbp+L3ZtSbUUA4AwyfiUAQrp55ZyBe1QwPQAe8EGm5EJb8VnlKXEE7O4B6EtyNJyZqX2QSZuOFLDx2N0D8yLQBgBnTKlRXuLPWVde8XmglJdCpExgFFJqNNHJNkFGDYiRKJSSzM8FCRm/gpcyxrJAxnZ5Sfz+5WoaRQozx7raFhRsH3fccdizZ0+xx0IIADdnNbbrYNrMgYynGkjGkZipFFJmzC5Mp2ydDUUkBnP/4fgPifxmB2p1OdT6KjCFw+4bgn2kL3m5Udo2rK5+RF7bN6dWrztD4eSspzMcdlMfDDdtQykNgvt06MtqAVsg8sY+SNMCy1HxAwD0FYvgXbcs3vFx8rJ1LYy9k2MR0pjLveMvsmRg3jFf1Ma7IpGDMC0IR7i5rzETcBzY4dho+gtzW9kLVU22ek77Mlak2axEasls74NMTrFTwCaS+NI6H4y90jI2EB5LKfGlBduFlBpVqkrBfZ60xcFmaxf0FYvcxlSJfQsJq70HIhpN6+qqT6Gj63x6b+aFOdjVtqBg+/rrr8cnP/lJPPzww7jooouKPSaygCUqJch5MgNjtPWk38AA/wlNUGvKkzdptRUQKxcj8spuSGM0KIztbob3mOVzsvNYWqqBkHCGQ2BaGbimQl+5GNIRcPqG3JSSlMu9TFGhLq6CvrQWamXpzA14ssdwChVIEsRQ2E2zEfE/7kKklziUcGfgbQcIxfM7HQHplLlXBGamGiKZw8YuupzO9B3m0cEK+FI5G7iqwknpVpvowJr7AYm0tfhjVDc1DVKCSeG+9gk+IxgAz4oGRPe0JPcpHQfG/jYoQT94iQ/ScuAMjLjNblK6unKvBm1p3ZhUtvwxj170xfML0VHX1OaFF17A6aefjq9//ev49a9/jeOOOy6tdXsCYwzXXnvtpPf/yCOPYPv27di1axf27t0Ly7Lw/e9/HxdffHHW7UOhEG677TY8+eST6OnpQU1NDd73vvfh+uuvRzA4d3J2yMTmUzksCZmRG6jWVKQF2gnco8O7bjmib4w2f3IGQ7C7R1uMzzbu1SESq+vH1tEWMl672v0A4x4NfHEVtKV1kDETwnbAVcXNu57GLw+5yt+N7d43btAiJUTUhKKNXpbOq9xgCrO9B1bvIKRMCbSFBHJkBYmIET8uEk7vkJuS4y2sHvBYxVhsW6wFu2TyZmrRpVpTkXcZvdnm9A0nq48Ablqbtqw2Zzqa1T0ApcQPpdJdaKg31sN37ApIKSHCYfgCgbw+l7zrGt3P9e4BOEDKgkmZ/GxMrd/PuAKlqgSlF5wGfVld5g7zpDfWz+uFt2RiBQXbP/7xj5P/fvvtt/H2229n3a7QYPuWW25Be3s7KioqUFtbm6znnU0kEsEnP/lJ7N69G2eddRY++MEPYs+ePfjlL3+JrVu34t5774XfP7lcTDJ75lMVBGnYGZcr1ZqynNsr1aUZaRfOYGjOBNtKedBd4JijCki2lfmMMTCfZ8YmadXaingudvoMnVoegNM/mkMtTAtOKOJW9rBsd5bZEWCKW9FDmjZEdDQylo5wczAZ4AxFICwr93EwLRjNHe6sdcwY/XIoAUgnuR4TjKXMoDvuolKVwx4OwYkZYKqK8KtuOp4zMAw47rZOKDr6ZSe+2JTpanwBV3znKgcUBdzvgb52aWEHM0Hh7nElR7WZzhGfCn3ForQGM2I4Aqu9F3pDZqqG1TMAZ2AYLGUm3LO8sDVlTOEoveBUDD+5La0MYO4HACXvPnFKgfZcyy0m06OgYHvz5s3FHkea733ve2hsbERDQwPuuOMO3HzzzTm3/cUvfoHdu3fjyiuvxP/3//1/ydtvvfVW/OQnP8EvfvELfOlLX5rW8ZIFKksXxfG6l7F4ZYpUc6nOLdNUqDUVsHsGJt54lnCPBrWuAlZbT1owzKtKgYMdAKQ7I2bacGIDbhMShbuzWo4DaVmQUbiXiG3Hrdnr9bhBeNSAMEwo1viX2u3eoXjAwlLysznA4v/W3Soq0nbcls+2SMnnl25QbtpgKndzveGeBzIebEvHGd2v4/4/aVqA3wMeTwNg8cWhrDwIc387UGj5MIVDb6zPrLVNjjoznSM+FdqSGigl/rQ61rG3D8EZDkNfVudWIIoYMA53wxpTv595PdBXLi74ubnPg9IPvgtDtgPzUEdGVZQEpbIU3mNWwLNmScHPNRdzi8n0KCjYPu2004o9jjRnnnlmXttJKfHAAw/A7/dnzKBfc801uOeee/D73/8e119//ZzMiyWZlLLguA1N5pQs+Xm5FpoJ24EzMAyzo89tsKByt5rHHAtylKAP3KO5dZijRnpA6/OC6fEyfbrq5kOOkwrBPRqgqhBs/LJ6POCbVL6iVl0O7vXAHhiBMxwCV9ySW2pNGcz2XsC03ICWMTeocIS7MDHx/+IzziJiQAl6odWWuzW4w/EKK+O1exZu6UPGuftHmHN39lrhblCtuj8n01gc4T6nwpMBDmNuR05hWlDL3VQWpqkAd481UxV3FnwMaTnudpoK7vfAs3pJspqN3dkHtbosrwo93KtDxksmZm1qQ45aM5kjPlX+d21AaMsO94d4x1jrSB+sI+mVh5JVhxQFTFUROH09lBL390pKgAnbrag0iRCAwwP/8avhWbMEVkc/nP5h9yom5+B+r1vvO+jW8C8k13ou5xaT6VG0pjazobm5Gd3d3Tj77LMzUkU8Hg9OOeUUPP3002hpacHy5ctnZ5BkUpKXOucBpqsZq9ft7gFgTIWRRKMYu2cQiJmQmgLYgBOz3KB1jmGaCqUskJ4fzRn0JbXgJf7RCipSjltNhfs9WfNEhRkv6Rcv66gEJ58v7M7Cl8Mu8UKPl4O0+4dhHumNL1KU2Uv/yfgiRgYwlYPpGrTFNZCGO8Os1paPu8jJGQonA1ppO2Ca+wc+0SKaaUp8/8xtvGGL5B9pMDedRakogVpdBqWyDIGT1wIAzNbOZFMbu2cwewdJlcOzusGtNezR4NuwMu1+fUlt3nmfM1nFh8wt86UxT+Cc46HVlCP03BsAkHOGOYGpKso+dCYqLr8gObkmpYQ9OIhgeXlBE24iYgDH5b6f+z0IvvuESe+XLDxz7y/9JLS0uKuGcwXSjY2Nye1ybSOLUJWAFA/z6vBuWInomwfTGgok3iYpkbxczzDz79/YJgfakppkS2HA7dAWO3gE+opF7gSq7cDuGoA9HILVnr6YUikPwBkMQRjmnJnhTjvmiX9z7i761BRIKZP/TXT8pQS0xjqYbd3J4NEeGIHV0pnSelkBL/HDmUTpOREzIQzTXZxoWBBwZ5PN1i7woB8iFHPTNwCAIz77m6gGAiReluL3gmkKrMNd4CUBsIAXUoi0hVkZzx01IOMt2ZMVCbw6uMkgYvEZ9cT94OkBf/zfPF7GTBpm1uMt4/83FgMgou5jsh17eyiU1++DlBP/3uSzzVyTGO98GzfJrfQjZ4MFvOi/+7EJt/Udvwrll50PIPNcKOScOFp/Txa66ficyOeL3LwOtkdG3AUMuSqOJG5PbJfN0NAQ/bLMNV4OZ0Ut7MPdkBEjGagxjwYTIhksMeFAiJnLeTaFkwy0EmR9JZz97W61Djd3AdH9bYgd7oJSWw4RicHpGkjOJLptht3HKktqELMtWJ29UKdQo7VYUl+fLSQkZ25Tm7IALJXDihlgUkCEwzBjMUACTjh3a3MmbNhGFM6yKphvt0BGDVjvtI0Gs5xBW1qLiGUClpn/OKOxtMvfhmHA6e6H4wj3PdAVwI7X0nZSvzQoYCU+t6a2lJA+HRKAFYpAW1zpvp4JLqs7tgPHGf2wlkLGv1Wobmc7Kd08fCHd50ms2VIVgCmA5UAIAWELcMdBLOaeF3aijXz8ObLV/Xbird6dmAEmRMax5ypgDQ5OePxioVBac51smLBh57GvuWhoaGjijcj8ceoa6P1nwtx5ENb+trTyqUxXoa1cBK1pKWR9JYaGh7PuopBz4mj/PVnoivk5UVEx8QLzeR1sF0NZWe7qEWT2qJUVEN7R0mxSSkQiEfj9/tEOkn4vgu8+fsbGFAoGszYfiFWVI/zCTjjxpiVqvPwUYhYwHHXzbMvcXzXGFSiVJdAb6xE8/2QwxqBUlCBw+jEz9jpySX19Ma8XwsgMgJlHhy8QcDt5AvAGcjeb4H4vguXlQHk5xNLFGHlmB4zKsvh9Hmi1FQXN6Cs+LwTnkNINtD0eD6I9I1B1FZJ5YQ6OgOmaW2FDYjRXOuh18yMdAau9B2pKowzVEmB55F4qfi9kvGumo6gALDAh3OY1phxNiRFyNBhXOJhHc/P5GaDoGhhnUIN+eL3uc1oeDSLRhlpVssxru+2k9ZIAVK/HLSU55tjrS+rhLS+f8DWEgkEIPv5Hf/K9m0eklBgaGkJZWRmt0TnKqItqIcpKIc8+HiIUgTTdFC4e9IElrhhlOWenck4crb8nC91sfU7M62C7pMQNakKh7AvqErcntsuGPpTnJsayvzeMseTtubaZ6TH51jUCpo3hx7dm3JdtoZu+pBYl552U/CMB05oT5+HY15etpm3i+LP4IsPxxp26P8XvhVZVBq4Upz09AxtNJ2KACLuLMJmmgnk9bs1vNf4Fx8fBPB535hlwS+aNbf3MmPt+5Cj3l8ADPjBVhbRtcI8GJxJ1Z9oUBXAcCMO9HZy5VwEiMTCFu2UCHQGemAEH3A6jyDze7v9mOa6MQykvGd0u9dgrHJ7li/I6j/L5vZnp361iSv2MIEeHxPnIGAMvzX4le7xztpBz4mj/PVnoZvpzYl4H24mc7Obm5qz3J3K6E9sRMl18x62C3TeEWEr+9ljMo8OzqgEl7zt1NNAmxZFSyoxzDrWqFDzozxk8MzVzRl2trXAXuI4TcDPOoFSVwu7qB9MVgDM3dzsSc/O9IzHAsQHG3Tb1ia6RiX3GF1cyVYVWN4na1pyBlwfitbbHoPJhhBAyp83rYHv58uWora3Fjh07kikGCYZh4NVXX0VtbS0F22TaCCNeWSMSg4iZ8K5ZAs/apbAO98AJRcH0bneBYVUZ1JpycK++YAPt8co6ph5HwL08q9ZW5FXKDoCbE51SrUAKCbW6zK14ksihTiEtC8wz+nnBfB6oVWVQSgNwBkcgYmbOWsSeZfVu2TRLgPk8kGE30Ea8eY5IzftmzG1Mo3AwRQHzaGCaDu+xjWl1sXnAl6y5zkb00ZxtzsA1DTzgBffpyVKL3KNBKQ9S+TBCCJkHphRs/+Uvf8Gjjz6KgwcPIhaL4S9/+QsA4MCBA9iyZQs+/OEPo65uCp2VJsAYw6WXXoqf/OQn+MlPfpLW1OZnP/sZhoaGcO2119JlHlJUUrjdBq32XphHesFUBUpFEDJmwomZsLsH4WlaCrWiBNG3DiUblyx0uTrY2QMjbnnAlNtFKAq7bwh6ns1alLIg7NjoYiZnMAxwDqU0M6fciRpAZ0puPYDAiU2Tak4ROONYDD++FXbPIOz+YbdbJVIaRiYHxsE4A/d4oNaWg/u8qPrM+1FxxQVpn0uh515PLqLNdc4wj5Ystcj9HgTOODbv8RJCCJk9BQXbQgh8+ctfxhNPPAEA8Hq9iMVGF46VlZXhv//7vyGEwDXXXDPp/T/wwAPYvn07AGDv3r3J27Zt2wYA2LRpEzZt2gQAuPLKK7Fly5ZkJ8ljjz0We/bswXPPPYf169fjyiuvLOQlEpJBGBair+9DdE8rnKEQnIEQgPjiO64AmgK1pgJwBMyWzvQ61SRrBzthWBmBdlLKcZxohltfUgO7a7TZhbRtmC1d0JbWgqfUzRYxE2Zzet1v5tGgr5hce2dtURVKP3AGBu7fAqU8AHAGe2zlAu52rmSq6tbvVjk8qxah4vJNNAFACCELSEHB9i9/+Us8/vjjuOyyy/CVr3wFd999N376058m76+ursbJJ5+MZ599tqBge/v27Xj44YfTbtuxYwd27HC7STU0NCSDbb/fj1//+tf48Y9/jCeeeALbtm1DdXU1PvvZz+K6667LaHZDSCHMth4M3Pc0nCE3DcJtZDMaIErhwOkNwe4bguLzQFte5+b/kjRjO9jZ+9viXRFzP0aMhKFWjF4h414dIrFAUwowjw51UZWbpjISjTeVEXCGQxC7I1AqSsB1DU44CmfYLZfHFDW5gNJ33GoopZP/nPCsWISSvzkN5qEjMFu63BrYMdNtvc4Armtu2pDfC33FIuhLa6Evrl6waUSEELJQFRRsP/zww9iwYQO+853vAMi+GrexsRHPPvtsQYO66aabcNNNN+W9fUlJCb72ta/ha1/7WkHPR8h4rI4+9P704fRW7Hbuxiexfa0AJJQgfdHLZmwHO7W6fNztlfJgRsqEiBiQUkKEw/AFAmCMQaspx/BjL0GMRCClgBKvOCINE068jGHiNqbp0BZVQa2rQO0Nl4KP03Z+Ir61ywAAAw8/BzEcTivbxxS3vbOnsb7g/RNCCJnfCgq2W1pacMUVV4y7TXl5OQap2PtRSUSN5MyknKAJSKGiOw9AGKP7llLCjMXc+s6JOtv5Lp6bAikkBu5/Gs5ACHbfsFt5AoAYiQCaAq5wNwcY8dnu+PfO8Gt7ISwHSokPwrQghiOweocAw8LIMzvAFA6lPAh9WR3Uuqppfx35SD3mZnMH7IEQ7N5ByHAUwpFu7nGJH3b3AJxw1C1Qp6nggfhixgJqZudz/uR7jml1lSg5/xQYzX/OubgxlVpXgeovfmRKgXYqrqlAloWKlDJCCCELW0HBttfrzVnbOuHIkSMoLS0taFBk7rI6+9NybqeLiJmQqcE2JKRhQTKOREQrpEwuKpsuRmsX7J5B9wfHAYQDpTQIbXEVmK6CgUFYNuzuQZjhTreJSrxDotXWDVlTDqO5E9KId5BkHIhnETjDYZitXVDKS6CUBaDVTqIU3DRIHHN7OIzIGwcgwpG0+2V8m/DWtyAtG/rSOmiLqt3FjL35L2acTvqyOvg2LIfR3Dnasn0MpijwrFqE2i9dQnn181jql34A4GUBiHLfBI8ihJCZV1CwvX79erzwwgswTRO6njkrNDg4iOeffx6nnHLKlAdI5g4RNWYk0J5LjLcPpf3M/T74Tl0Lu60H0nKDOa6p0Buq4QyH4QyOJLe1Ovth9w0nm6/kIoYjGP7z/yF4/inwLJu+6j35sPuGEX19n1svehwiZsHY3walshR6Q83oYsaAt6AZ7mLiPi+8q5dArSmH1dEHEY5COgJMU6GUBaEuqoRWWUqB9jyW7Uu/PTACIxaFdYYKfdHcuFpECCFAgcH2pz71KVx33XX40pe+hH/9139Nu6+1tRVf//rXMTIygk996lNFGSSZG8zmHFUjppEUAs5gCCJmwjFN2MEAlMogOC9OJ8KJntts73X/7Qg4MQN6VSnstl5YXQMZx4JxBmnaEACk7UBGYmA+j7sAMLENYxmtuBML5gYfeAaBd23Ia7Ee09S0WtSpdaoT9ZonK7a7GdE3D7pNWKJuTnTmE8evKkQNMADhbW/DWb0ESpnb1c0ZDEGtKQeQX5pPbHcLoPCC01DGw30eeFYuLuo+x8PUiRc+pp4LpDDjful3BGK7DkItD1LtcULInFHQJ/+mTZtw9dVX44477sC5554Ln8+9dPeud70Lg4ODkFLi7/7u7/Cud72rqIMlsytxuXYmiJgJY38brLYeyHizEtsWECp3S6ktroZ3EnWRCyFjFiDd9BVnJAoYFphXd4NZx4HMskiSaYr7mEQZOCGTxZeZpkIpD0KtrYSMGbB7hyAtCxBuNRMIB9FdBxE4ee3EYzOsZC1qpTzeLKaAL0LCdiAGQxCGieiuQ+4iUE11xywlmKKAlwbAdBWwbTihGCDFaEFpIWC0dMG73gMGBmc4DKXEH3/pE6f5OCMRN3VljqShTAXz6AAi427DAzSbPlUTfemXtgOzuTNtES4hhMymgqdZvvzlL+P000/HPffcg507d8I0TQghcM455+BTn/oUzjnnnGKOkywgZmsXQs+9nnNhnLRtWK2dsDv6oFaXwbNimmYvWXxGeySKZJk/MUFAKwHpOJBCInVdnFIagFJVCq4qUMsCQFkAam0FrJautC8xTv8QnHAMSp5BmTAsGNv3QltSk72V9ziccDTZnlyYllsWT0og3l5cKfFBrSlPW+CnVJZCmg6s1i73xQKQhgExEk0G2QmTmsWdQ2kohVIqSmD3DeVu965wqHWVMzuoo1A+X/pncmKAEEImMqVrmmeddRbOOuusYo2FzHHjtdsuFrOtB8N/eWXc0npJjsDIlu3A+Qye5ZNrSpIP5tEgTRup9bTFYAg8R8AkHQfSsiBTZ904cztMVpWCIb0qBWMM6rJaOLujabdbR3qh5DlrLwZDgONADIXAq8rye2FwZ7QTgTYAOP3Dqa8EcGyolaUZlTQYGNSGKtg9A6Oz93BzvZUSP7hndA3HpHOiHQG7ewD6ktrJPS4P0rLhDIUh4iUAVcOEiBpFTTVgqgK1tiLtuCYpHHpjfV6pNUxVMlKNMraZp19IiqGYFWxm09gFnkpZEPryekp/IeQoRAmE89xMlOFLPpdhIba7OT2YLCJpORh59jXAst30gpRZZO7VASGSZfaAlFznh/6K4HtOSAv0ijiq+Mw2IKMGjOZOCCEgQtG0gEpCwu4ZgrQcSNsBhIRkABMCUDjEcDy9gDNgTNANhcMZibqBrcLhDOf/hSYRPIpJtoQXg6G08Y99PPd6IC0LLMtsOQODVleZ1olRxgyAMyhl8fbo8TzsyUqrZV4kTigKuyc9AHb6RxB6YSd8G1dBqy/ebLMS8IEt1SGGQsljqpT64T1med4z9jzgdc+v8Z4nniNP5qdsCzydwRDMtu6in5OEkNlXULD9zDPP4MEHH8S//Mu/oK4us3pCV1cXvvvd7+LSSy/Fe97znikPkmQ3U2X4Uqn1Vbnba0+R2dyRLJEHIQAp4mX2qsG8GizTgioBq6MfzuDwaK6z6cA40A7vquLncCtVpbA63EWSkBJSCDeFQtPAPSrA3EWRTigGaZrJ7QC3xJz7D578gsLA3GA8BVM4pBTuw4QDp28YTjgKJTB9ZcwSQXrS2PdTUbLmpCcwnw54NLh1DN0cbrWmwk0dmcQs7nSTlp0RaCc5AtE3D0ApCxR1NpGrStpVBubVJwy0ma4B8fx2tbYCdu9Q5gLcRFqOwqEvpyY589VECzyn45wkhMyugoLt3/zmN+ju7s4aaANAXV0d2tracO+991KwPU1mqwyfWlECHvC6lS/CsYzAsVBSSphH+oBElRHOoZQE4FmzxA1Q4S7Y47oGz5oGGAcAMRRJbm919MO7fnnRW2Fri6phHe6BMxJOVuKQQkKOhCGGM+qKxMfOAEe6Cw0ZAxwnOS4WTytJe+2mDaSOW1PgDIxAKQ1MmPeslPjhOAJKqR9sEs1ZGGfu+BJ0DWlJ5o4DxpA5s60qYJoKadjgmgpe4oO0BZTKUmj1lWkVUgpR7AWEzlA4dw414OaKz4HFdKkpWlzXoDfWZ3yp5X4voHD4Nq6iQGwem7Cq0xw5JwkhxVNQsL1nzx6cd955425z3HHHFdyunUxsNsrwJXBdK3perT0wAu7TwX1uwOgA8J28Fmq5e7lcQkLEDOhet+qFWlmKyNbdUCpHq1do9VXQ4mXnisWzegmUoA/hl96C3dUPKUV8PO4XBCngNk+REgADOHPLEvo4uK66ube2AC/xxwNtniyNBwDCsoGOvmQbcQDwrlgMfUkt1OqyCY+zWL0EsXda4V23bHILC+NVVlJucPO2E68vaoEFfGljBdzZVbWhGsbBI1BK/Mnj7z1mObzxtuUFKzD1ZDwZM/hZzIXFdPryepht3cnf6bFfasE5/Keug3ftMgq05zla4EnIwlPQNODQ0BAqK8fPKauoqMDAwEBBgyITO9o+jGVsTIk4lUMpD+TcXgn642kMo0S0+N0kuUeDZ/US+M84Bjyl2oZwJETUhAhFIKKG233RsiANE9A4IESyTrWUAlZXv5vykjpe04Z5sGO0jB7cDpPqomr3/jzyl7nfg9ILT59yAKYuqk67KiAhYXX2Q4xZByBtB7GdB9yShSk8TVMPtPXG+qJUIkmrd53jC2nqNnNhMR33eeDbuApQRseV+FLrPWY5Ki49D/4T1lCgfRQ4WhZ4EkLyV9DMdmVlJQ4dOjTuNocOHUJZWf7VEchCN2bRoJDu9DHLurGbVjImPSDHplOmVpTAf/waiHAMVnsPjL2HIcMD7qx1/EkZ526KhcrBNBXCjEGGom5aBOeQhgnrcI8bsDMGEYnBGQxDSgnGOVg8HUZtqE42teFeHdyfPbhiupZWvUCsXjKphbLcq0OklvTz6lBry2F19cefgAGmhdieFihlQSh+L0TMgjMcAg/43PQdRXFrntdXwrOssCsdSokfKC9uUxvm0YHo+DPabFoW006NVl8JpSxAFSoIIeQoU1Cwfeqpp+KJJ57Anj17sG7duoz79+zZgy1btuB973vflAdIspuJMnwziQfHLAYUEnbvILSa7GkFTv8IMKZTYsY+ioh7NGg15RADI+B+D9S6SncBoZSAwsA4g4gHeNyng2kaxFAYImZBKQuMzqTajlvPGgAPuvnJjCtQKkvA/V6Uf+RsN5gFoDfW5523yX2eSed4jm04I2MmRp5/w73KIN3vETzoAxzHzVkHwAM+qPHUEaaq0JfXo/aGS6FNoT32RI1vJkupKEke46w4gzJHm+cU8j4SQgiZ2woKtq+66io8+eSTuPzyy/H5z38eZ511Furq6tDV1YUXX3wRd911FzjnuPrqq4s9XhI3NsdzvuNBH9Tqcti9g8nbzH1tUCpLwZUxCwqFgLGvLe02pSw4qQCqkPbm0bcOuYtSpRuYJtuZ2/Ga3LYAhJOsys08GkQkCmdgGDzozlbnatfOfDq8G1bCONThdpos8cN/2vq8X08xMK8O34aVCL3whvtFTgqwUBRM4eA+D5jfC5aSocE8Gqqv+tCUAu3pwFTFbR6jZMmS4wxqbUXWkoYFPVdKFZHxxkMIIWThKijYXrt2LW6++Wb80z/9E37yk5/gJz/5SfI+KSX8fj9+9KMfZZ31JsWRyPGcjYok04ExBu/6RoSeH0ze5oSjiLz8NjwrF0OpLQccAauzH9bBDjjhSDL1AnAX6I1twJKLPTBSUPlCq61ntINkvJ25UhaAUhZ025oPhyFNG8KyIGMmmMKg+H0QMQPStN1W7kByEaL7ujmUylL4T14HrqmQhgVpO1BrKxDZ/s6M1dwVpoXozv0wW7rANM1trBJzILkD6Thu7vZQ2H29VSXwLF+MknOOh2dVw7SPrRBKiR+eNUvgDI7Aidc4514dvCw46U6b4z5PHleYqEU7IYQsbAU3tbngggvw9NNP46GHHsKbb76JkZERlJSU4LjjjsNFF1004QJKMnVjczzn+6Ia38aViL3d7JZri89mi5iJ6NvNwNuA4zhQErPcKTnDPOiD7/jV4PrEp7MwLFidfW5JvckU7zBMNzUhsYiQMSjlJdCqU+opcw7m1aHWVsA83A3YNqAytwW5R4cS9EHYNnjA5wbnAS+UylIoPj2eauLelsxfnqGauyJmYvh/X4J5uAeABFOYmz4S8LrpMaY9WjucMWi1lSg590QoJdOXtlMMXNeg1lRAKcm90HaqUq8wsfiXpTRjKqws5M6PhBQqrytI9LtF5rCCgu0//OEPqKqqwjnnnIMrr7yy2GMik3C05Xh6N6xEz62/BwBIOz29Q1o21JTa0ExV4VmxCNXXfQx6Q3Ve+4/tbpnUjLYw3XQTY29/+oJMljvvl3EGtaLEbaaS2I9hQmuogaIr0GpztHu3HThDYffLRgq7qx/6suw17QsV3XkAwrAghUD45bfhDIzAGYkkZ91F1HDXfvo9YClfYiRjiO1ugQhFETh16leuEuMYz9ia3cmxSwkzFgP3etOuapjNHcma4WZzh1vHfAymKcltxu5/7OLTcceWcoWJ+8d0fsxSYYU6PxIyeflcQaLfLTKXFRRsf+Mb38AnP/lJnHPOOcUeD1ngtNoK1HzpEnR8+07YPYPjbquU+VHzpUsmlTM8mZKJqekmzlAo2dUSAKCrYFKmNfVJtJeXtgPmVUdL+iVKAFoWGEeWHHEJOU67dbtvGGp1ed7jzoeImZCGBaujD07fYPxG9/UxxqGU+MH9XveP3HAIzuCIuw0DIByYLR3Ql9XCE5la187EOMbdRsq0RZSJx0i4tcIl40itReMeX+bm1Zt2jpz80WM+dv+IGJNqnZ24whSrKUfo+Z2AEOlXKBKo8yMhBZlwjRL9bpE5rqBgu6amBpY1v1MWyNyl1Vag4hPvReztFsTebobV2Zd2v1pXAd/65fAeu2LaFucJ0xqT1z0mH3ycpoTuDqZjVMVnHu5K+5lpKjyrl0AMRwBIqJUlUCtL4ITKYR5oT3vZZms3cNaMDndmTSKNh/s88J+wBlp9VfZ1FNT5kZCCjbtGiX63yDxQULC9adMmPP/88zBNE7o+9+rVkvmPcQ7PysXwrFwMYZhwwjFEIxEEqyqSH6osW7WJCeRbMtHuHkj7UM9ohW6Y7gx2jsV2IhxN+5kxlr06Rh64f3oW2DnhWMZMv7a4BtyjQyCSdrsS9EGtrYDVPZoaYx3pHfcYHBUm2TqbamUTMj3od4vMZwUF2zfccAN27NiBa6+9Fv/0T/+ENWvWFHtchCRxjw6ma+A6zwx6JynfkoljuzcqVaVusGyPPs7uG4JaVwE2ZtZbOk5GQM/83ozt8jINLcwTMr4QqBxKee68R6W6LC3YhiPgjESgztGa1QnCtiH6hmEPh92UEhn/8iQk1MXVUDzjL6yabLfW+bCOQsRMGHsPw2jpgIwYkNLtRupZVgfP2mU5mykRMpvmw+8WIdkUFGx/9KMfhWma2L17N1544QV4PB5UVlZmlF5jjOGpp54qykAJKYZCSyZyRYFaVQarazSlRURisDr6oZYHwHweSCEhogacwRFIIdJ+H5TSAipiJBbYTRAMFmzM62e6Nm75RK6pGfen5qzPNVIIGK1dcLoHIOWY99p2ENt3GOxAO/TGRfCuazy6Z+jjpO0g9MJORN/YDznm/RehCOzuAURe2wvvxlUIvGuDW7WHEELIlBT0SSqlhKZpWLRoUcbt4/1MyFyQT8lEtaoU1piFddqSGth9Q26QEg86pWHC6jLj/7YAFi9BxdhotQuvBzwYn9lWeEYAwzQVLCWgZpoK7o8vsJuuQBsAxgSXMmZCOAI8R7qLSG3kE5dPucUZpyiQlo3I9r1uOtDYQBtAojuPFAJmSyeG/vcllL7/DPAsweXRUuVAGBb6fv4nRHcezAi0U0lHILbrEHp++jCqr/kI+BSvJhFCyEJX0F/KLVu2FHschMyoiS5HiqiB0As7M2Z/lYAP0Tf2wwEyZksTP3GfG5wwxsF8HugrF4Gr7q8a05SMMn486IN37bKpvaACKKV+SEe4XzYcCREzYB/phba0Juv2GdVhdBW8xF+UsUgp3QY0oRjESNhN9fB7wRWeVqYPiJfzsxxISNimBVPXIB0JGY5CmBac4Qjsjj5IIeKVTrJ86Vc4WMRNo2GMwxmJwNjXBm/T0vTtOIe+YhFGnn51wtfANNWtQlJXOb1fkgogJTDyxFYYBztg9w1DOuNfkWCKgvBLb8Fq70XpB9+FPPtFzYhc5SJTS0EqM/AFYTIlIgkhC9scnJYiZPblSjdRa8rhO6kJoRd3Aub4aSgs6INv4yrISGzc7bjfm9Y+PnHbdM1sSylh9wzC2N8OZzAEEXXL3knLhjPcCrt/GDzgg1rqT27v9A7C7htEar92fWktGC9s0WeCMCyYB9thtvVAhCIQUROJ4JhxDqWiFOqiKmgppRGlZSeDbVg2nJgFMRxO1kGXhgkRibn1waVIxtrcqwMePblvEQ+2wSSkY8PuHYRVGhhN+Ym3dpcRAw7Gb6iR1DsEs60HemP9nMplN9t7ENt72P3BcQDhBttafRXUmnIAgN07BKujD4kDJm0bxsF2GO+0Fr3O+1TkKheZWgpSAOnlHKfDJEtEEkIWrikH27Zto7m5GSMjIwgGg1ixYgVUlWJ4Mv+NTTfhXh2CMWiLq+E/sQlWVz+c7kE4sfgfdcYABigVpdBqK6BWlUJbUuOWEIwHgkxT0hd5cgZeFoBxsD2taY4zHIYTisCzYjHUyuIFbdIRCD3zGiI79kE6DpSSAEQikGUMgITdOwh0D8AKeOGxbIiRiNuunXM32OYKwADPmiVTWkhndvQj/H+7IKIGpBAQhh0fQzxFRwJ2/zCcoRDUihLoS2vdYWpafBsJ2DbkcMQN+uNxv4jE3FSdRP1tzqBUliZTXnjQB65rEIYJq73XfaL4lwhnYMT9kjOV1u7O/9/enYfHUZ354v+eWnrXvtqS5V22sY1tMBhsJwFjIEPAOCSQ3ABJ7mRPYAby3Js9k7mTm5BlMgEMhGW4QGCSsPoHhBACBPCwGLMZMHgB2/IiW4u1t9RbVZ3fH9Xd6k1Sa2lJLX0/z8ODVV1dfVqqrn779Hve105NUbyu5DrbEyi4uyHpZ6FqcK9eBC1hLYFeXQZ9djUCr+9JOheD7zdMqmB70hmnTq9ElL9GHBV3dXXh3//93/HnP/8ZwWD/zJ3L5cKFF16Ib3/72ygpyU0VBaLxkphuIsOR/tkyKeGotYM/KxSBjEQQPnYCQtfhmmuvZRBOHe5l8+CYXR2v2S2cOpwLau1Z7GAY+qwKWO09cM6ryTyLrSrwnLZkTN7EpZRo//1TsHr6oJUV9nfoFAJml99Og4k34DGAQAjhQ83QKoqh+qKXCkWFVloA7+knwXvGSfB9dOWIxhI+3IyuJ16xm+e4HTD9AYgBipcLRUWksRXOufZCRgDxpjbGsVaomhav9GIZBtDYAtXnhvC4YHb2QCsthFrss3Pjve6knHTF5UCk8QSUaOt5aZrQKopHHySbFoyWjvg5MpGsYBjhQ8n11J0LZiYF2jFagQfOhbUI7T0S3xZubIHVF8xZCcopYZglIoloehlRsN3V1YXPfOYzaGhoQHFxMU499VRUVFTgxIkT2LVrFx588EHs2LED999/P4qLi8d4yESTi+LUAacO1ZU5INZKCqB4XTBaOmB2+BE+3AzF7YBjdhWMlg4YzR2ItHTEUw9iLeKt3iCkYY5Ju3YrFIH/xXfgf2UXZDACq7cvOhOvAIo9Iy+D4XgXTJiWHfoaJqxgCIo3FmgpUAs9CB1uQqSpDYF39g97LNK00PP8W5Bhw55VlxKWPwBpmlBcOiAUWMFQPP0jlqrS9fhLMDp6YLZ126kkkHZutpT9wXYgBCsQhhDRLZYF4XMDVjTFIBRJ6jdkWRasYCgpzA99cBRqplx0VRnWjHdq+ciJYnb5+7uZAoAAtJmZ8/IBQJtRhtAHR/s3SMDo9MPBYHtQwy0RSUTTx4iC7VtuuQUNDQ342te+hq9//etwu93x24LBIG699Vbceuut+N3vfofvf//7YzZYonylOHRoFSUwe/rgWtjf4jwekEVTD2TYQOT4iaQ88dG2a4+1ne998W2YHX4AEjJgp47odVXQZpRBKAKhD44i0twJ2RvoDz4l7JbnDjsQ1sqKoJUWQvaFYEUMmF29wx5P+HgbzI5u+/n7g4BTh+JzQasshRpNS7EiBoymdjtP3AJkNMc4tL8RqtcVz9mWpglpScRTTwyjP7CUFiAUCEvG759KAHZ6TMJiVxmKQLoytHiPAGYwDLO7F1plCVSvO32fSUhGUp67Qxv0w4KiqknVcYDJXeKRiGiyG9HqpmeeeQZr1qzBtddemxRoA3YayTXXXIMzzjiDNbaJEhgtHUm5sEByECODYQTe+TCtAoqMZAj8smSF7LbzkaOtMKKBdoxaUWLXlpaAgIBWXADn/BlwzJlhVwBRFQhNhaLrUAs80GsqoPpGX30kcjghpUFKCCHgOmluPNAG7JrejlmV0MqKk+5rHGtLKluXVgdaSQkiTXPQyhvSNIHUQHKoWWtL2t88DBGA9n8bMLFSA2eEDFihcOadEU2LCiTfnqkk4lRnhSIIH2lBcO9hBPceRvhIS8YqKDFTpUQkEY29EQXbLS0tWLly5aD7rFixAi0tLSM5PNGUZA1RlcTs6o1XBhkrsbbzoaMtSCqB59SheJ12ekVffydJAQG10AO10AfFqUPxOCHcOmTEHFkHzBRWxIDZnfx1u1ZZAqHYCxlTadWlSHxYaZkwe/rHq7idEAkVUoQjvfHOYLPvZnfybUJk2aXUkrAGSxvIYefP4YrlqycKH24eYG8gfDT5NqGqUEsLczK2ycro6EFwd4P9ocofgOUPwGjpsLd19KTfQVXgmFM9/gMlorwwomC7oKAAjY2Ng+7T2NiIgoLJU/qKaKINNUNthcJ2WbYxFAvwZUoQr7j728fLcPq4YrXC4zKNSx1+pY5MDYTUQi+kYUKrKEkLuBVdg0hZHJr0e1QVKEXe+P2EEFBS0jvMLj/Mnj67VGDsGJAw/QGYnckBs1pSMGBTn1RWcIDZ4Vjnz0lSiUTRNTjn1yRtCzc0IdzYmvY7iRxvQ/jA8aR9HfNnTrq64bkU+zYoY4fZaLpX0gy3qsC9fD4rkRDRgEb03eDpp5+Ov/71r7jkkkuwdu3atNtfeeUV/PWvf8XGjRtHPUAiGrkBA/zEBXNWhiogWdTPVpzDbxySqR18bFGm6nNDcer2DH8oHA92hBBJ6SFCV6MztRKQEqpXh+J1x5vaqBXF9iJJVYNUTEBadu1wfx+Ezw0B2LOVYSNezlCo9qVQr6vMupyh4nFBLeqv6DGZm9p4Tl2E0P5G+8uN6Iek4J7DiBxtgVpZCgHAaGmH6Q/avxNVhYiWcPWcUj+qEo9jLVaCM42UENKCcDrshawjHLNxotM+vwb5E1o9vdCratnUhoiyMqJg+6qrrsILL7yAL33pS/jYxz6G0047DWVlZWhra8OOHTuwbds2uFwufOtb3xrr8RJNWYrT0d9oZayP7XUDrR3xn63eAGSJb8DUEMswkJS/oafMYisCSvEIclQzBKFWpx96eREAO2DVov8GANPfB6FpUBNqjTvnzoRa4IGE3fXS4XKmPY9Qw3GYHT0w23syLo5Ui32IPSOhqFBLC+BePh/eNSdl/VQcs6vzqtSbcGjoeeYNAOgv+wjA6uyJ3q5DK7X/PkLToM8og+9jK1G8+SPjP9ghZGpYI6WE1dsLt9cL1esacVnK3u3vDbkgWS32wXvG0hEdn4imnxEF2wsWLMCdd96J73//+3j++efx/PPPQwgBGZ0tq6urw3XXXYeFCxeO6WCJ8p2MGAi8fxDhA8dh9QYQaemEUBVo5UV2fnIwN13vHHNnINxwHPG8bcOE1dkLNUPAbAXDkH0hQNMQax6TVHkj2llxJA1fFFWFVlGc1Po90twB1/J5aftKKRHadyRpm3A57WooQ6TkuBbVwezuRe+L72Y1Ltfi2fCcviSrfQHkZY5u4QVnwgqG0fng81nt7z1zKYo2rcvtoCahTKlOI9mHiChmxEvMTznlFPz1r3/FG2+8gd27d8Pv98Pn82HJkiU49dRTM35dTDRdSctC6IOjCB08DrWwv6KHFQgBlgmz24/QgWNQK4qhzywfdRv0VHppIbTKEnvBZDTgNjq6ISMRqKWF9iyxYcDs6IEVXVCoqMJub26adhdLRYHidkKfVTWyzopRjprK/mBbCEBT0Pf6Xjjnz4RWVQqhKjBOdCF88BjMLj9EQgqJa9GsjAspM/GeuQxmTwChvYcH/MZA8bjhrK+Fd93y7K9ZeZqjK4RA8SUfg9Heg75X30vLV49Ri3zwnL4ExZeezes4EdEYGFU9JyEEVq9ejdWrV4/VeIjygtA1yEHKgMX2AexAu+fZNxD64OgAPRJjJKy2boQPHoN71SLAsiANM14VZCQS81vdJy9A74737TrSYTuX2QyEYDa2wejwR7+at6LBrACgQOgaHLOr4k11hK5BLxtdZQql0Gu3uu/uA1QNkBIyYiC45zCw53DKzmo8f1g4dXhOW4zwh432c0rI0U0NChWnDtXrgmv+TOg15TDbuhBp7oj+zSSE0wG9qgRqWRFUlwNqFmX6hEPP+xxdIQTci2bBUVsBo6kNoYam6N9dQnG74Kirgl5TDtXrYqBNRDRGRhRs/+hHP8LmzZsZZNO0JXQNxomupIV8kZaOpH3UYh+kYSLw7gGEDzfD6ulLC7bNnr6khipCKAg1NMPo9MN75rIhZ7izCQBj+a3upXOhlRag7/U9ybnM0RbsRnsPkJDfLBQV7pULULBxdXwcisc54lzYRObnz0fLjQ8h+F5DUv5wxueoaXDMqkD51y6Gc0Et/Nt2wuoLJeXopgXbCePMlN870L7ThRAC+oxy6DPKJ3ooRERT3oi+q37ooYdw5ZVXYsOGDfjtb3+L/fuH37KZKF8ZHT0w2rph9vTaLc4jhp1DbNgNUmTEgDRNCI8LxolOhBuO2UGsZUX/M6GVFcJ90hw4582AVlIIIZF0u9nejfDB45DBMKxgGFZfKON/Zqcf4UNN8L/4DiJN7UOO3bNyIbxnLssqFUOvq0LBOavHPKUFsFMVKv/p09Aqi4fcV/E4Uf7NS+BcUDvkvkRERJPNiGa2//CHP+DRRx/FU089hdtuuw233347li5diosvvhif+MQnUFpaOtbjJJoUrLBdg1dEFwlm6gqZuIAwcCS5sZNQBDynLoYWbRIiIwZUrxtWVQlCHxxN6mYYOdIMvaY8u1YypoXAu/vjpejCDU0wu/wIvH/IXoBZWRIvR+deOhdWMITw/mMIN7ZARhJm1lUV2owy6LWV0MuLILKsOT0SapEPxZd8DMF9RxB6vwHhxpakvjtaWSFcJ82Fa9k8OOfOyNk4iIiIcmlEwfYpp5yCU045BT/+8Y/x/PPP47HHHsMLL7yAn/3sZ/jlL3+JdevW4eKLL8Y555wDpzM/cxuJMol1ZAQA1euGmOWA1em300l0DYpDiy8glFLCON6WdH+tsiQeaCdSHDr0mgpEDjXFt5k9fTB7AtnXszYt9L2+F1YwFB+j1RuADIZhtHXBMbsaWoldQk9xOuCcXwPH/JmABBxzZyK8vxEQwu7mOE6EIuCsq4KzrgpWOGI34bEkFLcznhajpJYdJCIiyiOjWiCpaRo2btyIjRs3wu/348knn8Rjjz2Gbdu2Ydu2bfB6vXj99dfHaqxEE87qTW65rmgqlFhdaNMEIOKVOmQwDJnSeVGrSG/hLaWE1d0Hs70bRpcfoidgB7wODUZTe7wG9ZBjC0UQ/OAoXAszpFtEO98pHldSwxUBAeF2QC8rhNHUBjlQV8RxoDj0SdN1kSY3s8tvN+U5dgJWKAyhKFB8blgzSyGXzZ/o4RERJRlVsJ3I5/Ph0ksvxYUXXojf//732LJlC3p7e8fq8ER5JzXQBgDhTH7JGZ1+hA8d76/bKwFpmfaaScNAcNcBmF1+aNWl0IdotGGntGRoMR1jWjBaOuCYVTnMZ0I0OZjdveh6crudcpXhtsihJljvHoT3jGXwfmQFK6oQ0aQwJsG2lBIvvfQSHnvsMTzzzDMIBOyatmvWrBmLwxNNGorXBcs/QJdHVY2nbwD9pf8SWQnlAsNHWxDafzQeINsBtpncrVEVsLp60f3nl1Gw8TQ4aisGHJvVF4QyRAk7qy846O1Ek5VxoguttzyC8MGmQfeToQh6X3oXenUpij99FgNuIppwowq2d+3ahcceewx/+ctf0NbWBiklFixYgE2bNmHTpk2ors6vDms0PViBUHwBIYBh1U7WKksQOd4Gs70nqewfAJhdvfa2KAkJKxSJdzuUgRDC+xuhOh0wO/0I7j9ql6WLdl6V4Ui0DF7/KkEZNmBadsnAjgf+Du/aZVAL+pviJAofaoI+sxxmV/83SuGG45BhA1AVKE4HtHHMx6axlXjejqaDYeCd/Ukf+jJJTDWaDKywgc4Hn4PZ1QujrTvjt0YAYJkmDFWFUFV0PvwCwkea4V29eFiPlevfT66PPxXqwRNNNSMKtn/3u9/h8ccfx8GDByGlRHl5Ob7whS/g4osvxpIlw2h5TDTOIk3tCLy7PzlI7vQjfLQF7uXzoVcPXknH6g3CCkVg9vSmVyFx6kBfMKmVuFZcgEhzdJGkBMyeAMJHW2C0ddkz2lJGm7qYkGEDwumA4nbawYQFu7dMtBygDJsIvncAnpX16QNTFailBYBpQZoJAX84WpYwApjBMKxgCI45rOyRbzKdtyNlBcNDNmSypByyPvl46ntrn/2aAey1EZZpV86pqYBWWgAZNhBpaoPR0olY+R5pGOjb/j6cc2YOqylUrn8/Of/9x0qCZnlNI6LcG1GwfcMNN8DtduPCCy/Epk2bsG7dOig5qMVLNJasQGjggCWhdN6AzWFCdtk/1e2EmFUFq8sPK9g/u63qgFJRDOHQ4oG4Xl0K40QnpASEWwBC2A1u/AEIhx6v0S00FYrPDSEEhMsBAcC5YCbMtm6YXX3xluV2MxorPkaha1A8LmiVJQh9cGTIN3FY9kLJ2Gx6Lozmm4NsCIcODBGIiCm00HLQ83YakJaF4O5DSdtUrwfu1YuSFtTqNeXA4WaYew8n33ffYXhWLhy38U4aWVzTaGDT7TpDuTWiYPsXv/gFzjvvPHg8mb/OJpqMwg1NgwcspoVwQxNcS2ZnvNlobo/fX9FUKGXpVUKEU4dz4SwYLR3x/GitqhTBvYdhdfVCWiaMtgigKpCmaTe/0VQoxT4IYXeQVArc0KvL4Fo+D9Kw0PvSO1ALvf2PoSpwL5s38l+EacHs7k065lgZ7TcH2VCLfDA7/UPuA0yNN8whz9spLtJ4Im2tgXPZ3IyVa5TKYoiuPpgJ3VxDe6dpsA0MeU2jgQ3nOkM0lBEF25s3bx7jYRDlXmymdaT7pJb9G4ji1JMqfrgW1UEt8qLn6WgZzEhyvqniciBxDZdWWQLX0nl2WT5NhVZdBpkQbBgd/WO0QpF4YB8+0mKXQCv2xcsPAoC0JMwuP8yObsiIiVBDM2Q4Ar22Ao7aCmiuLOt4D2G03xxkyzGnGuGjLUkNgJKoChxz7PUiU+ENM5vzdiozO3qSflYKPNAG+aDoqC1HICHYNnv6IA37Q+10NN3Pn5GKX2cG+qCbcJ0hGgpzP2jayGZR2WgWng3Gs6oe7lMXQS30QaamcERTsISuQ59VBffJC5Iay6ipFUaii8OMjh4EdzfYwbbfbl5jdvkROdIMs9eumBI50YXg+wcRPnQcZne0vXwoBKs3iMiRZvS+sgu9298bkzfkbL85GC3F7YR7+fzMwZOqwL18fjygd8ypBgbrgsk3zEnPXjTcb6j860wf5uRAH8yIBhC7zmS8fqRcZ4iGktXM9uLFi6EoCp544gnMnTsXixcvzqqckhAC77///qgHSTQcA+UMj5bidQEnukZ8f72qBFqxD1YgBKO1E9I0YQkFiscFva4KaqEHikNLe20lVhcB7KA8lj+eMbi1JIyWDoQjJxBuOB6tKZgssQ270daNzsdehHN+7aiqIIz2m4Ph0KtLoRR6EHz3A6hSgUDm3PDYG2bGGfc8ecPMZnZ+KktN8zG7eyEhIZD5Pcjs7stwjDFrKZF3Jvs3N5OZXl0Ktcib0zUoND1kdQU67bTTAAButzvpZ6LJZrCcYas3AMU18gukVlWK8NHWEefPSsOE0dZl199WFQhVgTAtWIGg3WI9HIGpKkBCEGGFIgh9eBSqr399hDUjgN6X300LwCItHYBhQloWjBOdMDt77aomQkCoKiDsD8BSCLu6YCQ6iy/swDt0sAmuxXVQovXBha4CKYH/YMF4rKSZDEdgdPghw2E7B93thFLis1Ncovcfiw9AitsJvb4W3uLiQT/85/sb5pBfZ09xWmVy11UZCMNo6YRemd6NFVIifKQ5+f7lxRCTcAG/FQjZHxwME0JVoBR4oHrdY/sg/OZm1BS3kznvNGpZBdv33nvvoD8TTQZD5QyHDx6HY37NiFuCK04djtnVA88oD8Lo6EH4UBNkKAKl0AM0nbBvkBLSsGAcPwGtogSKQ4uXDrTCEYQPHrPL+Vn21+BCUaGWF8Fo7kgqMQhE37w7umF198Ho7oVAtGK3tGNm4XFBqyqF66Q5iDS2wmjphDSNaHlBEzIURuRoCxy1sXxzmda+fbCSZJGWToQ+PAqjqT0+3hjhdMIxqwLO+bUwO/1j9gEoW/n8hjno7Pw0oFUUQysthNHeHd8WfL8BwqFBKy6Ib5OWhHHgGGR7d7x6DwC4FteN63gHI6VEpLkDof2NMNvTvyVTC33Q66rgnF01+gfLk29uiKaD6fvdGk05Q+UMy1i78tqRtyvXSgqgeF12nnRvMC0XVHHqaTmlViiCSFObnbqha9CKfDAKvHZedXRG1gqEETnSYgfiEDD7gvFZWKEoQDR40OuqoPo8MFs7gYQOlUZnDyJHWu1W72HDjrITJnsVlxPCqcMKhKF4nHDUVkAtL0b4wLGkSg9mezesGeVQBstzziCw6wB6X3pnwGYjMhRC6MOjCDeegF5bAb2ieEw+AE0XqbPzo1lboLgcsIZIA8x0Hk8k9yn18D+/0/5BVSFNE31v7INaUgCtrBAyYiByvA1GIARVVQFVhdA0CKcO1/L5UPTsF0fm6vcjDRP+Z99AYOeH9utESR+T6Q/AfL8B5okuuFcshOIa/uuCTW2IJp8pEWxLKfH000/j3nvvxcGDB9HT04Pq6mqsWbMGX/nKVzBr1qyJHiKNg2zygbOtKDIYxaEPGLArHid8H12ZtC24+xBgWhCKEm/1rpYWoG/HbhgSyTnVhrQb5gBQffZXykJRoZYWQPF5UHzxevsNVMp4Te1IayeMvYcgXDqEVGGGIhCaGs8AEZoGpchOQxGQCOz8AFp1GVSPC47ZVQju6a9hLC0LVmdPxrKGAwnsOoDe7e8lNr4cWCiC7r+8gsIL10EvKxyTD0DTxVjOzg/VMCXTeTyRvOtPBiQQ2ncEQPKiSTM646363LCcOjRdg9A06DPKUPqFj4+o7N9Y/36kZaHtzidg9YXsDwcpiz4zCby7HxVXfWrSdfMkouHLKtj+/ve/P6KDCyHw85//fET3HY5f/vKXuOuuu1BRUYFzzjkHPp8Pe/bswQMPPIA///nP+NOf/oT6+gxd9yjvJS6G7Nv5IYSqQKssGfANaiKqEsQ+BCgeV3+w7fPAvaoe/m07IY2EYFu1I2RpSnv20rQAIaB4nHAun4/Q/kYA9ix+rCFOYNcBSNOCFbBbv8dbxsdmzoQ9cw5Ec7YBGCcOQJ9VFS0RKGD2BOL3j7R02k15dA2K1w0lusDK6vLb3SwTn1t3L3pfejfaHbMPMna7iFaFMK2k1tSx3NnOPz0N30dXInyoGdBUWL1BKF67OQ9nufPLWLWRH4pzYS1CHxzNrl27psJ31kpY3b3wb9s5rMfJRTv1vjc/sD+QAknjF5oKxeuCFQhChvufk1BV9L22B82//C8UnLVyWI81XXAGn/JJVsH21q1bM24XQqSXMUvYPh7BdmtrK+655x7U1NTgscceg8/Xv/L67rvvxnXXXYe77roL1113XU7HQePPaO+B/8V34qkjVq9d/s5o64JjdjW0koIhjjC+tMoSu+V0dLxaSQFcS+YgfKQ5uthRQDh0WBETMhACICGEArW8CO5TF0Foanw2W0YikBETkaa2/lmyaOt3oap223dNgYSd82r1BmFFywFCWoApYXb6IYp9EKoCGYnE7w/DtBdtKQJmp99eeAl7Rl/oalKXytC+o/2Bj2UB0rJzbCtL4wstzb4gIo2t9uNbgLRMmD19CB9psR/XsmD5A7D8ARgnJuffjjIbyzby2Sg451RYgSBC+xszBvbStKCWFMB10hw458wYUcvzsW6nLk0LvW/s6X+dmiaEAJz1ddBnlkEoCqS0KwgF9x7qf40bBoLvHYB7+TwGk5mwLT3lkayC7WeffTbpZ8uy8LOf/Qxvv/02Pv/5z2P16tUoKytDW1sbXnvtNdx7771YuXIlfvCDH+Rk0IkaGxthWRZOOeWUpEAbAM466yxcd911aG9vz/k4aHxZoQhCB4/BvWRO+o2m3ZJc8bgmxVewsdJtmRZYKi6HHRSYJmDaqSFGWyeE22mPv6QAqkvPONsrpbSD9wSKx2W/eSfOQJsSWmUxjGYLMhCb9Rawunshi72wQpFYQZL4bYDdCt4yrXhTEVFWZFcoibLCERgtya8traIUjpry5OfvcUGZX4vQ3sNJAVL4cAv0qmIozoSmOrG/ndfFGe5JbiLayAtVgXN+DfSZFTBa2mF09NjnlFAg3E5opV64y1LOqQkWbjge/fDcz71iIbSywvjPQgjoVaVQfG70vrwrvl2aFkL7jsC9YsG4jTfvsC095YGsgu2ampqkn2+//Xa88847ePTRR1FZ2Z9rOW/ePJx22mn41Kc+hc2bN+Ovf/0rvvKVr4ztiFPMnj0buq7jzTffhN/vTwq4X3jhBQDAGWeckdMx0PgzWjrsVIeBxHKBZ6XnAkspYbR2RtunWxBO3X6jy9GFOrF0m1ZSAMXjind9FC6HXWc72vXRaOuCWpBd+S8rEE6rSKIWF8Ds7IZMmHUzu/1QCt1QiwthBKJVUHQNMhiG1ROADIUh3P3BiXA6AEVAeN2QfYH479nqC0JJ2M9s704O6oWAVpWhHBsAoQhoVaWIJJRlMzu7oVUWQy1K6QbIPO68MJFt5IUioFeXQa8ui2+TkAgGhz+TnWvhxtakn5USX1KgnUj1uqFXl9nXt9j9j7Qw2B4K29LTJDeiBZIPPfQQ/uEf/iEp0E5UVVWFf/iHf8CDDz6Y82C7pKQE1157LX71q1/hggsuwIYNG+D1erFv3z688sor+MxnPoMrrrhiwPtnSoOhiWdnNMiEn2XS/82+IKSUafvIhFV6sX1iLMOEcbgFgfcOwupObhQDIeCYMwOe1YsGPCdSx5TtPsLlgGvZPAR3HbDTMxwa9NoKe/+IEc+xlpB2AJ2y0lBEb0t7rJRFVkIREE4Nis+b9BW3jBgwWzuhlhX3z1orAFQB40RnUi1toSpQfC4ohV4IVcAKGfHHjgX28Z9TvsYXXheEpmQcKwAohSkfIoSAWuIDdDXtPqY/kPA3z/x7Tz0nKDsjPY9TGV3+CfvdZ3w9yNT/j3xsA53DMWIYx0+s9gPYdb8HO75aXpgUbFuBEM/xLGQ6H3mNoFS5OCeyafI4omC7qakJDsfgX9M5nU40NY2+NXM2vvSlL6GyshL/8i//gj/+8Y/x7atWrcKmTZug6wN/Hd3V1cUX4iQU9PvTvnoFgL4+uztcuNtvL/zr7Q+aw8FgUq6lsCyY0dut7l74X3gLsi8EpThzR7XIvsPoO3AUAVhwn3tq2gtooDElEpYBo7Mz/QaXAmtZHczDLXb6RtgOXMOWCZlQjcSEBSs1WLckrJQukIYlYUHCTNxVSphSAh4HpKpCRmcdpQSsngCM3qCdRmKYdl522LBLDSoKLEWBVASU8mLI8iKYqgJT2o8R/4AjJWTCWIyUx5emicggryVpmjCjvf+gqRAuByK6ikiG2UhFFfG/3YC/06iurpF39ZyORnUeJwj19CS9/sZLOBAcdCFmKBSCkP2v/bE+PpB8bRnyeJEIjIRvoMxgtInVAMxAEIZpwIrexzQi6J2A33O+UTQgMsA5y2sEpRrLc6KkJPM3uolGFGxXV1fjmWeewTXXXAOnM/2r90AggKeffhrV1ePTueqWW27BLbfcgquuugqbN29GYWEhdu/ejV/84hf4/Oc/j+uvvx7nnXdexvsWFWVf4ozGj9/ng6X0n55SSvT19cHj8UAIAdXtggTg9vanICguF2RC8rHidMDl9cLs6UPXc29DDRmQqgpNH/i0F5oKuX03FJcbRZvWDTqmTBSPC77i4oF3qE7+Nsjv8yXNfIWrWpJmteLPY+ncpG1BlwuR9u6k9vFmjwLd54Fa6IFV4EX44DF7li8aHMuQYQfK0QonwqlDLy6E4tShlhZAmhbcqxYmt3Iv7kruulhTER9LuKIUPW09/Y/f0QPPzIoB6w9HDjVDFBVALY0uflQUuAt9aakwAKCVFcMR/dsO9DuVUqKrqwtFRUVZzSyQbUzOYwDB2mqEjfGZUEmkul2wMnSElNIOtJ1OJ1SX/dofy+Mnil1bslJahGBzZ/84O/xwLqxLbc4a19fRC03VoEavU3pxIbwjfC7TiaO2Gq6Uc5bXCEo1UefEiILtT3/60/iP//gP/I//8T/wzW9+E6eeeipKSkrQ0dGBN954AzfffDMaGxvx7W9/e6zHm+aVV17BDTfcgC9+8Yv4+te/Ht9+6qmn4rbbbsM555yD6667bsBgmy/AyUmI9L+NDEcQ6WiF7Ash3HDcDhgT9okcaoIVjMDs7IHR1g1EDPT8/U1EmtqjAac9oxqjuB0QDg2WPwAZnaIVql0Kr+OPz8Dq7oUjoZNb8N3BS4IJTbVr6AbDWed/pz5PvaoUZlt3Wi5spvNU9bqgej0we/vi24zjJ6D4ZkEt8MAxvwbhA8cgTfvpW4Hkr7MVXYPQ7aBCKyuEXleN1EdRiwtg9djH16IlAGNj0WvKIRx6/yxgtA6ye8WCtPFaoQhCDceTtjlmV0dLAaY8qqpAryqNHyPTuZD6u+HrOHtD/T6z3cc5ZwYiR1snJG9bpJ2pAET0NRyrLz+Kc8LsCdgVdNp7YEUr8yg+F/QZ5fH28dke3zlvpl1rP8ryB2EcbYFjVnqXSKO1E2Z7V1IHTOe8mTy/h6IqcM6ZMeDvidcISjXe58SIgu0vf/nLaGhowCOPPIKrr74aAKAoCiwr9rW1xCWXXIIvf/nLYzfSAcQWQa5ZsybtttLSUixatAhvvfUW2tvbUVrK0kD5yujoQWTvUbv8HER0NlQktRMPHzuByJGWeC6zEAosw4TZHW12EzHsDo6lBXAvnwe1pAACAlbEQORIM0L7jwHoz4Xu3fE+tIri+PGHKgkmAUQiBvwvvjPiUlSKI/uW8AICel0lzN0N/WMMhBDaewR6dSm08iI462chtO8ozI5OSNNKmk1TvG4ITYNj7gwUXrjOrhaS8vwUTYUWXYQmUr4RUDQNzvpZCO46EN9mtHag7/U9cM6ZAbW8CNI0YTS1I3TALtWWGES4T5ptfyhKpCpwzK5mJZI8MBXbyBudfvS++j6M1uRvlyTsD6tGayeEU4f7pHlwL5uX1TG16jKoxb5oeU9bcM8hmN19dkfYAjdkIIzwkRZEDjcn3Vc4dDjmzxz185rS2Jae8sCIgm1FUfDzn/8cmzdvxtatW7F37954JZDFixdj8+bNOP3008d6rBlFInZwMFB5v9j2oXLMafKywhFEDjUlV75IEfzwqF0dISW32fL3Je9oWnbOsqrFZ8cUXYNzXg2EqiL0YWN818jxNhgdPcOv+TzKUlSpLeGFqqSlZsRaSjvmzED4cIvdkEZRAGnX4A4faUbkaKu9DEtaUIt89kJMKSEcDihuHd41S6HXVkD1uKAVeRFJaVMda7jhis7kGS0dgGkljcV72hKE9zdCRkxAtQNps7sPfe/sT39iSn8bbX1mORzzauz630LEH4tNbfLLWLaRz9aA7dSlhJCWXWPe5Rh2O/VISwe6n9wOs7M3Yyv1+MNELAR2HYQ+qwLe1YuzOrZ37TL0/O11+4fo6yTS1G5/65ZICED0v048py2GVsgUkkzY1IbyyajatZ9++unjFlQP5JRTTsF9992Hu+++G+effz4KCvoDo61bt+LQoUNYunRpWg1uyh+RxlZEWjpg9PQirKoQENFGK/YbbqS1A+HDzfEOiDFCCFh9of4FiIYJ4dJgdPnh3/YmXEvmxhuvAPZdzWAI6LTTTRS3E5GjLSNrsDLKUlSJLeEHag0dqzjimFWJrj+/HN2Y0IVOUe1gO7pNhRdCUaFVl6LoonXx55V4/MEadThqKzOOxTm/Bm3/+TiA9AopqYSmwb18Hir+6dNQCzxQnHrSjF/G+zD4ntQytZEfr66SY8X0B9D1xCtDNrNJ1LdjDxSvG+4sXuOuBbUwTnQh8OYHWR/fuaAGnlMWZb3/UBicEk2cUQXbk8HHP/5x/OlPf8KOHTtw3nnnYcOGDSgsLMTevXvx0ksvweFwjEtzHcoNo6MHwfcaYPYFgHAE0qEDEPbsNATMUNj+6tWy+jsgwi63pxZ6gbZuyIgZL68nVBWwLMiQhcjRlrRazqrHZQeMhmEf+0Qnsqt6nS62sDDXtNJCFF20Dh1/fBpmaknDFIrPlRRojwXX4jqUfe1iNP3895A9gwfbWnUJKq62A22gv+HPYNQiflDOJ7nuKjlQOpeE3RRKCgUWBv/gmKr35V3xtQkwTcAyIXTd/uanyAcZCiNy7ETSa1oaBvzbdsJRUwGhDTwTHuNePh9CAt1/25H0oTgTx5xqeNcugwyEhihCOAzsuEg0YfI+2FZVFXfeeSfuuecePPnkk3jiiScQiURQVlaGCy+8EF/72tdQX18/0cOkEbDCEYSHSB+x2nvSbtfKiqEWeiBUBZa/D8KpQXicMNu6IZFQZq+9G9bMciiJlQcSG+VICeNEN6xwZNKnNmglBfCuX4HIkWaEj7TC7EzOhVaLC+GYVQHHrKqctEJ3LaxF6RXnI/DOhwjtPgSjPeHxBeCoq4ZryRw4F9ZCLfTEb0ps+JORqsAxZ3yqGtHoTURXydGyQmGEPjyatE0tKYR75UIoCUG0o7YS4cNNCO49HN8mQxGEDhyDq37WkI8jhIB7xQJYYQOh/Y2INLZCRhJKlaoqtJnlcMyqhFZaGF08nAPsuEg07vI+2AbsfOyvfOUrOW+gQ+MrniPscgxYlzZ1gZ3idvYHc8Je1CcjBoQCCLcTSHhzk5YFq9MPpdTu5maZJsyePije/jcgxaGNuJvheM/IClWJd9WzUsrpxdNllNytvla9LriXzIF7yRxYfSH7b6bY+eaxDyuKM/lDy6CL7LjwKe9MZFfJkQofPA5pJMw0C8C9fF5SoB3jqKtGpMXuPhsT2nckq2A7RnE74FpYC+fCGshAGJZhQonWnR+36gjsuEg0rqZEsE1Tk9Vrl6pTinwQXZnTI2QoOQhXCjxJP6vFPhitnfZtqoAZsiANCaHZb2pWsL97o3GszU5HiRPQKkri4xC6NmROZ7xiR5YzssKhA0N83T2SnGVF1yCcOiCSK7bkUmJKiOJxZlyglukDSOoiu9h+zC3NP+OVOjWWjI6epJ+18mIozoEX1DtqKhBMuB4ZnT0D7jsYAQHhdiJH89dDyse/FVG+YrBNk56iqVAri4HG1rTbpJWc0Si05FNaKyuOB9sAIKDA6vLbgaDTAZgWTH8fjJYOmN29EAlNcbSq0qSZWMXjguUPDD5Wj2tYM7JTKWd5NCkhmRbZEY2LlPNV8bgG3V2kvq4jg+dfExEx2KZJS/H2B7eqzw2tpgxq0LBnl1XVbmqjq5BG9M1SCEjThNCib5aqArXAYwfc7d327dICBGD2BYG+IGQoDCWWXywUQFHsWtCKgGtRHYRTh1ZWCMXjhGNONUx/X3JedwLh0OE5bTFci+qynpGdSjnLTAmhbD48Tjop9eONbj8GO0utnpRv2Rz5+TaaLx/iiaaC/LxK0LSgVZbAONHVH7hpGrRyr10f27SrkUAAkWNtgGFBCAHZG4AydwYURYHQVTjqqqDVlCPw+l67g6FIbs6iFnqhuPu/MhaKCrWsAAUfXQXnwlpAVeBbf3I8SBwqmBzuCv+pFqAyJWR6G/LD4ySkVxYjsbeq1eGH0d2bsb61lBLhIy0p9y/J8QhzII8+xBNNBQy2adJK7qaY/FWtFTIQaemA1dkD40QnAEBGDJg9fTC3vwdHXRX0mgr7OKpqdzr84EjSMYRiL0pKoiko2HAqnHNnZgx2xzqYtAIhmB09EA4dRlMbAAFtRin0ipK8DVCZEjJ95WNXSUddNYTLCZmwCDv4zodwr1wI1de/BsQyTYR2H4LVG0jqhOpaVDeu4x21PPwQT5TvGGzTpBRbOBjrphhpbofS1gmh6TCa2xGMtiiPtRyXpml3X4OEFQghuO8owkdaYfUF4yX8VJ8HikuHNAErGIRS6LHrbsOupOGoq4Jjfg08q+oHDaDHKphMrUcc+1pXhiJQSwr4Zkh5KdddJXPRQdKzaiH6Xttj/6CqsEIGenfshlZWBLXEBxmMIHK8za5aktAJVS3ywrmoDsMpIjLg+BP3cerD7oA5FDa1IZo4DLZpUkqqbBHtphgp8UI90YO+V49D9boBhwbV54bi1BE+0mJX0E7oIAnDQPC9BjhqK6CVFsAEIAFopQVQSwtRcNYq+/hOHcLjghACiscJ7xlLc/78Bq1HzDq4lOdy/e1GpoY1UkpYvb1we71Qva6MXVcH4lmzFK1bHkKk8YR9rFgnVMuCGS0vmlgfXmgaHLMqUP71zXDOrxmT8ScaqGssEeUnBts0rrJt42yFIgjsbogvRpRSItTVg97tuyFNC5Y/AMXjhBG23xS1yhK7AU5iu3AhIAGEDhyDPqMcVl8QErBno+ZUI3K8Le1xE6uP5HImaMh6xCOogys0dchuc0LnS54oleLUUf7VTThx26MZrwuphKag9Av/MKJAm4imH77z0rgZbhtnvbosmq9t2XWwDx6PdlxT7BrSkNAqiuFaWAvF7URg9yGEDzYi0twBGTYA2O3bpZQwe3ohdA16eRHcqxbaN2WoP21J2T/rlMP2xtnUuB1uHdzE6i0D7jNEWTOa+nJV2z3fqYVeVFz9abRc/wACb+9P6u4YJwBHTSW8H1kB97J54z9IIspLDLZpXIykjbNWUgDF47JrYPt7YbZ2QnU5obidsLp6oZYXwn3yPLs6Cey8a9ei2XDMnoHg7gZYvcFoYxcFitsF10l1EIoKRU3vDDeoHKR1ZJPHOtxc17TqLalUBVo+Vk6gMTWVaruPNcXlgG/tMriWzkX4wDEYzR2wwmEIVYNa5IFzQa1dwWiM86mJaGpjsE3jYqRtnBWnDsesSkRaOyFcTqgJaRCOeTXxQDvpPi4HnIvqEP7gKJQCd3y7FYpAdQ8z0I7Jg/bGydVb0ssIOmZXp7VLp+lnKtV2zxVF1+wqI/lWaYSIJiUG2zQuRtsa2AqkfO3t1KCltGZPpHicgJbSCDliAu7M+2cjH9obx6q3GC0ddvqNBEShF1plCQNtAjD1arsTEU12DLYpP6SWyormcWea2QZglx1JnbgbTn2uPBar3qJ4nBAOfciUgVh+LnN5pw82HyIiGj8MtmlcjLaNs+JNWdhnWDDbeqCVFWbc3+zuA6zkaFuMsq1yPuaxDic/l7m80wubDxERjQ9l6F2IRs8xpxpQR366qcU+KMXJ7ZNDHxyBZZlp+1qWBePYieT7F3hHl0aRp3msQ/7eE57XcPYlIiKi7DDYpnERyxMdacAthIBeX5u0zezpRWD7+4g0tcGyTEjLgtHeg9DeI7BCyekQ+qzKEY89n/NYB/29pzyv4exLRERE2WEaCY2b0bRxlhJwLJ2LSEMLrJ4AEC3fZwbCCLzXALwHWL0Bu207ACgKIBRAUaF6nXDMqUYkOtstXI4BH0fxuuNlvaZKe+Ph5Ocyl5eIiGhsMdimcTXSPFEpJYzOTpSfthQnbt5qb0vsFgnAdGiQwf4ZbaGo0GaUoujCddBKChAuKbSbUtQOPMvtmF09JfNYh/N7Zy4vERHR2GEaCeUVfWY5Kq7+FNQib9ptituZVHFE8blRdNF6aCUF0fuWQZtRNvDBmZNMREREY4wz25R39BllKPnsOQi+34Dg7kOINLUBAISqQPF5oOga9NoKOGZVQiuOVs9QFXhWLgQA1hcmIiKiccNgm/KSUBU459fAOb8GVjAcb3qjeOzZ7VhTF7XYl5ZzzJxkIiIiGi8MtinvKS4HlJRFj7GmLt4zlqbvz5xkIiIiGifM2SYiIiIiyhEG20REREREOcI0EqIcsgKhjPnhREREND0w2CbKkUhTe1rlE7PTj/DRFli9ASguLsgkGi7h0IG+0ND7EBFNEkwjIcoBKxDKXGIQAEwL4YPHYQ2jgyYR2dQi35jsQ0Q0XhhsE+VAuKEpc6AdJU3LLk9IRMPimFMNqAO/dQlNZaoWEU0qTCMhyoFYjvZgIs0dCB9pgdHUBisYgVAF1AIvHAtq4Zw7YxxGSZR/FLcT7uXzB2xO5Vo2jzXziWhSYbBNlANykBQRszeAvtf2INLaCa20IPm27j6EG1vRu30XfGuXw/uRFRAJLeiJCNCrS9OaUylFXhjFbujVpRM8OiKiZAy2icaR0elH919egdHaOeh+MhSB/7/fgV5dhqJLPsqAmyhFanMqKSWCnZ0TNyAiogEw2CZKkFiqb7DZ6aEE3tkPKxSBDEdgdPTYxzItBN5vACRg9fRBDnEMoaroePA5hI+2wLNqYcbjD0ZxDl6RQTh0tqonIiLKMQbbRFGZSvWN+FjN7Qh92AijuR3Sso9ndvXC7OmDUFVAUaC4HRCKgF5TAbXEBxk2EGlqg9neHT+ONAz0vvwuHLOrk1rSW8Ew5BDBtiUlrMFKpPWF4qUI3cvn8+t3IiKiHGCwTXlprGvtDlqqbxiklAi8/SF6X94FaZoJDwBYvUF7H9MEgiGYhomCDadAKymM7+aoqUDkeBsCu/b3H9O0ENp3BO6T549qbAMyLQTe3Q+1yMsZbiIiojHG0n+Ul8a61u5QpfqyFXj7Q/S9vgepOSJWKByf4Y6Pz+tCYOeHMHsDSdv1GWXQqsqStgX3HR712AZlWvbvgIiIiMYUZ7YpLznmVCN8tGXgAFlVhlVrN5tSfVY4AqOlA1ZvENIw024327vhf+U9e9+ePkiZMDbDAkyrP+CW0eN19qB32044l86FQP8iSKEImP4A4NCguJ0wO/2QlgWh5O7zcTa/AyIiIhoeBts0aSQuTgQw6OK9oWrtupfPH9OUCKOjB+FDg89+B/cdAaxoEG5ZgLSgVZZCqyyG0dIJKQAYph2smxYgJWBZMPuCME90Qy3yJj0HmCZkMAQzFIbi80CauQ22iYiIaOwx2KZJIdPixMTFe1pVSdp9MtXaHWl1DbXIB7Mz88yuFY4MGWhboTCM1uSOkHpVGfQZdjqIoioQAoCuQin0Ji2CBACjrTMp2I7ldwMApITlD6SloYw1trgmIiIaewy2acINujgxunjPW7g8431Ta+2O1GBpKUZLx5D53MaJruQNqgK1sv8DgvC6+v+tAEJXISMG4LYrjFg9AUgpIYSAhIRxojP5cEUemK2dUGsrh/nMsjTMtBuiqWqsF18TEfE7aZpwQy5ONC17ZjmHYmkpUNNfEkmzzANIrcmt+txQEo6l+NwQzoTZdlWDDIYhI3baiZQWpGlBWhKRo62wUhdN1lZlNY4RyUHaDVG+GuvF10REnNmmCZfNwjyzqxeoLsrpOFLTUmIBtOJy2LPQgxC6DqGoKdv6X14ievzw4Wb7Z2HXwTa7eyE0DcKhwWhqg9nVay++FAqgKPYxnRqcdZVQXA4oHmd8TNYQXSUVpx7fP+OY2dSGKM1YL74mImKwTRMum06NQzVwGSuZ0lK0ipIhZ9YVtzMpZ9vs6IFWVQLF2d+IRp9VCUjA7OyG1ReE0NR4QC4NE1YoAsXdv79QVKhlBSjYeBqcs6vhmF2dNLZBG9YAUDxO+D66csjnTET9cr34mmkqRNMPg22iIQw50wVAr62A0NT+koASCO49AvfJ8+Il/YQQcK9agL4duyH7mpPur7hdSJuoFoDvIyvhnF2dcTYt0taN0J4GGM0dsEIRCFWBWuSDc0ENHHNnjPp5E01XY7n4OtVgi7ET9yGiqYPBNtEQBp3piu3jdMC5oBbBPYfi24zmNvS9EYFzzkyopQWQEQNGUxtkKALhcQCBcP/9ExZQAoBaWgjXkrlw1c9Km00zWjvR+f+9iPDh9Nl2s7sX4SPNENvtWW3ObBONzFgtvk7FNBWi6YfBNlEWBsrnTuQ9/SSEG45DGhag2vnbZmcv+nZ+kLav6vNAet0QmgLF4YBeWw4oChSPC/rMcqgFHqg+Nxyzq5Nm08JHmnHi1kcROXZi0PHKQAj+Z9+As64SheevGYPfABGNhfHuEUBEE4/BNuWdxOY32eR7jxe12IuCc1ej+687sruDENCrSuE9Y2nGHE0ZMWC0dsRzwc3eIDoe+DtkIAyjrRvSTO9imXR4VUXbXU8idLAJ7pPGfoZuokkJBP1++H2+tBQcLv6kySyXaSpENPkw2Ka8EmlqR3DXgSHrXk8UvaoMBRtORcdDzwORQYJhy4Ja6IF7VT1gSchgOH0XKZMWQfa+9C6snj77B9MELBNC16HXVEAt9kGGwogcP5GUDyoNA/5tO6HXlkPRptbLXUoJGQjBUjSI1Gi7L5TUFEmvLp2YQRINIFdpKkQ0+Uytd1+a0qxgGMFdhydtoB3jmFWJgrNXIXzwOMJHW1JqZgtoVSUQM1UoBW4oenYvQSsUQWh/Y9I2tbgQ7lULoWj9JQcdtZUIH2lOyh2X4QjC+4/BtahuVM8rL0WbIqlFXs4YEhHRhGCwTXnDPNwCzTDTZzEnIaGpcNRVwVFXBSsUgYxEIBQFcOpQVDW6uDH75xFuOJ5c61sA7mVzkwLtGMesKkRaOmElzHAH9x2ZnsE2YDdFamjiLCIREU0IBts0KRjt3QjuOQyjqa2/jF2hF86FtXDMmQEBwOrunehhjoji1AHn6OrmGh09ST9r5cWDztQ6asoRTAi2zZT7TzfZNE4iIiLKBQbbNKGMti50PvpixqYxZncvwkdbIFxO+NafDMyvmoARThJGcv63GKQzpH17cilBDLGYkoiIiHJDmegB0PQVbjyBlusfRKRxiDJ2wRD8z7+J0LsHx2lkoyeyycVWs3/5CUfy8YaaqU37FkCf3h3p2CSEiIgmCme2acwMpySf2RdC5wN/h9UXyrKMnQJr29voPtQCR93gM9xCU6F4XdAqS6BMUNtjxeOC5Q8Mvo/LMejtibTKkqSfrc5eGN290Aq9aftKKRE+nNyhUq8szvqxphw2CSEiognEYJvGRKSpfdAOi6l6X94FMzb7Gitjp2nQayvtMnbhCCLH2mB2dvffSdpNXbSK4kEXSUoAlj8A40QXHLOroZUUjOKZjYxWWQKjrWvg34eiQBnGbKtjVhWE2wkZ6C8FGHznQ7hWLIRW4Ilvs0wTod2HYPUGIJT+xZPOxdN0cSCbhBAR0QRjsE2jZgVCwwq0rYiB0AdHkrapxT64Vy1KLmNXU4Hw0VYEd/enjwhFgXDo0EoKYPUFkyt0ZGA0tUErL7IXKY4jxeOEa/FshA4eAyyZcqOAo64SwjH4zLbi1KEk5GZ7Vi5E32t77B9UFVbIQN+O3dDKC6GWFEAGI4gcb4M0TEBRAVWF0DSohR646mdBKJO/istwSAkIy4DicbGpDRERTVpTKth++umn8Yc//AHvv/8+AoEAysvLsXLlSvzv//2/MWPGjIke3pQVbmgaVu3rSENTehm7pfMyl7GrrYBxogNmW381jfDBY/Cc/JGsH89RWzlhZd8SU2uA/i5xfa/tTmpYk4niccL30ZXxnz1rlqJ1y0PxHHdpRH+HloTZZn8DoBb2z3ILTYOjtgLlX78YzgW1Y/isJgcpJYzOTviKB/+mg4iIaCJNiWBbSomf/OQnuP/++1FXV4cLLrgAXq8XLS0teO2119DY2MhgO4eGW1bN6EwuQ6eWFkJJrZ6RQJ9ZkRRsD7eM3USWfRvLLnGKU0f5Vy/GidsfReR425D7C01B6Rc+PiUDbSIionwxJYLte++9F/fffz8uv/xy/PCHP4SqJs+QGsbgqQY0vmRKG/PBAm0AEClpANIwIaWclrOZaqEHFVd/Gi3XP4DA2x9mXogqAEdNJbwfWQH38vnjP0giIiKKy/tgOxgM4uabb8asWbPwgx/8IC3QBgBNy/unOampRT6YndnPHgvn6MrYCV0bVqA91cq+KU4dvjOXwrV0DsIHjsNobocVjkAoKtQiD5wLaqEWepPyvYmIiGhi5H0U+tJLL6GzsxOf/OQnYVkW/va3v6GhoQEFBQVYu3YtZs+eplUYxpFjTjXCR1uyztvWK0qQWBTP6u6D0dGTsWqIhETkSGoZu5K0/QY0hcu+KZoGV/0soH7WRA+FiIiIBpD3wfauXbsAAKqqYtOmTTh4sL9yhaIo+OIXv4jvfve7A95fSjngbZQd4XLAtWwegrsO2JUwhqDVVkDxumH19ofcgXf3w71yYdICP2lYCO09DLOnz66uAbsChXNxXVZ/N6GpcC2bB+FyTLq/s5RDn3uD7TPa+08Fsec2lZ8jZY/nA6XiOUGpcnFOZPNNe94H221t9kKxu+66CyeddBIefPBBzJ8/H7t378aPf/xj/L//9/8wa9YsfO5zn8t4/66uLr4Qx4JLgbWsDubhFljdvZDhIfLkF9fCeH0vAMCEBQRN9Gx/D2qpD6LICxkyYLZ0JrQpt6BqCiyvE5HaMhjWwMcXDg1KoRdqXSVMlwJ0do7JUxxLQb8/qWZ2JsIyYAww9tHefyrp6uqa6CHQJMLzgVLxnKBUY3lOlJQM/W173gfbsUBZ13XcfPPNqKqyuwuuXr0aN954IzZt2oS77rprwGC7qKho3MY6LVRXZrWbPHcNWm96BJEjzYjoevKMuN8OIpPSSlQVsqIQM676NNyL6sZyxBPC7/PBUgZ/+SkeF3zFxTm5/1QgpURXVxeKioqm5WJZSsbzgVLxnKBUE3VO5H2w7fPZi9+WLVsWD7RjFi5ciFmzZuHQoUPo7u5GYWFh2v35ApwYwqGj/CsXoe2OxxE53j70/qoC76Vnwb2obkr8zRSnPuTMtOLUB3yuQgx97mazz1QghJgWz5Oyw/OBUvGcoFTjfU4o4/ZIOTJv3jwAQEFB5pbcse3BYHDcxkTZUQs8KP/WJXCfshBikA6PjtoKFF3yUThOnjeOo8utbCqkTLUqKkRERNNR3s9sr1mzBgBw4MCBtNsikQgOHz4Mj8eD0tLS8R4aZUFx6vCdsRTuk+YidDBaxi4UtsvYFXrgXFADtcgH4XZiKlVLH7KCyxSuokJERDSd5P3Mdl1dHdavX49Dhw7hwQcfTLrt9ttvR3d3NzZu3Mha25Oc0FS4FtbCt/5kFJ6zGgVnr4Ln1EVTdnZXcTvthjNqhpegqsC9fD4UN+tkExER5bspEYH+5Cc/wWc/+1n86Ec/wjPPPIN58+bh/fffx/bt21FTU4PvfOc7Ez1EojR6dSnUIi/CDU3xxj5qkQ+OOdUMtImIiKaIKRFs19XV4eGHH8aNN96I//7v/8ZLL72E8vJyXH755fjWt76FsrKyiR4iUUaK2wnXEjZeIiIimqqmRLANADNmzMB111030cMgIiIiIorL+5xtIiIiIqLJisE2EREREVGOMNgmIiIiIsoRBts04YRj4IY28X0GaXpDRERENFkx2KYJl103Re84jISIiIhobDHYpgnnmFOdublLjKrAMZvdFImIiCj/MNimCcduikRERDRVTZk625TfhuqmKKWc4BESERERDR+DbZo02E2RiIiIphqmkRARERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttERERERDnCYJuIiIiIKEcYbBMRERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttERERERDnCYJuIiIiIKEcYbBMRERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttERERERDnCYJuIiIiIKEcYbBMRERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttERERERDnCYJuIiIiIKEcYbBMRERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttEeUg49DHZh4iIiHKLwTZRHlKLfGOyDxEREeUWg22iPOSYUw2og7x8VcXeh4iIiCYUg22iPKS4nXAvn5854FYVuJfPh+J2jv/AiIiIKIk20QMgopHRq0uhFnkRbmiC2eUHYKeOOOZUM9AmIiKaJBhsE+Uxxe2Ea8nsiR4GERERDYBpJEREREREOcJgm4iIiIgoR6ZksH3HHXdg0aJFWLRoEXbu3DnRwyEiIiKiaWrKBdv79+/HjTfeCI/HM9FDISIiIqJpbkoF26Zp4rvf/S4WL16MjRs3TvRwiIiIiGiam1LB9h133IE9e/bg5z//OVRVnejhEBEREdE0N2WC7X379uGmm27CN77xDSxcuHCih0NERERENDXqbBuGge9973uYP38+vvrVrw7rvlLKHI2KxlLs78S/F8XwnKBEPB8oFc8JSpWLc0IIMeQ+UyLYvvXWW7F371488MAD0HV9WPft6uriCzGPdHV1TfQQaJLhOUGJeD5QKp4TlGosz4mSkpIh98n7YHvPnj249dZb8Y//+I9YunTpsO9fVFSUg1HRWJNSoqurC0VFRVl9iqSpj+cEJeL5QKl4TlCqiTon8j7Y/u53v4tZs2bh6quvHtH9+QLML0II/s0oCc8JSsTzgVLxnKBU431O5H2wvWfPHgDA8uXLM97+mc98BgBw8803sxwgEREREY2rvA+2P/3pT2fc/vrrr6OhoQEbNmxAaWkpampqxnlkNJaEEFnlRdH0wXOCEvF8oFQ8JyjVRJ0TQk7R1YHf+973sHXrVtx///1YuXLlRA+HiIiIiKahKVNnm4iIiIhosmGwTURERESUI1M2jYSIiIiIaKJxZpuIiIiIKEfyvhoJ5b9HH30Ub7zxBnbt2oV9+/YhEonguuuuwyWXXJK275YtW3DTTTdlPI7D4cC7776b6+FSjjU3N+PJJ5/Etm3bcODAAZw4cQJFRUU45ZRT8OUvfxkrVqxIu4/f78eWLVvwt7/9Da2traioqMB5552Hq6++Gj6fbwKeBY2V4Z4PvEZMfd3d3bjxxhvx7rvv4ujRo+jq6kJJSQnmzp2Lyy+/HOedd15aDWVeI6a24Z4T432dYLBNE+6GG25AY2MjSkpKUFlZicbGxiHv88lPfjKtnKOqqrkaIo2je++9F3fccQfq6uqwdu1alJWV4dChQ3jmmWfwzDPP4De/+Q0uuOCC+P59fX244oorsHv3bqxbtw6f+MQnsGfPHtx999149dVX8Yc//AEej2cCnxGNxnDPhxheI6aujo4OPPzww1ixYgXOOeccFBcXo62tDc899xz+6Z/+CZdddhl++tOfxvfnNWLqG+45ETNu1wlJNMFeeuklefToUSmllLfddpusr6+XDz/8cMZ9b7zxRllfXy+3b98+nkOkcfTUU0/J1157LW37a6+9JpcuXSpPP/10GQqF4ttvuOEGWV9fL3/1q18l7R/bfsMNN+R8zJQ7wz0feI2Y+gzDkJFIJG17T0+PvOCCC2R9fb3ct29ffDuvEVPfcM+J8b5OMGebJtzatWvZdIjizjvvPKxevTpt++rVq7FmzRp0dnZi7969AAApJR588EF4PB5861vfStr/a1/7GoqKivDQQw9Bch143hrO+UDTg6qq0LT0L+Z9Ph/Wr18PADh06BAAXiOmi+GcExOBaSSUl15//XW88847UFUV8+bNw9q1a+FwOCZ6WJRjsYtp7P8NDQ1oaWnB+vXr074GdjqdWL16NZ599lkcOnQIc+bMGe/hUo6lng+JeI2YfkKhELZv3w4hBBYsWACA14jpLtM5kWi8rhMMtikv3XjjjUk/V1RU4Je//CXWrVs3QSOiXDt27BhefvllVFRUoL6+HkD/TMVAb5KzZ8+O78c30qkl0/mQiNeIqa+7uxv33HMPLMtCW1sbtm3bhuPHj+Oqq66Kv955jZhesjknEo3XdYLBNuWVJUuW4Je//CVOO+00lJeXo6mpCU888QRuu+02fOMb38ADDzyAxYsXT/QwaYxFIhF85zvfQTgcxv/6X/8rvoClp6cHAAasJhDbHtuPpoaBzgeA14jppLu7O6mihK7r+M53voN//Md/jG/jNWJ6yeacAMb/OsFgm/LKxo0bk36ePXs2vvnNb6K8vBw//vGPccstt6R9UqX8ZlkWfvCDH+C1117DZZddhs2bN0/0kGgCDXU+8BoxfdTW1mLv3r0wTRPHjx/HX/7yF/z2t7/FW2+9heuvvz5jehFNbdmeE+N9neACSZoSNm/eDE3T8Oabb070UGgMSSnxox/9CI899hg2bdqE//N//k/S7QUFBQDsGrqZxLbH9qP8NtT5MBheI6YuVVVRW1uLr371q7jmmmvw9NNP44EHHgDAa8R0Ndg5MZhcXScYbNOU4HA44PV6EQwGJ3ooNEZiM5gPP/wwLrzwQvziF7+AoiRfsmL5lg0NDRmPEcvXjO1H+Sub82EwvEZMD7HKEzt27ADAawSlnxODydV1gsE2TQkNDQ3o6upiCcEpwrIs/PCHP8QjjzyCCy64AL/61a8yNhqYM2cOKisr8eabb6Kvry/ptlAohNdffx2VlZV8I81z2Z4Pg+E1Ynpobm4G0N+YhNcISj0nBpOr6wSDbcobfr8fe/bsSdve1dWFH/7whwCAT3ziE+M9LBpjiYHVxz/+cfz6178e8CIphMCll16Kvr4+3HzzzUm33Xbbbejq6sKll16a1rqZ8sdwzgdeI6aH3bt3Z1zQ2NnZid/+9rcAgI9+9KMAeI2YLoZzTkzEdUJIVnKnCfbggw/ijTfeAADs27cP7733Hk455ZT4TMPGjRuxceNGHD16FOeccw6WLVuG+vp6lJWVobm5Gdu2bUNnZyfWrVuHW2+9lbV089yWLVtw0003wePx4POf/3zGRU4bN27EkiVLANitmD/3uc/FWzEvXboUe/bswbZt27BkyRK2Ys5zwzkfeI2YHn72s5/hoYcewpo1azBz5ky43W4cO3YMzz//PPr6+nD++efj+uuvj6cZ8Rox9Q3nnJiI6wSX6tKEe+ONN7B169akbW+++WZ8gUJNTQ02btyI4uJiXH755di5cyeee+459PT0wO12o76+Hps2bcKll1467K+WafJpbGwEYL9B3nrrrRn3qampiQfbHo8H9957L2666SY89dRT2LFjB8rLy/HFL34RV111Fd9E89xwzgdeI6aH888/H36/Hzt37sRrr72GYDCIoqIinHrqqdi8eTM+8YlPJM1U8xox9Q3nnJiI6wRntomIiIiIcoQ520REREREOcJgm4iIiIgoRxhsExERERHlCINtIiIiIqIcYbBNRERERJQjDLaJiIiIiHKEwTYRERERUY4w2CYiIiIiyhEG20REREREOcJgm4hoitmyZQsWLVqEV199daKHQkQ07THYJiKiKe3KK6/EokWLJnoYRDRNaRM9ACIiGluXX345LrjgAsycOXOih0JENO0x2CYimmJKS0tRWlo60cMgIiIwjYSIKKNXX30VixYtwpYtW/Dmm2/iyiuvxKpVq3DGGWfgX//1XxEMBgEA27Ztw2c/+1msXLkSa9euxa9//WuYppl0rJ6eHtx+++244oorsH79eixbtgzr16/Hd77zHRw+fDjtsRNzrrdu3YpLLrkEK1aswJVXXgmgPy0iHA7jhhtuwLnnnoulS5diy5YtafdP9NBDD+Eb3/gGNmzYgOXLl+P000/Hl770JWzfvj3j78AwDNx2223YuHEjli9fjnPPPRe33XYbjhw5gkWLFuF73/te2n3a2trw85//HOeeey6WLVuGNWvW4Oqrr8a+ffuy/t0P9fwOHjyIX/3qV/jkJz+JNWvWYPny5Tj//PPx7//+7+jt7U061qJFi7Bjx474v2P/pY59z549uPbaa+N/n7PPPhs//elP0dHRkfW4iYgy4cw2EdEg3n77bdxxxx1Yv349PvvZz+LVV1/FH//4R/j9fpxzzjn43ve+hw0bNmDFihV4/vnn8Z//+Z/w+Xz4xje+ET/G/v37ceONN2LNmjU499xz4Xa7ceDAAfz5z3/GCy+8gEceeQQ1NTVpj33nnXfi1VdfxYYNG7B27Vqoqpp0+1VXXYU9e/Zg/fr1KCoqwqxZswZ9Lv/2b/+GxYsX48wzz0RpaSmam5vxzDPP4H/+z/+JLVu2YOPGjUn7/+AHP8Cjjz6Kuro6XH755QiHw7jnnnvw1ltvZTz+4cOHceWVV6K5uRnr1q3Dxo0b0dbWhr/97W948cUXcffdd2PFihXZ/uoHfH5PP/00Hn74YaxZswann346LMuK/51ee+013HfffdB1PX6MrVu3orGxEVdddVX82EuWLIn/+9lnn8U111wDVVWxYcMGVFdXY//+/bjvvvvw4osv4oEHHkBRUVHW4yYiSiKJiCjN9u3bZX19vayvr5dPP/10fHs4HJYXXXSRXLRokVyzZo18++2347f19PTIM888U55++ukyEonEt3d3d8uOjo60x3jllVfk4sWL5Q9/+MOk7TfeeKOsr6+XK1eulHv27Em73xVXXCHr6+vlxRdfnPG4sftv3749afvhw4fT9m1ubpbr16+X5513XtL2l19+WdbX18tLLrlEBgKB+PaWlha5bt06WV9fL7/73e8m3eczn/mMPOmkk+SLL76YtP3AgQNy1apV8sILL0x7/EyGen5NTU0yFAqlbd+yZYusr6+Xjz76aMbjZdLe3i5POeUU+dGPflQ2NjYm3fb444/L+vp6+W//9m9ZjZuIKBOmkRARDeL0009PmvHVdR3nn38+pJQ4++yzcfLJJ8dv8/l8OOuss9DZ2Ymmpqb49oKCAhQXF6cd+4wzzsCCBQvw8ssvZ3zsyy67bNAqGldffXXG4w4k08x3ZWUlzj//fDQ0NKCxsTG+/bHHHgMAfPOb34TL5Ypvr6iowOc///m047z//vt46623sHnzZqxbty7ptrlz5+Kyyy7Dvn37hpVOMtDzq6qqgsPhSNt+xRVXAABeeeWVrB/j0Ucfhd/vx7e//e20BaUXXnghli5diieeeCLr4xERpWIaCRHRIE466aS0bZWVlQCSUxFiKioqAADNzc2ora2Nb3/11Vdxzz334J133kFHRwcMw4jfFkt5SJUYyI/k9lRHjhzBbbfdhu3bt6O5uRnhcDjp9paWlng6y549ewAAq1atSjtOpm07d+4EAJw4cSKeW53owIED8f/X19dnNd6Bnp+UEg8//DC2bt2KDz74AD09PbAsK+l5ZCs27rfffjtj/nwoFEJHRwfa29u56JSIRoTBNhHRIHw+X9q2WO50pts0zb6sJgbTTz75JK699lp4PB6sX78eNTU1cLvdEELE84kzKSsrG3Rs5eXlWT+PQ4cO4dJLL4Xf78eaNWtw9tlnw+fzQVEU7NixAzt27EgKvv1+PxRFQUlJSVbj6urqAgA8//zzeP755wccRyAQyHrMAz2///t//y/uu+8+zJgxAxs2bEBFRUV8pvumm25K+xAxmNi4/+u//mvQ/YYzbiKiRAy2iYhy7KabboLT6cQjjzyCOXPmJN02WIqCEGLQ4w51e6K7774bXV1d+PWvf41NmzYl3fYv//Iv8YodMT6fD5ZloaOjI21Gt62tLe34sQ8eP/7xj+PpHKOV6fm1tbXhv/7rv7Bo0SLcf//9cLvd8dtaW1tx0003DesxYuN+/PHHs55xJyIaDuZsExHl2OHDhzF//vy0QLu5uRlHjhwZtzEAwIYNG5K2W5aVsbrI4sWLASDjbZm2xaqMDFSpZKwcOXIEUkqsXbs2KdAGgNdffz3jfRTFfqtLLckI9KeqxNJJiIjGGoNtIqIcmzlzJg4dOoQTJ07Et4VCIfzrv/5rUrpJLsVysd94442k7XfccUfGRYsXXXQRAOCWW25BKBSKb29tbcXvf//7tP1PPvlkrFixAk888QT+8pe/pN1uWVba7PlIxBYxvvXWW0l52k1NTfjNb36T8T6xsn2Ji1ZjPvWpT8Hr9eK3v/0tPvjgg7TbA4EAA3EiGhWmkRAR5diVV16Jn/70p9i8eTM+/vGPwzAMvPzyy5BSYvHixfHFiLn02c9+Fo888giuvvpqXHDBBSguLsbOnTvx/vvv46yzzkrLs167di0uuugiPP7447joootwzjnnIBwO48knn8TJJ5+M5557Li3N4ze/+Q2+8IUv4Nprr8U999yDpUuXwul04tixY9i5cyfa29vx7rvvjup5xKqnPPXUU/jUpz6FM844A21tbXj++edxxhlnZPym4IwzzsBTTz2Ff/7nf8bHPvYxOJ1O1NfX46yzzkJpaSn+4z/+A//8z/+Miy++GB/5yEcwb948hEIhHDt2DDt27MCqVatw5513jmrcRDR9MdgmIsqxyy+/HJqm4b777sMDDzyAwsJCfOxjH8O3v/1tXHPNNeMyhpNOOgl33nknrr/+evztb3+DqqpYtWoV/vjHP+Lvf/97xkWNv/jFLzBv3jw8/PDDuPfee1FdXY0vfOELOPPMM/Hcc8+lLRCdNWsWtm7dirvuugvPPvssHn74YSiKgsrKSqxevRof//jHx+S5XHfddaipqcFTTz2F++67DzNnzsQXv/hFfOUrX8FTTz2Vtv9ll12GxsZG/OUvf8Gtt94KwzDwyU9+EmeddRYA4KyzzsLWrVtx55134pVXXsFLL70Ej8eDqqoqXHLJJWk57kREwyGklHKiB0FERPnjwQcfxI9+9CP85Cc/wec+97mJHg4R0aTGnG0iIsqotbUVqfMxzc3N+N3vfgdVVXH22WdP0MiIiPIH00iIiCij22+/HS+88AJOPfVUlJWV4fjx43juuefQ29uLq6++GjNmzJjoIRIRTXoMtomIKKOPfOQj2L9/P1544QV0d3fD4XBg0aJF+NznPhevVkJERINjzjYRERERUY4wZ5uIiIiIKEcYbBMRERER5QiDbSIiIiKiHGGwTURERESUIwy2iYiIiIhyhME2EREREVGOMNgmIiIiIsoRBttERERERDny/wPkK6iwbeAe0wAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"utils.plot_scatter(WAFFLE_DIVORCE.Marriage, WAFFLE_DIVORCE.Divorce, label=None)\n",
"\n",
"utils.plot_errorbar(\n",
" xs=WAFFLE_DIVORCE.Marriage,\n",
" ys=WAFFLE_DIVORCE.Divorce,\n",
" error_lower=WAFFLE_DIVORCE[\"Divorce SE\"],\n",
" error_upper=WAFFLE_DIVORCE[\"Divorce SE\"],\n",
" error_width=7,\n",
")\n",
"\n",
"utils.plot_x_errorbar(\n",
" xs=WAFFLE_DIVORCE.Marriage,\n",
" ys=WAFFLE_DIVORCE.Divorce,\n",
" error_lower=WAFFLE_DIVORCE[\"Marriage SE\"],\n",
" error_upper=WAFFLE_DIVORCE[\"Marriage SE\"],\n",
" error_width=7,\n",
")\n",
"\n",
"plt.xlabel(\"marriage rate\")\n",
"plt.ylabel(\"divorce rate\")\n",
"plt.title(\"Errors not consistent across states\");"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ec2c18fc-ea3e-485a-b220-726cb9ae16e4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAz3hJREFUeJzs3Xd4HNW5P/DvlO2rXm11F8lyxxUMptm0EEIJSQg1heAk1Jtwk5B+0yC5wT+4oQQnBDDgxKHFCRibYhtswL3Isi3LltWtVV9JW2d25/z+WO9Ko92VVmVXK+n9PA8P1syZmbO7s7PvnDnnPRxjjIEQQgghhBAy6vixrgAhhBBCCCETFQXbhBBCCCGERAkF24QQQgghhEQJBduEEEIIIYRECQXbhBBCCCGERAkF24QQQgghhEQJBduEEEIIIYRECQXbhBBCCCGERAkF24QQQgghhEQJBduETFJ79uxBSUkJ7rjjjrGuChlDDQ0NKCkpweWXXz7kbekcIkP1ox/9CCUlJXjzzTdjdsySkhKUlJTE7HiE9CeOdQUIiYXLL78cjY2Ng5Z79NFHcdNNN8WgRoTEvxdffBE9PT246667kJiYONbVCenEiRP44IMPUFpaitWrV4/qvv/0pz8BAO6///5R3S8ZPW+++SYaGxtx4403Ijc3d6yrQ0hIFGyTSaWwsBCpqalh16elpcWwNoSMPY1Gg6KiImRlZQWtW79+fSCQiedg+6mnnsKNN9446sH2U089BYCC7Xj21ltvYe/evVi2bFnYYLuoqCjGtSJEjYJtMqmsWbOGWq4J6SMrKwtbtmwZ62oQEjV0fpOxRn22CSGEEEIIiRJq2SZkAP5BNSdPnsTWrVuxfv16nDx5Ej09Pfjwww8BAKtWrUJOTg62bduGf/7zn9i4cSPOnDkDh8OBkydPBvZ18OBB/O1vf8PBgwfR3d2N1NRUnH/++VizZg2mT58edOw77rgDe/fuxfr165GYmIhnn30W+/fvR0dHB373u99F3EL//vvv4/nnn0dFRQV0Oh0WLlyI++67b9DtrFYrXnjhBXz44YdoaGgAx3GYOXMmbr75Ztx8883g+dD36mVlZVi/fj3279+PtrY2JCYmIj8/H6tWrcItt9yChIQEAL6+lo888ghuvPFG/PznP8ef//xnbN26FWfPnsXChQvx8ssvq/b5wgsvYP/+/ejs7ERiYiKWLFmCb3/725g9e3ZQHSorK7FlyxZ88sknaGxshNVqRXJyMhYuXIhvfOMbWLRoUci6b9u2Da+++irKy8ths9mQkJCAjIwMLFu2DLfeemvIz2nnzp149dVXUVZWFvhcL7zwQnznO99Bfn5+yLo999xz2L9/P9rb26HX65Gamop58+bh+uuvx8UXXzzoZ/P+++/jvvvuwxVXXBHo6uD385//HBs3boRGo8H+/fuh1+sD6/bs2YM777wTy5YtC7y/DQ0NqnO472fjt2rVKtUx1q9fj+XLl6uWKYqCl19+Ga+99hpqa2uRkJCASy+9FA8//PCAXbdCifQ96jsW46233sJbb70V2Eff19ja2ootW7Zgx44dqK6uRmtrK/R6PUpKSnDzzTfjhhtuUB3/T3/6k+p97T+47sMPP1R1WbBYLPjrX/+KnTt3oqmpCVqtFqWlpbjttttw9dVXD+m1/+hHP8Jbb72FRx99FOeddx6efPJJ7NmzB3a7HdOmTcPtt9+Om2++Oez2O3bswMsvv4zy8nLY7XZkZmbi4osvxpo1azBlypSg8v738MMPP0R1dTXWrVuH48ePgzGGBQsW4N5778WSJUsG3C5U942+16/+50ooLpcLH3zwAT788EMcP34cLS0tAID8/HxcddVV+NrXvgaj0Rgo7z+X/fr+G1CPv+l7He/P4XDgxRdfxLvvvov6+nrwPI/p06fjhhtuwFe+8hWIojpM6vsdeumll0btnCcTGwXbhERg3bp1ePzxx5Geno7CwsKQgy1/8Ytf4B//+AemTJmCadOmoa6uLrBuw4YN+NWvfgXGGNLS0lBSUoK6ujps2rQJW7Zswf/93//h0ksvDXnsffv24bnnnoMoiigqKlL94AzmL3/5C/74xz8CADIyMpCZmYm9e/fi1ltvxXe+852w2506dQrf/OY30dzcDI1Gg4KCAkiShLKyMhw5cgS7du3Ck08+CY7jgo73+OOPgzEGs9mM4uJi9PT0oLy8HIcOHcL8+fODfnhdLhduv/12HD9+HNOmTcOMGTOg1WoD61988UU89thjYIwhOTkZM2fOxNmzZ7F161Zs27YNa9euxZVXXqna5+9+9zt89tlnSExMDLzus2fP4v3338e2bdvw+9//Htddd51qm1deeQW//vWvA+/VrFmzYLPZUFtbi8rKSuTl5QUF27/97W+xfv16AL7+/jNnzkRdXR3efPNNvPfee/jLX/6iCuzLyspwxx13wOVyISEhAdOnT4eiKGhqasLbb78Np9MZUbC9ZMkScByHffv2gTGm+hz2798PAJBlGYcOHcIFF1wQWLdv3z4AwNKlSwfcf1paGhYtWoTy8nJIkoS5c+eqPhP/DVNf//3f/423334bhYWFKCgoQHV1Nd544w2UlZXhzTffVG0/kKG8R3PnzoVGo0FNTQ3S0tJQUFAQ2E9xcXHg36+99hqefPJJ6PV6ZGZmori4GB0dHdi3bx/27duHQ4cO4X/+538C5adMmYJFixbh4MGDABB0c6bT6QL/3rt3L7773e+ip6cHer0eBQUF6Onpwd69e7F371584xvfwA9/+MOIXntftbW1+N3vfge3242ZM2fCarXixIkT+MlPfoKKigr89Kc/Ddrm8ccfx7p16wAA2dnZyMnJwZkzZ/D3v/8dmzdvxvPPP4958+aFPN7mzZuxdu1aJCUlobCwEA0NDfj000+xe/durF27Ftdcc82QX8NQlJeX4/vf/z5EUUR6ejqmTZsGm82G06dPo6KiAh988AE2bNgQuHlMSEjAokWLUFlZCZvNhuLiYpjN5sD+Ihl/09HRgbvuuguVlZXgeR4zZ86Ex+NBWVkZysrK8OGHH+LZZ59Vfd59jdY5TyYBRsgkcNlll7Hi4mL2xhtvDGm74uJiVlxczObMmcM2btzIFEVhjDEmyzKTZZnV19ez4uJiVlpayhYuXMg++OCDwLZOp5Mxxtjx48fZ7NmzWXFxMfvLX/7CvF4vY4wxt9vNfvnLX7Li4mK2ePFi1tzcrDr27bffHtj3z372M+ZwOIL2PZBjx46x0tJSVlJSwl555ZVA3W02G3vooYfYnDlzWHFxMbv99ttV29ntdrZ69WpWXFzMfv3rX7Oenp7AulOnTrFrr72WFRcXs1deeUW13fvvvx+o79/+9jcmSVJgncPhYBs3bmSnT58OLHvjjTcC5a+88krVOpfLxRhj7KOPPmIlJSVs+fLlbOvWrarj/fOf/2SzZ89m5513XtB79+6777KKigrVMkVR2Pvvv88WLlzIFi1apHpdsiyzpUuXstmzZ7P3339ftZ0sy2zbtm1s7969quV///vfWXFxMbv88svZ7t27A8s9Hg975plnWHFxMbv44osDr4UxxtasWcOKi4vZ2rVrmdvtVu2vrKyM/fvf/2aR8n8OJ0+eDCxrb29nxcXFbOXKlay4uJg9+eSTqm3uvPNOVlxczD799NPAMv85fNlllwUdw/+9qa+vD1mH3bt3B74fF110ETty5Ehg3ZkzZ9jFF1/MiouL2YYNGyJ+XUN9j/zn0Q9/+MOw+9y3bx/77LPPmMfjUS0/ceIEu+aaa1hxcTHbs2dP0Hb+7384FouFLVu2jJWUlLA///nPqvoeOHAg8Dls27ZtwNfc1w9/+ENWXFzMZs+eze644w7W3t4eWPfuu+8Gvrfbt29Xbbdt27bAdps2bQos7+npYffee2/gM+5/7fB/xrNnz2aPPvpo4HsryzL7wx/+wIqLi9miRYuCvmODnRv+61ff70bf19f/WtzQ0MA2b97MbDabanlLSwu7//77WXFxMfvTn/4U8XH6Cvc5+vd77bXXstra2sDysrIytmLFClZcXMz+8Ic/qLaJxjlPJj7qs00mlUceeSSQczXUf93d3SG3u+WWW/DlL3850IIoiqLq8aLX68UDDzygetzub4F5/vnn4fF4sGrVKtx9992B7hdarRY///nPMXPmTPT09ODvf/97yGPPnDkTv/zlL2EwGIL2PZAXXngBXq8XV111FW677bZA3U0mEx577LGw2SXeeOMN1NXV4YorrsBPf/pTVWvRjBkz8Mc//hEcx+GFF15Qbff//t//AwDce++9+PrXvw6NRhNYZzAY8OUvfzlkNwyv14u1a9eq1vlbkp544gkwxvDb3/42qPX6S1/6Eu68807Y7Xa89tprqnVXX3110KN/juOwevVq3HXXXbDZbNi+fXtgXWdnJ7q6ulBcXByU0UIURVx22WWq1mBJkvDUU09BEAT86U9/UrXWC4KA73znO7jqqqtgsVjw7rvvBtbV1NQAAL71rW8FtXrNmzcvqLV9IP5H+/7WasDXygr4HuFrtVrVOlmWceTIEWg0Gpx33nkRHycSsizjZz/7GebPnx9YVlRUhLvvvhsA8PHHH0e8r9F8j/yWLFmC888/H4IgqJbPmjULP/vZzwAA//nPf4a83xdeeAFWqxV33XUX1qxZo6rvokWLAq3lL7744pD3zfM8Hn/8cVV3hKuvvhq33347AOCvf/2rqry/RfvWW2/FF77whcBys9mM//3f/0VKSgoaGxvx9ttvhzzejBkz8KMf/SjwvRVFEf/93/+NOXPmwGaz4R//+MeQX8NQ5OTk4JprroHJZFItz8jIwB/+8AdoNJphfUbh1NTU4L333gMA/OEPf1B1+Zo3b17gycGGDRtgs9mCth/Nc55MfBRsk0mlsLAQixYtCvtf/x9jv+uvv37QfYcr88knnwBAyIk/OI4LLPeX6+8LX/hC2P7RA/Hv76tf/WrQOp1Ohy9+8Ysht/P/AH3pS18KuX7WrFnIyclBfX09LBYLAN8j79OnT0Oj0eCuu+4aUj1nzpyJOXPmBC1vbGzEsWPHkJaWFtRn2M8/EUvfoNLv7NmzWLduHR588EHceeed+OpXv4qvfvWrgeC3oqIiUDY1NRVarRY1NTWq5eEcPnwYra2tmD17dsg+4+Hq5u8z2zcAH65ly5YF7d/fhWTlypVYsGABDh8+DEmSAABHjx6F0+nE3LlzI7pZG4qkpKSgmyEAgS4LDQ0NEe9rNN+jvmw2G/75z3/ihz/8Ib7xjW/g1ltvxVe/+tVAN6tIPvf+BvuurFy5EhqNBocOHYLH4xnSvq+88kpkZGQELb/11lsB+MaAOBwOAIDdbsfhw4cBhL7O+G92gfDXGf9++/NfP3bt2jWk+g+Hoij44IMP8D//8z+4++67A5/R17/+dXAch5qaGjidzlE51ieffALGGBYvXhzyO3zVVVchOzsbDocj0J2or9E858nER322yaQy3NR/oVpk+0pJSQk5IKa7uxsdHR0D7mPGjBkAelv0hnrsULq7u9He3j7g9uGWV1ZWAgCefPJJ/PnPfw5ZprOzEwDQ3NyM7OxsVFVVAfC9lr4t4ZGYNm3agPVwu90hbxj86/z16Outt97CL37xi8D6ULq6ugL/FgQBd9xxB55//nnceOONWLRoEZYvX44lS5Zg8eLFQX02/XVrbGwMW7eenp6gut1111349NNP8dOf/hR/+9vfcNFFF2Hx4sVYvnw5UlJSwtY1lHAt20lJSSguLsbSpUuxb98+HDlyJPBvoDdIH015eXkhl/v7zdrt9oj3NZrvkd/x48exZs2awKC7UPqeD5Gw2+2BsRv+1vFw3G43rFYr0tPTI95/uO9FXl4etFotJElCXV0dZs2ahbq6OiiKAq1WG/azGO51xr883Hajpbu7G/fccw8OHTo0aLm+T/mGy/96/O9LfzzPY9q0abBYLKipqQkaSzGa5zyZ+CjYJiQCgw1KDLfe3/IEhB+w4/8BDndxHs4PS9/jhhsVH64+/kemx44dG/Q4LpdLtU2ogXODCffe+YNVm80WsmWpr75BdV1dHX72s59BlmV84xvfwBe+8AXk5eXBZDKB4zi89tpr+OlPfxrU0vjwww8jKysLGzZswP79+wOtxGazGbfeeivuv//+QDcBf906OjoCN1OR1O3SSy/FunXr8Oyzz+LIkSM4c+YM1q9fD1EUsXr1avz4xz8OOblMKJmZmSgsLERNTQ3OnDmDtLQ0VFZW4rLLLgPP84FuL3v37sXSpUsDXUwGGxw5HOE+w/4DaCMxmu8R4Oum9NBDD6GlpQWXXHIJvvWtb2HGjBlITEyEIAiora3FlVdeOeSW575dCwY7P4He70qkwn0/OY5DamoqLBZL4Jrh/39qamrY93yw60y468Rg242WRx99FIcOHUJRURG+973vYcGCBUhJSQl85y6++GI0NzdDluVROZ7/GhnJJGehXvtonvNk4qNgm5Ao6ntBbm9vR2ZmZlCZtrY2AAjqqzhax+3o6Aj5ONrf8h1q2+7ubrz33nuq7A4D8dfdH4SOBv9rWLRoUdj+7KG8++67kGUZ1157bcgsEE1NTSG343ked911F+666y40NDRg//79+Pjjj/Hee+9h3bp1sNvt+PnPf66q23XXXRfohhCpSy65BJdccgmsViv279+P3bt34+2338aWLVtQV1eHf/7zn6r+7gNZsmQJampqsG/fPqSlpYExFmi5Pu+886DRaLBv3z54vV4cOnQIoiiGTXsYT0bzPSorK0NtbS1ycnLw1FNPBfUDD3c+DKbvd6y8vDzi+kQq3E0cYyywzv+98/+/o6MjKDuN32DXmY6OjpCt6f7rRLjtGGMhl/e94R+Mx+MJTDzzzDPPBNXD4/EE6j9a/J/fQDfLg712QiJFfbYJiaLExMRAy4m/q0V/p0+fBuDrTz6ax/W3ypw5cyZkmXDL/Y+NT506FfHxZs6cCcD3WkINJhoO/+PdM2fOQFGUiLfzP9oPNwgwkr65ubm5uOGGG7B27Vo8++yzAHwDR/318NdtKO9Rf8nJyVi9ejV++tOf4u2330ZCQgKOHz+O8vLyiPfhb6Xet29foCXev8xgMGDu3Lk4fPgwDh8+DLvdjtLS0nEVOETyHg3Wkug/H+bMmRMyFdtw+moDvqc4/ptn/3d4NIW7XjQ0NECSJPA8HxjUl5+fD57nIUkS6uvrQ2432HUm3PXAX4/+2/mDVX+Xsv7C1SOUjo4OOBwOJCcnhwz4T506Ba/XG/H+IuF/PeE+O0VRAu/JaF6byeREwTYhUXbRRRcBgGqSFj/GGF555RVVudGyYsUKAAiZRUCSJLzxxhsht/MP+lm/fn3YVqv+8vPzUVxcDFmWQ77O4SgsLERxcTGsViv+9a9/Rbydv391qJawqqoqVRaSSCxcuBCArxuAv1/vkiVLkJKSgoqKCuzZs2dI+wslPT09MDHIQP2K++s7SHLv3r0wm80oLS0NrF+yZAmcTieef/55AEPvQuIfSDlQ3/dYCfce+T/vcN00/K8h1Pkgy3IgT/pA24bbt/+78tJLLw1W/SF77733QtZ5w4YNAHxPfPwBr8lkCtxchvr+uVyuQMaecNcZ/37DLb/wwgtVy/2fxdGjR4O22bp165D6wPvfZ5vNFvK97p95JdS2Q+2mc9FFF4HjOBw4cADHjx8PWv/ee+/BYrHAaDSOi6dBJL5RsE1IlH3jG9+AKIr48MMP8be//S3QOipJEn7729+isrISCQkJYQfaDdfXvvY18DyPd999F3//+98DgbPD4cAjjzwS9sfwK1/5CvLy8rBnzx48/PDDQcGf3W7H5s2b8eijj6qWP/jggwCAp556CuvXr1f1rXQ6nXjttdfCttaF8/DDD4PjOPzqV7/Ca6+9FtSvtr6+Hs8++2wgKwQALF68GADw97//HSdOnAgsr66uxkMPPRTycf/p06fx85//HGVlZaobDEmSAi3bOTk5gQF6Op0ODzzwQOB1v//++0E3JpWVlfjf//1fHDhwILDsv/7rv7Bjx45AhhC/LVu2oLKyEhzHhc1uEsrUqVORk5MDi8WC48ePY/HixaqMOv7g2j8z5FAHR/oHgfn7e8fCUN8jfx392Vb6W7BgAURRxMGDB1U3bT09PXj44YcH7J4w2Ov/1re+heTk5MCMj/1Th1qtVrz++ut45plnBn7RISiKgocffljVzeH9998PBNPf/OY3g+oC+M77vinybDYbfvCDH6CjowM5OTm49tprQx7v1KlT+MMf/hD43no8HqxduxbHjh2DyWTCLbfcoirvHzD417/+VTV4sqysDL/5zW+G1K0mMTExMKHM7373u8Bn7/V6sW7dOmzevDns/vyfUaiMRAMpKCgI3Cz98Ic/VLXEHzt2DL/5zW8AALfddtuQB30T0h/12SaTynPPPReUk7mva665Jmja35EqLS3FT37yE/zqV7/C73//ezz//POYMmUKamtr0d3dDa1Wiz/+8Y8h+1WPxNy5c/HQQw9h7dq1+OUvf4lnnnkGmZmZqK6uhizL+O53v4snn3wyaDuTyYTnnnsO99xzD95++21s3rwZRUVFMJvN6OrqQn19PbxeLxYsWKDabvXq1fj+97+PtWvX4re//S3+7//+DwUFBbDZbGhsbAy0Ig4lu8oll1yCn/3sZ/jtb3+Ln/70p3j00UdRWFgIjuNgsVgCgdIvf/lLVT0WLlyIw4cP44tf/CIKCwshCAJOnTqF9PR0fOc738ETTzyhOo4sy9i4cSM2btyIxMRE5OXlgTGG+vp69PT0QKPR4Be/+IVqm1tvvRVNTU1Yt24d7rvvPiQnJyMvLw+KogSmiAegysG9c+dObN68GVqtFoWFhdDpdLBYLGhtbQUAfPe73w2b5SCcJUuWoLGxEYyxoJZrf/Dt9XrB83zgRiRS11xzDXbs2IFf/vKX2LBhA5KTkwEAP/7xj1Ut6KNpqO/RnDlzAgNFL730UhQVFUGj0WDWrFn4yU9+goyMDNx5553429/+hh/+8Id48sknkZKSgqqqKni9XvzkJz9RnT/9X/+pU6fw7W9/GyUlJYGga+3atcjIyEB2djaeeeYZ3HvvvXjxxRfx6quvoqioCAaDAR0dHWhoaABjDJ/73OeG/D5885vfxIYNG3DppZdixowZsFqtgS4xt956ayC1pN9ll12Ge+65B+vWrcPDDz+Mxx9/HGlpaThz5gwcDgeSkpLwxBNPhE37+OCDD2Lt2rV44403kJeXh4aGBnR2doLnefz6178OGpT6xS9+ERs2bMCpU6dw7bXXYtq0aZAkCTU1Nbj22mvR2to6pJu0733ve/jud7+LjRs3YuvWrcjNzUVjYyM6Ozvx3e9+F5s2bQo5c+/nPvc5vPrqq/jLX/6C999/HxkZGeA4Dt/61rcGnY31l7/8Jaqrq1FZWYmrrroqEPD7u5asWLEC999/f8SvgZBwKNgmk0pNTc2AKazmzp0blePeeuutKCkpwd/+9jccPHgQFRUVSElJwaWXXoo1a9aETT81UmvWrEFhYSGef/55nDx5Em63G0uWLMH9998/4ACm6dOnY9OmTdiwYQM++OADVFVVob6+HhkZGVi6dCkuueSSkDlm77nnHixbtgwvvvgi9u/fj5MnTyIpKQlz587FFVdcETKf9mBuu+02LF26FOvXr8fu3btx+vRpaLVaZGdn4/zzz8cVV1yBSy65JFBeFEU8//zzeOKJJ7B161bU1dUhLS0NN998Mx544IGQ+YILCgrwm9/8Brt27UJFRQWqq6sB+FqOr732Wnzzm99UTXrh9/3vfx+XXXYZXn31VRw4cAAVFRUwmUzIysrCqlWrcNVVV6mmS3/sscfw8ccf49ChQ2hpaYHD4UB2djauuOIK3HXXXcPKFLJ06VJs2rQJQHDLtb9bSXl5OUpKSsJOZBTODTfcgO7ubrz++uuBaesBhJ38aTQM9T3ieR7PPfcc1q5di/3796OsrCyof+8PfvADZGdn4x//+Afq6+vhdDpxwQUX4Dvf+c6A03rfc889UBQF77zzDk6fPh1oce3brWbx4sXYvHkzXnrpJezYsSOQhi8rKwsrV67EZZddFvK7MpjCwkK89tpreOKJJ7B3717YbDbMmjULt912W9i83t///vexaNEivPzyyygvL0dbWxsyMzPxhS98Ad/+9rcDOcxD+dznPofS0lI899xzOH78OBhjOP/883HfffeFPC91Oh1eeuklrF27Ftu3b0dNTQ1yc3Pxwx/+EF/72teGnG//8ssvx1/+8hc8/fTTOHHiBKqrqzFz5kz8+Mc/xhe+8IXAOd7fkiVL8Pjjj+Oll17C6dOnA9f3G2+8cdBjpqamYuPGjXjhhRewZcsW1NTUgOd5zJs3DzfccAO+8pWvjPrAVzI5cSzSTpmEEEIIiaof/ehHgW4pw5kTYKguv/xyNDY24sMPPwz0wyaEjC7qs00IIYQQQkiUULBNCCGEEEJIlFCwTQghhBBCSJRQsE0IIYQQQkiU0ABJQgghhBBCooRatgkhhBBCCIkSCrYJIYQQQgiJEgq2ybjGGIPVag2aKpuQgdB5Q4aDzhsyXHTuTG4UbJNxjy5eZDjovCHDQecNGS46dyYvCrYJIYQQQgiJEgq2CSGEEEIIiRIKtgkhhBBCCIkSCrYJIYQQQgiJEgq2CSGEEEIIiRIKtgkhhBBCCIkSCrYJIYQQQgiJEgq2CSGEEEIIiRIKtgkhhBBCCIkSCrYJIYQQQgiJEgq2CSGEEEIIiRJxrCtACCHxRnG6IdVY4O2yAQCEJDO0hdngDboxrhkhhJDxhoJtQgjpQ7Z0wHm0CvAqgWVeqw1SQwsM86ZDk506hrUjhBAy3lA3EkIIOUdxuoMC7QCvAufRKihOd+wrRgghZNyiYJsQQs6RaiyhA20/r+IrQwghhESIgm1CCDnH30d7pGUIIYQQPwq2CSHkHCbJo1KGEEII8aMBkpMQZVoghBBCCIkNCrYnGcq0QAghhBASOxRsTyKRZFoQkkzUwj0K6OkBIYQQQgAKtieVSDMt6EsLYlepCYieHhBCCCHEjwZITiKUaSH6KE8zIYQQQvqiYHsSoUwL0Ud5mgkhhBDSFwXbhIwienpACCGEkL4o2CZkFNHTA0IIIYT0RcE2IYQQQgghUULBNiGEEEIIIVFCwTYhhBBCCCFRQsE2IYQQQgghUULBNiGEEEIIIVFCwTYhhBBCCCFRQsE2IYQQQgghUULBNiGEEEIIIVFCwTYhhBBCCCFRQsE2IYQQQgghURKXwfamTZvw85//HDfddBPmzp2LkpISvPnmmxFtW19fj/POOw8lJSX4+c9/HuWaEkIIIYQQEp441hUI5cknn0RjYyNSUlKQmZmJxsbGiLZjjOHHP/5xlGtHCCGEEEJIZOKyZfs3v/kNtm3bht27d+OWW26JeLuXX34ZBw8exIMPPhjF2hFCCCGEEBKZuGzZXrFixZC3qa2txdq1a3H33XejtLQ0CrUihBBCCCFkaOKyZXuoFEXBI488gqlTp+Lee+8d6+oQQgghhBACIE5btofqpZdewqFDh7BhwwZotdohbcsYi1Kt4g9jg7/eSMrEE39d46XOE/E9nojCnTf0+ZGBxNv1howfdO5MXBzHDVpm3Afb1dXVeOKJJ3DnnXfivPPOG/L2XV1dk+bkd9lsYE73gGU4xQOP1RqbCo2irq6usa4CgIn9Hk9E/c8b+vxIJOLlekPGHzp3Jp6UlJRBy4zrYNvffSQzMxMPPfTQsPaRlJQ0upWKYzazGQo/8EfOG/UwJyfHpkKjgDGGrq4uJCUlRXR3GW0T8T2eiMKdN/T5kYHE2/WGjB907kxu4zrYXr9+PQ4fPoyXXnoJBoNhWPuYTCc9xw3+eiMpE484jouLek/k93gi6n/exOvnpzjdkGos8HbZAABCkhnawmzwBl1M60F84uV6Q8YfOncmp3EdbFdUVIAxhjvvvDPk+o0bN2Ljxo1YtWoVnnnmmRjXjhBCRk62dMB5tArwKoFlXqsNUkMLDPOmQ5OdOoa1I4QQMphxHWwvXboUgiAELW9tbcVHH32EadOmYdGiRZg9e/YY1I4QQkZGcbqDAu0ArwLn0SoISSZq4SaEkDg2roPtL37xi/jiF78YtHzPnj346KOPsHTpUvzqV78ag5oRQsjISTWW0IG2n1eBVGOBvrQgdpUihBAyJHEZbL/22ms4cOAAAKCysjKwbO/evQCA1atXY/Xq1WNWP0IIiQV/H+2RliGEEDJ24jLYPnDgAN566y3VsoMHD+LgwYMAgJycHAq2CSETHpPkUSlDCCFk7MRlsP3YY4/hscceG/b2y5cvx8mTJ0exRoQQQgghhAxdXAbbhBAyVpjHC3d1E6SqBnh7nGBeBbxeC82UNOhLC8AbaTAiIYSQyFGwTQgh8E064Tx6BrbPysFckmqdYnPA02aFs7wK+hl5MCycCSHRNEY1JYQQMp7wY10BQggZa4wxWN/8CLadZUGBtrog4K5uQssT/4SnjaZdJoQQMjgKtgkhk17PB/th33U04vLeThvantsEZaDAnBBCCAF1IyGETHLeHgd63tsbtFwzNR266TngdBrITe1wV9aDyZ7Aek9bF2wfH0bilctiWd0xRdPGE0LI0FGwTQiZ1Oy7j4F51BPHJFy2CLrpOYG/dYVTYFwwE93v7oa3x9G77aflSFi9BBw/8R8S0rTxhBAyPBP/F4IQQgbg2HtC9bdueq4q0PbjjTqYLl6gWubtssNdURfV+sWDSKaNV5zu2FeMEELGAWrZJiNCj5XJeMY83qCBjvpZeWHLazKSIaYmqpbJlg7oZxdGo3pxg6aNJ4SQ4aNgmwwbPVYm412o2Rf5QVL6CUkm1cBIJk/8GRxp2nhCCBk+CrbJsETyWFlIMlELN4lrnF4LcABY7zJPWxcEkyFkecYY5DYrBLOxzz7G5zk+lKdSNG08IYQMH/XZJsMS6WNlQuIZx/PQ5maqlrmO1YAxFrK8VNcMpcepWqYtyIpa/aJFtnTAtqsMUq0FXqvN90Sq1gLbrjLIlo6xrh4hhEwoFGyTYaHHymSiMF0wR/W3fLYVjr0nwPrdTMrNvgC1L012KrQF2VGv42iiwY6EEBJb1I2EDAs9ViYThWFRCbr+86kqwHQerYLrdAN0RVPA67SQm9ohW9oBAJzYe9k0rZwPjuNiXueRoMGOhBASW9SyTQiZ1HidBslfvixoOXO64TpeA8ehykCg3ZduRg5M588JWh7v6KkUIYTEFgXbhJBJz7hwJpK/dKlvsGQEdNOmIu0b147LyWzoqRQhhMTW+PulIISQKDCvmIekL1wEMSt8ykpOr4Nx6Sykf/t6yrRDCCEkItRnmxBCztHmpCP5ugvh6eiGu6oR3m4HoCjg9VpopqZDWzgFQoIBnIYunYQQQiJDvxiERAFjDJ5WK5QeB5hXAafXQpOZAl6vHeuqkQiIqYlBM0USQgghw0HBNiGjSJG9vkwWJ2rh7bar1nECD23RVBiXlIxR7QghhBASaxRsEzJK5OYOWDd+CE9Hd8j1zKvAfboBUo0FQqIJCVcsHXdp4wghhBAyNDRAkpBR4GnrQutTb/r6+Eag+9096Nm6N8q1IoQQQshYo2CbkBFijKFj/RYoNmfQOt6o9/X9DdGC3b11L1yV9bGoIiGEEELGCHUjIWSE3KcbIdW3qJaJaYkwnT8XYnYqOI7zTZFdfgbOstOqcrYdh6AvzotldQkhhBASQ9SyTcgI2T8pU/3NmwxIvHYFNFPSAn2yeYMOpqWlMC6epSrrqqiFp70rZnUlhBBCSGxRsE3ICDDG4KqoUy0zzJsGXqsJWV4/twicts8DJYag7QnpT3HLkOqa4TrVAPfpBsjNHWCKMtbVIoQQEgHqRkLICDDJA+ZWT22tyc0IW54XRWimpoG5PYFlSk9kgyrJ5ONp74ZjfwXcpxvBvF7VOt5sgH5WAYyLKZUkIYTEMwq2CRkBjg8e+Mi8bMBtmKdfi2SIfRBi23kEnf/cBiZ7Qq5XbE5fIF5ZD/2sfGjzsmJcQ0IIIZGgbiSEjACnEcGb9Kplck1T2PKK0w1PU5tqmZBkjkrdyPjV89FhWN/8GBj4vg0AoDjcaH36Lchn2wYvTAghJOaoZZuQETIsmAH7p+WBv53lZ6CbmQsh0aQqxxiDY1+FquWbE3no5xTFrK4k/kn1zejatDN4BcdBTE6AInug2NRdj5hbRvsLm5H1o9vACUJU6sUUBXJDK1yn6uHt7AHzKOC1IsTMFOhK8qEroJZ1QggJhYJtQkbItGKeKthmsgfWTTthPK8Yuhm54HQaeCztcB6pgtTQAk7s/doZFs6EYDaMRbVJnLLtOBzUoq2fXQTjwhngjb6nKHKrFfbd5fA0dwbKeNq64DpWA8P86aNeJ3eNBbbtB+HtN75AAeDp6IarohaanAxop+dCm5M+6scnhJDxjLqREDJC2px0GOZNUy1jbhn23cfQ8cpWtD//Nrre+QxSgzoXNyfySLh8cSyrSuKct8cB5xF1LnbDvOkwr5gbCLQBQJORjKRrLoCQrO6CZNulTkM5GmyfHEX3u7uDAu3+PM2daP3T63Cfbhj1OhBCyHhGwTYhoyDlq6uhmZoW+QYckPLVK6CZMoRtyITnPtUA5u0dQMsJHAwLZoQsy4kCDAtmqrc/3RB2QGV/it0Jd00TXCfr4K5qhNzeDcbUTerOY9WwvrEjor7jgO8ms+2vb0Nu6Ry8MCGETBLUjYSQUcAbdMi49yY0/eJ5uKvDD5AEAE4rIu3rn4Nh3ug/7ifjW//WYyEjGbxeG7a8NjcD9r4LGOC1OyEmJ4TdRmpohePASUh1lqAgWkxLhL60EIYFM8AUBV1vBQ/SFFMSoSvJA59ogrfVCtfJOigOV28V3DK63/kUaV+/drCXSwghkwIF24SMEt6oR+LnL4R0phHO4zWQaixAn5ZCIdEEfWkBDAtnUqBNQgpKJTlYGklv8MQ2HB/6gSVTFFjf+Ahd//4EzBO69dvT3g3brjK4qxrBmfTwtHer1hsWzIBxyazAzKjIz4JhwQz0bD8IubE3G4qzvBreLhtl2iGEEFCwTcio4jhAMyUdminpvqwRdieYl0HQa8AZ9eA4Drwu9OyShAgp6hZpT5sV3m57UGYbP6lfmklO5INSUQK+TDid//gQjn0VEdXD09qF1sf/ATEjBZzG9zMhpiaqA+3AMQWYVy7wdTfxU3yZdxJWL4noeIQQMpFRsD3JeG1OuCpqITe2QnFK4HgOvNkA3fQcaKdNBQ/dWFdxwuA1IvgBHucT0p9uZh44naZ3VlIG2PceR8KqJUFBruJwwdFvMKV+7vSQqf8ce0+EDLQ5QYCQbILX7gZzuVXr5OZOeHuc0Jfk++pWnBdUBz9er4W2aKpqNlTZ0jH4CyaEkEmAgu1JQrG70P3ePrhO1gb1wfR22yGfbQO3+zhMy0thWrkg7I8qISR6eJ0GpmWlsO3szSoi1VjQ/c5nMCyYAU1OOpjshftMI5yHToE53apUkuaL5gXtkzGGnu0HVcs4QYBxcQl0s/LBazVgiuLry/1ZeW+/cYXB29EN5VwQzodpXfcTkkyqYJvJ8pBfPyGETEQUbE8C3i4bWp9+C+7TjQNmFWCyDPvu4xDT30fKravD9v0khESP+dLzYN97ord1G4BsaYdsaR9wO//Tqf6kqkZVPm4AMK+cD92M3MDfHM9Dl58FMS0R1td3AAzgBB4MvpR+nFYDb5sVyA8/cY2ntRPM44W3xwEmeyA0tsF1ohbawmzwBnpiRgiZvCiamuCY7EHbun/D02qNeBvHgZPofuez6FWKEBKWmJqItDuvBvoPlhxom/QkpN51dcgnUq4Ttaq/hWQTtNNzQu5HMBmgK84DAPAJRgCAt7PHt5+T9WAeb8jtvN12uCrrIVs6oNgcYG4JvEkPqdYC264y6lJCCJnUKNie4Oy7j0E+q24R4wQB+tICJKxaDPPFC6HNzQzarmf7QXjau2JVTUJIH/rZhUhfcz24AdL++YnZKci4/2YI54Lj/vqnE9TmZg3YTcx/PdBkpQBAIG+3YneiZ/tBKG5Jvf9uO7q37oHS5QCYLzsKpxGhm3YuoPcqcB6tguJU9wknhJDJgrqRTGCMMVXfTwAQEo1IvHYFBFPvFOH64jxIdc3ofn9fn40B+6flSLruwlhVlxDSh744D6m3Xwln2Wm4T9TCc66FGQDAAdq8LOhLC6ErzoOQGDrQBoJTATIlOF2gar3X13rNmw3gzQZVdxap1oLOf7RBW5ANIdEIT3s3pLpmX0DfJ82lbkaOOuuOV4FUY4G+tCCSl04IIRMKBdsTmFRrCeo+YloxXxVo+2nzfT/c7sr6wDL73hNI/PwKGixJyBjhtSIMs4tgmF0ExeGC159ByKQHr/UFs4N9PftP6e6uaYJxcQk4IfSDTanGcu5fHHTTpsJda1GtZ7IneEr2Pt1LhAQjjItKgvbr7bINXFFCCJmgqBvJBOZpUncf4RMM0OSkhy2vO5fiy0+xOaH0OKNSN0LI0PBGPTRpiRBTEgKBdiQM89UTKDGHG86y0yHLyq1WuKt6A2neZEDqbVeC0wSnE1TtU/G1agsJRiRec37IAZFMouwkhJDJiVq2JzBFUs8SJySYBmylDvUomtJ3ETK+aaam+1qoz5wNLHMcOAmv1Q793CKI6UlgDhdcJ+vgLKtSZSziRB7JN14MIckE28dHQk7xDvgyl2hyMpD0hYso8wghhPRDwfYExvcbXOVp7wJTlLAp/bxt1hD7oB9OQsa7hCuXwv3nTapl7qoGVSt2KKYV8yAkGCGmJCDxiqXw2p1wn2qAt7MHzOMFpxEhZiaDuT3gNAIF2oQQEgIF2xOYtiBb9Tdzy3BXnYV+Zm7I8s7jNaq/xfREcEb68SRkvNOX5CPpugvR9Z9PIt5GV5wXNEBaMBlgXDgzqKzzWLVqgCQhhJBe1Gd7AtNkp0JbpA647Z+VQ2psVS1jigLHoUpI1U2q5aYL5tHgSEImiITLFyH5S5eCEwb/TuuK85B+9+fBiQP31SaEEDI4atme4MwrF6CjujebAJNkdL+7G2JmCjRT08EkD6RaCxS7eiAkpxVhXFYa6+oSQqLIvGIevF12OA9VwlVRB8XhCqzjBAHa6VN96QQLssBp6OeBEEJGA11NJzjDwpnQH6yEq7xatdzT0glPS2eYreAbFGUOThFIJj7F6YZUYwmkahOSzDTl9gQimPQwLiqB4bxiX8YhtwxOFCCYDdSSTQghUUDBdgyNRRDDcRxS77gKHS9shtwvFWA4SdddCNP5c6JWJxK/ZEsHnEerAG/vxCdeqw1SQwsM86ZDk506hrUjo4njOAgJRggJY10TQgiZ2CjYjpGxDGJ4rQZpd38eilOC4+BJ1aPjvsSMZJhXzEPC5YuiVhcSvxSnO+gcDTg35baQZKIWbkIIIWQIKNiOgXgIYjhBgHHRTOiKcyHVWiA3tkFxuQGOh2A2QDttKjQZyeAp+8ikJdVYQp+jfpNgym1OqwEc7sHLkLhF3aAIIfGGgu0YiKcghuN56IqmQlc0NerHIuNLJNNpT/Qpt4UkM7xW9WtUJBmelk4odt8TId2MXChONwVvcYi6QRFC4hEF2zFAQQwZDyKZTnuiT7mtLcyG1NASCNY8nT2QavvcLAs8mMcL264yCt7iTDw8QRwL1JJPSPyjPNsxQEEMIeMDb9DBMG86IPBQJDko0NYWZIPXaQLBm+IcuMsJiZ1InyBOJLKlA7ZdZZBqLfBabb5W/FoLbLvKIFs6xrp6hJBz4rJle9OmTThw4ADKy8tRWVkJWZbx6KOP4qabblKVk2UZ27Ztw/bt23HkyBE0NTWB4zjMmDEDN9xwA2655RYIAqWyIoRETpOdCiHJhJ5tBwOtg7xRDzEzxRdo+02CPuzjyWR7gjhZW/IJGY/iMth+8skn0djYiJSUFGRmZqKxsTFkubq6OjzwwAMwmUw4//zzcfnll6Onpwfbt2/Hr371K+zcuRPPPvsszYJICBkS3qCDmJYITsgfsNxECt7Gu8n2BDGexgIRQgYWl8H2b37zGxQUFCAnJwfr1q3D448/HrKc2WzGL37xC9x4440wGHonYHE4HLjjjjuwfft2bNmyBddcc02sqk4ImSAmW/BGxpfJ1pJPyHgWl322V6xYgZycnEHLZWVl4dZbb1UF2gBgNBrx9a9/HQCwb9++qNSREEIIGSt0M0jI+BGXwfZoEEVfoz312SaEEEIIIWMlLruRjIY33ngDAHDRRRcNWI4xFvW6MDb4cSIpE0/1iJ/XxFT/H2vx8r4Mx3iu+1BFct7Ew/sRjToMVl6RZMitVmD3MQCAkGSC1yX7Ngy7TwYOI38/RyIWn1c8XW/i4fwkkYunc4eMrkjGBU7IYHvjxo34+OOPcf755+OSSy4ZsGxXV1fUT36XzQY2SIowTvHAY7WOm3rEy2vy6+rqislxBhNv78tQjOe6D9dA5008vB/RqMNA+1SsNnjqWwFRgNtw7uehAZAqGyBmJoNPNofcTnK5AAZ47fZRq+dQxfLziofrTTycn2To4uHcIaMrJSVl0DITLtjesWMHfv3rXyMnJwf/+7//O2j5pKSkqNfJZjZD4Qd+q3mjHubk5HFTj3h5TYwxdHV1ISkpKS6yzsTL+zIc47nuQxXJeRMP70c06hBun4okw93aDUGrAa/TQm8yBdYJWi1Yazd0GangQ0xXz+v14ADVNiOt51DF4vOKp+tNPJyfJHLxdO6Q2JtQwfbOnTtx//33Iy0tDS+99BIyMzMH3SYWJz3HDX6cSMrEUz3i5TX1HouLiwtYvL0vQzGe6z5cA5038fB+RKMO4cp7W62AwsCBO1euXxmFwdtqhZAbfF3lOA5gbMB6jMf3Kvx+xv56Ew/nJxm6eDh3SOxNmAGSH3/8Me69916kpKRg/fr1yMvLG+sqEULIuKHYXWHXcRox4jKEEELUJkSw7Q+0ExMTsX79ehQUUBJ/QggZCubxhl3HG/URlyGEEKI27psi/IF2UlIS1q9fj8LCwrGuEpnkFEmGp6Uz0ArIm85N9R2iryshscZpNYBjkIF1/VqpxcwUeNoHGNjFcxAzU6DYnZBbrWBuGZwogE8y+2bipMfmhJBJLC6D7ddeew0HDhwAAFRWVgaW7d27FwCwevVqrF69GlVVVbj33nshSRKWLVuGd955J2hfOTk5uOmmm2JXeTKpeTq64aqoU02jrNic8LR1QVuQDTElYQxrRwaiON2QaiyBWfekumbwCSbwuol1kyQkmeG1DjyzYP9Wal6ngbYgG7KlPcQOefAGHWwfH4ZUZwH6JXcSUxOhn10Iw4IZI606IYSMS3EZbB84cABvvfWWatnBgwdx8OBBAL4AevXq1Whra4MkSQAQMtAGgGXLllGwTWJCcbohVTepAu0ArwKp1gLepAdv1MW+cmRAsqUDzqNVqs9Obu4Ea2gd05ukiFqhh/jERFuYDamhJfR5CgACDzEzOJWVmJIAMT0J2tzMwA0Jn2iE4/Ap2HYcBvN4Qu7O09EN264yuE83wLioGEJS6PSBhBAyUcVlsP3YY4/hscceG7Tc8uXLcfLkyRjUiJDBSTUWsHABDAB4FXhaOiGGyVVMxobidAcF2gH+mySjfkxauCNphR5q8MobdDDMmx76NQs8tAXZYV8rr9NAX+obE8MYg3XjNjj3RXYN9rR1o/WpN5HxwM0QEoxDqvNwKe5zXbocvi5dYloiFKcbvIFueAkhsROXwTYh45G/tW8gA2VzIGNDqrGEb+UFAjdJ2rzBU4mOtkhaobWF2UPeryY7FUKSSdVtRpOVMqRuM459FbDvOR60nBMECMkmeO1uMJe6Vd7T1oXOf25D+jc/P+Q6D5WnswdSrfqzlT1e2HaVwTBvOjTZqVGvQ7QpLgnuU/Vw11jAzt1QcEYddHlZ0JXk01M0QuIEBduEjBImyYOXGSCbAxkbEd0kOcbmJmmwVmjDvOnDbqXlDbpAKzXgO3+VQbqsBMoyBtv2g6plnMDDuHgWdLPywWs1YIxBrm+B/bNyeHscgXKu8mp4Wq0QM5KHVe9IKG45KNAO8CpwHq2CkGQaty3czOOF7ZOjcB4+Debtd03pccDT3AnHoUro502D8fw5NDibkDE2IVL/EULIcEV0kySH7o8cC5rsVJgvmg9tQTaEZDOEZDO0BdkwXzR/zFpnpTNnIVs6VMvMFy2AYf70QGDHcRy0+VlI+vyKoOwmtk+ORqVeiluGVN8Cx97jkOqa4WnrghLqBter+J5ojEOKJKNt3b/hPFIVHGj3wbwKXOU1aHv2X1BcUgxrSAjpj1q2CSEkzvVvhR5rrhO1qr+FJBO0M3JCluVNBuhmFcDdZxvXiVrghpWjWidPRw9cFbVQ3BLc1U3nnkZw4PQaaIumQDSr+4lH8kQj3jDG0LnhA7hPNUS8jVRjQcdL7yLtni9QCkZCxggF2+NM//RkQpIZ2sLscfs4lBAy/vTtFgIAmryMAQM5bU6GKthW+m0/UorTDWdZFVwVtfBYOuDpsgGstwuJVNME3axCGEp6ZxaO5IlGvJGqGuE8clq9kAO0hVOhO9d3X6pvgbuqEWC9ORhdFXVwHa+BYU5RLKtLCDmHgu1xJFR6Mq/VBqmhZcIM+CGExD+O7xdYe1nogucwpV/f6f7bj5D1jR3o+egQEKZbBZNkuE/UwNPcAU1uJjRR7C8eTbZd6u43nEZE4ucuUL0e3fQcGOZPR9c7n6o+F/uuMgq2CRkj1Gd7nBgsPZnzaBUUZ2SDmwghZCSEfukr3TVNA6a9lGqaBtx+JHo+Ooyud/cETaYTxMvA3DK6N38Gub171I4fK4rD5fsN6MO4qDjkjYOYmgjT0lLVMldF3bjsOkPIREDB9jgRSXqy8TrghxAyvhgWzFT9zZwSnIdPhSwrt1rhPlXfb/vRmU1SamhB16adwddGDuB1OnCaPlk4znUrYbIHtg/3B7e2xzlPqxVQ1HcUuuK80IUBaGfkgBPUTxD6D2olhMQGdSMZJyJpkaBWi7HHaUQw98B9QYc64x8h8UaTnQrd9Bxf3+BzHIcq4emywTBvOsT0JDCHC67KejjLqlStzpzAw3T+nFGph237oaAWbU1eFnR9sp94HS7Ija1gfdIaervtcFdbkHDpqFQjJhRJnRGH02nA67Rhy/OiCM6oVy0by6w6hExmFGyPExGlJxuHA34mGt6oh2JzDliGpqsmE0HClUvhfrZRtUw6cxbSmbMDbme6YO6ozCDp7XHAWaYeLKgtmAJ9cR6kuuZAYCkY9eCn5wZl8HCVnxlxHWKJN6gDa+aW4bU7IZgMIcsrTjcUmxNCnywsvD58cE4IiR7qRkLIKBIzUwBhgK8Vzw1rxr/xRHG64TpRC/vuY7DvPgbXiVoaTzAB6YvzkHT9RUPaRjczd8jbhOM+3QDm6e0KwgkctEVTQpbleA7iFPUAcvlsG5Rx1EChyUoF1292T2d5ddjyrhM16icKIg/N1PQo1Y4QMhAKtgkZRbxOA21BduiAW+ChK5o6odM0ypYO2HaVQaq1wGu1+bLl1Fpg21VG/UUnoIRLz0PKVy4HJw7+U6IrzkP6t64DJwqjcuz+6QP5RBN4TfiHtUKiSb2Ajd3MoMPBaUQYl5SolrnKq+A6WQfWJ80fYwzuqkY4D6tb/Q0LZoLv162EEBIb1I2EkFEmpiSAN+rhaekM/JjzRj3EzBSIKRO3C0kkGXPG8xTZJDTT+XPgsfbAeegUXBV1UOy93ag4QYB2+lToSwuhK8gKmklyRPh+Ab4ySDqSEOvH2yQv5gvnw/5peW+LNQNsO4/AWVYFbX4WwAFyfQs8nT0AAK7Pe2ReOX8MakwIASjYJiQqeJ0G2rzMsa5GTEWaMSeeZkIko0Mw6mE8rxiGhTOh2JxQ3DI4UYBgNoxaS3bQMfulD/R226E43WFv5rxW9QByTuDAh+nvHK80U9KQsHoJet7fr1ru7bLBeTT8AHnzyvm+J26EkDFBwTaZcGiWzbExETPmeLrtkBtbodiccJafAScIEFLM0M3MG7ObqXg+vzmOg5BghJAQ/WPpZuaB12uhuCTfAga4KutCphVUZA9kS7uqG4W2aGrUbgSiKfGa88FcEjr/uT2i8sZlpUi6YWWUa0UIGQgF22RCoVk2x85Eypjj6eiG7dOj8LZ3AQA4XggEZt4uG6QaC3izAQmXngfzxQtjVi86v3vxOg2My0ph+/hIYJmnpROOfSfB6zXgDDowhUHp7IHc3A541E9d9HPH52yKHMch6caL4Wnvhn3PsaAWez8h0QTjstlIuWXVuOsuQ8hEQ8E2mTCozzCJlOJ0Q65sgJ2dhetELSDwEDNTwGs1kJs70L1lD7ydA7fCKzYnurfshbZwChIuPS8mdabzW818yULY9xxXLfNauyH1OAOT2PhxXG//ZU12GjRTxm9mDo7joC/JgyY3Ax5LO9zVFijOc+NDDHpo87OgyUmHYNJToE1IHKBgm0wY1GeYRMLfOuzp6obXZIK3xwHmluFp64KYloie7YfCTv7BvIovjeG5VlJOp4H1jY8gpCTAOEqzIoYTq/Nbcboht3SCuSRwogA+0QQxPSkugzYxNRFpd10Dy69fDLmeKQBkD6AwMIEHL0ngE01IWLUYcfhyhozjOGimpI/rGwdCJgMKtsmEMRH7DJPR5W8dZh5v8Eqvgp7th6A43eD6pG7ktBpoi6ZAPyMX7jNNkBua4XX58oYzRYFs6UDHK1thmFsEToheH+Bon99ySyfse09ArrEETWUuJJmhLy2A4bziYe8/WvSlBUj8/Aq0r98K5vJ9rszjgWJ3gfWZdZHjAA8DNB4F7qpG8EmmcLskhJBRRXm2yYQxkfoMk+gYqHVYkWR4mtpVE/CIaUkwrZwPXdFUMK8CbW4GjOfPgW5Gbu+GTIFU0wzHwcqo1j1a5zdjDF2bP4P19Y8gnTkbFGgDviDevvsYrP/8EHJL55CPEW3a3AwkXLoQ+lkFUNweeK02daCtFX0t9FkpYA7nudeyDZ5W69hVmhAyaYwo2G5tbcWrr76K3/zmN/jJT34SWN7R0YGysjK4XONnwgBCyMQ3UMuvx9IOxhTgXKs3J/DQz50Gnhfg7ewJBOkcfDMVCol9Us8xBd1b9ka17tHS/c5nQankwvF2OdD61JvwdHRHuVZDx2lEeJ0SeJ0IMTURQpIJQrIZQmoihEQjeK169kWv1Y7Wp9+Ex9ozRjUmhEwWw+5G8uqrr+L3v/89JMmXdonjOPz2t78FALS3t+MrX/kK/ud//gdf/vKXR6emJO7IrVa4T9bB09wJRZZ706IV50ObmzHW1SPDwDxeuKubIFU1wNvtAFMYeJ0Gmqnp0M/KB28c34PvBmr59fb4JmNh5yY/8Q+YBADFJalmIOTAQZOTDu/J+sAyubE1GlWOKteJWvR8eCBoOcfzEJLNUFxS0CyLSo8DHS9vRcYDN8dVP265uRNybZPvD54Hdy625jgenE4T+Fz78nbZ0fnye0i/76a4ei2EkIllWMH2tm3b8Otf/xpz587Fvffei48//hj/+Mc/AutnzpyJkpISfPDBBxRsT0BSYxs63/wIckNwcNGbFs2IhMtimxaNDB9jDM6jZ2D79CiYWx2QKjbA094F59Eq6GbmwrBgBoSkiTcTJuvXvUR1YxGi6wlvUE99rbilqNQrmnq2H1Qv4ADDwpkwzJkGXq8FYwweSzvsnx6Dp7O3NVuqsUCqsUBXNCXGNQ5POnO23xIOmuxUCOnJ4EUBnEaAkJoIb1tXYIZFAHCfOQu5vsU3AyMhhETBsLqRPP/885g6dSrWr1+Pyy67DGlpaUFliouLcfr06RFXkMQX9+kGtP7pdXgsA/fbVGwOdL+7B7adRwYsR8YeYwzWNz+CbWdZUKDdn1RtQcsTr03Ivq6cRj240dtlH7C80qNe37+bQryTWzrhPtWgWmZaOhumxbPA67UAerNdJH7+AtWEMADi6rvtae8O6tqizUmHJjsNfJ+Ja8T0ZCReuwJcv/SI8fRaCCETz7CC7RMnTuCSSy6B0WgMWyYrKwvt7e3DrhiJP55WK9qff2fQgKwv65sf+3IDk7hl+/AA7LuORlzea7Whbd0m1UDCiaBvNxHA15rvtTtDlmUKg7u+RbVMzBpfE8q4TtSq/uZ0GuhnF4Ysy+u0MMydplrmrqiLVtWGTKprDvybyV7fkwiOh8dqg9IvjSOv18IwRz2hjSuOXgshZOIZVrDNGIMoDtwDpaOjA1qtdliVIvGpa/Pu3qmRz+GNOhjPK0bClctgOn8OxNTEoO2s/9oZMsMBGXveHge6t+4JWq6Zmg7zygVIWL0E+jlF4DTq77unrRu2jw7HqJaxIWanghP6vE4GOI+chtfer8+yxwtn+Rkwl/pmQz97fOVvV2wO1d/anPQBpy8Xc9TjMBSnO3QKxTGg2J1Q7E54mq2QmzvgtbsgNTRDqjkL17EzcJ9phLfLDsZ8/bY1/V+L3RlYRwgho21YfbaLiopw4EDwoBo/j8eDffv2obg4/nKykuHxdtngLFN3C9LmZyHh8sWqH2j9nCI4Dp6E89Cp3m07euA6URvUmkTGnmPPcbB+01gnXLYIuuk5gb91hVNgXDgT3e/uhre7N0Cz7z6GhCuWRDW3dCzxggAxJ101FkGxO2H/tAycRgPF6YLilOBp7gDzqoNMMTVx/E0s0m9AYP/zIEioG2Z+7AcVenscsO+r8HUjCQTM6sDZ222H0uMEpxFhKC0Mfi00OJIQEkXDatm+7rrrcPz4cTzzzDNB67xeL37/+9+jvr4eN9xww0jrR+KE40Al0Gc0PycKMF+8MKgljOM4GBeVQExTt3A7+k2pTOKDfe8J1d+66bmqQNuPN+hgWrlAtczbZYfr5MR6/K6bPhWCWR+03Gu1wV3VCPlsa1CgzQkCTCsXjLt4TUxJUP0tn20dcJCnVK0egCgkGsHxYztVg+Jwoe2Zt6DY1E8fmOTpP1s7AN/g7p4dB+Hu/1qSTJSNhBASNcNq2b799tuxbds2/OlPf8KmTZsC3UUefPBBlJeXo7GxERdeeCFuvvnmUa0sGTtyU5vqb23RlMAgqv44joOuOB+OfRV9th+d/vuK0w2pxhLIl8wnmaAkG0Zl35MN83qDBjrqSvLCltdkJAfdRHmaOoDZE+eJBS+KMC4thVRjgadj8PzLnCggYfUSaDKSo1+5UaafMw3gdwRuoplHgWNfBUwXzgsKPL1dtqA+3oYoT08fCeubH0O2dIBPVI8f4jgO8HoBQYP+Ubf7ZD0UpxtiWlJgmWHBzJjUlxAyOQ2rWUKj0eD555/HPffcA6vVilOnToExhq1bt6Krqwvf+ta38Oyzz1JLwQTC+g8ySgw/OBYAhAT1+v7bD4ds6YBtVxmkWgu8Vhu8Vl+aQffu45AtHSPe/2TTd4Y9v/6fW9D6flNcj8bnGm94ox5JX7gQ2sLsAbvIiBnJMF0wB9q8zBjWbvQIiUYY5qsDZldFLXre2we5qR2MscD09tZNu4I+a9NF82NZ3SAeaw8cB08CAHiNCN6gB8cLENOSIKQlgtMI4M0GX1DN8b7X022Hu8YCT5u1T5cTwHzhvDF6FcPHRZD9JpIyhJDoG/akNlqtFv/1X/+Fhx56CGfOnEFXVxfMZjOmT58OYYL04SS9eL06VZa3tWvA8v3TcHFhWsEj5f/RDznVtleBq/zMiPY/GXE6DcBB1b3V094VNuBmjMHT1gXe1PskYaSfa7zidb6MFdqCbHgsHXDXWiCY9OAEHrzZ4EspZ9CN+9efsGoxXEerVDnGpfpmSPXNA2zly8WtyUyJdvUGZP/smOrcFZPNYEwBJ/CBCYqUHjsUAMzt8Q0I1WrA67RgCuC1OaABYFxcAjE9KeQx4pmQZIbXGn5GVH8ZQsjYG1awffbsWSQmJsJsNoPjOEyfPj2ojM1mQ3d3N6ZOnTriSpKxpy3Igr1Pv2upvhkeqw1icvDFnHmVoEfO2oLsER1fqrGEDrT9x/R44W3vgpiePKLjTCYcz0OblwmprjeFnetYNbQF2SGfSkn1LfB2O1TB9kg/13iiSPK53Nq+WTO9nT3gDFpoczPACTw0U4LnExjvtLkZSLllFTo2vB/xNprcDKR85fIo1ioy7op+15hpU8EbdXAdrw4qy+lEwKluBFJsTmjzM5H8pcuiWs9o0RZmQ2poCX9dFHhoCyfO95OQ8WxY3UhWrVqFl156acAyGzZswKpVq4ZVKRJ/DOcV+1pC/Rhg+3B/oO+0n+KW0LP9AJR++YlNF8wZ0fH7HydkmX6DpMjgTBfMVf0tN7XDvud40GyKcnNH0MQfYlbKhPgx93bZ4Dx6BvadR+A8XAln2Rn07DgE26flsO86CqnWEvR+TCTGJbOQetc1QZP6hKItyELGvTeFHa8RS94edepCMSMJ2pwMGOZNBycE/7T171IhJJuR/p0bwevGZ1cL3qCDYd50IMRrhcDDMG86+H6T9xBCxsawWrYZY5STdJLh9VqYlpbCtqsssMzT2YPO13dAm5cJMT0J3m6HLzDp17dTm5c54hZQJkUwkY5n4vUfjjbDomJ0/ecTKI7enNGu8jNwn26EbtoUcDoNPE0dkC2+Aa5cn/z65pULxvW4DMYYHAdPwv5JOZgSOl+04nTBVVkH5lUgpJghmCbmYFzjghlIveNqOA+fgquiRpXikeN5aAqyYZhd6Gs9joNAG0BwJpRzN0Sa7DQY5k2Dx9IJud3ae+1gDOAAzqSHYNBBSE+C8/ApCElmaAuzx2VgqslOhZBkUg0aH8+vh5CJath9tgdjsVhgMpkGL0jGjcSrl8NVUQtPW5/+2oxBqmtWzeDWF6cVkfzly8Z1UDaR8VoNkr98OTpefFe1nLnccB2vCbudbnoOTOfPjnLtoks6fBrsZMPgBQEwl+zL1LF89oQNYni9Bob506GfNw3M4YLXJZ/ro64Hf+4mK56+xkKSGZ723rEhcnNHIMMIJ4oQs1IgZCWDyV4w2QOp6iw4ncbXgs8YOI7rHWjd0ALDvOnQZI+vWUABXwu3vnR8TahEyGQTcbD91FNPqf7eu3dv0DIAUBQFFosFmzdvxvz5YztanYwu3qRH+revR9ufN0WUyo/TCEj7xrXQ5o7PbA2ThXHBDLCvXI6WJ1+LqLy2aArSvvG5cT2ZjdTYCqm8Bpp+M2NyHA8+0QjeqAf6pf5jsgxnWRWMy0vBIY6izlHGcRw4k0HVNz8eGRbOgPtMb75suakDminpqvzhHDhwGhGejh4wjxeMMQiiL4+6qg++V4HzaBWEJNOEvZkihIydYQXbHMdh79692Lt3b9jymZmZePjhh0dWOxJ3xLQkZD70ZTT/v41wHasOnfqN8w2cM1+0APqS/NhXkgyZ6fw5SKppgn3X0UCXkf44vQ7G82Yi4zs3BE3fPt64yqqClmmLpkJbkA0hwQj97ELYd5bBWXYa3j7Tmnu7bfB22oImhCGxZ1wyC11vf6pKYek8WAlNQZbvDw5QHBK8rZ3wdHaDebzgeF//bCHRHJypw6tAqrFQKzEhZNRF/Iu5fv16AL5+jnfddRduvPFG3HjjjUHleJ5HcnIypk2bBn6MZxcj0cGb9Ei4eAEM86fDXdUIT6sVzC2DE0UIKWboZuZCMBnAG6mFaDzRTk2H+PkV8HR0w13V6BuApijg9TpopqRBWzgFQoJh3Afa3i4b5LPqSZr0M/OgLZwS+JvjOAhpiTAsLYX903LA3tunXapvoWA7DvAGHcwXL0DPBwcCy5jihVR91pf6r/8Ukn1mwNVOm4JQIhmITQghQxXxr+ayZcsC/77vvvuwfPlyLF26NCqVIuMDr9XAUFoIlI51TchoElMTIaYmDl5wnJIaWtULNCI0+Vkhy/KiAF1BFhx98sZ726xRrN3gFLcET3MnFJcEjuPAJxggZqaM6dTpnFYD9BlkG7bMKEu85nzITe2Qm9rB8VzIKdoDzvXT1k3PgSYjdI7wiAZiE0LIEA2rieq+++4b7XoQQkhMKE51UCimJgwYqAr9pqhnXi+YosQ8uPW0d8OxrwLuqkYwrzp7Cm8yQF9aAOOikpjWyW+sJljheB5pX/sc5LPtsH16dOCMRBwH3Ywc6KbljHo9CCFkICN+HtzU1ISWlhZIkhRyPbV+E0LiSVBmHGXgNKYs5PrYDpC07TyCzn9uCz1GAoBid8KxvwKuynroS/OhzQvdUh8tYznBCicKSLh0ITR5WbBt2x/URYgTxXPTt4vQlRZGpQ6EEDKQYQfb27Ztwx/+8AfU1tYOWO7EiRPDPQQhhIw63qzOsuFp74Iie8CH6Yvuae5U/c1pNOD42AXbPR8dRte/dqqmJg+HOdxoffotZNx/M7Q56dGv3Dn+CVacR6uCA+4YTbCinZKKxM9dAKm6Ca6TdVAkX+pCTiuC43kwxsCL4zeDDiFk/BpWsL1nzx7cd999SE9Px2233YZXXnkFS5cuxbRp03Dw4EGcOnUKl156KebOnTv4ziYJxS3BfaoBUo0lMLsiZ9BBm58FfXE+DSYkJEa0+VnqhNEKg/tUPfSzC4NS+ikOF+R6dQ55MYa5mKWGFnRt2hm8guMgJidAkT1QbOqZFJlbRseL7yDrR7fHND1jPEywIqYkgDfp4e22w9ttBwDwOi2EJBM8Y9zXnhAyeQ0r2F63bh2MRiPefPNNpKen45VXXsHy5ctx3333gTGGdevW4dlnn8WDDz442vUdd5jXC9un5XAeOhXUzxI9DnhaOuE8WAn93GkwLp8zbqcOJmS84A06aKdNgVxRF1gmN7aCuWRoi7IhZqdBcbohnTkL18m6oO+tNi92eeNtOw4HtWjrZxfBuHCGLxc4ALnVCvvuclULvKetG87yahgXzIhZXYH4mGCF12ogZiRDSDCOaT2iTXG6aeZIQsaJYY3wKS8vx+rVq5Ge3vuY0j99O8dxWLNmDUpLS/Hkk0+OTi3HKSZ70P6X/8B5+HRwoN23nKLAdbwGbU+/CcXhimENCZmcDPNnAP26gnjarXDsr0D35t3oePU9OE/UgvUbcCdmpcZsynZvjwPOI6dUy/TzpsO8Ym4g0AYATUYykq65ICgdoX1nWUzqSWJPtnTAtqsMUq2ldxbMWgtsu8ogWzrGunokjihON1wnamHffQz23cfgOlEbNEicRN+wgm2n04msrN4BOFqtFjabeiT6woULcejQoZHVbpzr3LgNrpP1EZeX6lvQ/uK7gRuX0RZJ6q1opOcik4u32w53ta9V2F3VCM8gWSrGgpCSAE1pga+7gd0JxSmBeQf+3vkmuymC1+aAbGmH1NgKuanNl488CtynG8A8vf2fOYGDcf70kGU5UfDdQPTd/kwjFEplN+EoTnfovvFAYCZMCqYIQDdl8WRY3UjS09PR0dH7QWVlZeH06dOqMlarFd4BWnMnOnd1ExwHTqoXcoC2cCp0BVkAz0NqaIF0uhFM6b1ouk81+KaEjsLj37FKzxUOPQadOBhjcJ85C8fByqBsEAAgZqXAMLsI+jlFY1C7XopbhvPIaThP1ELu7AbPcfB29gS+g7xRDyHJFLSdkGyGZmoGnAdOwtvd5zvEC5BqLNDmZsCwuASmc7mcR6Wu/YJ4ISN5wO+GJjdDvYABit0Fnm6gJxSpxhI+6wtAM2ESAJHdlAlJJvq9jZFhBduzZs3CqVO9jzeXL1+Of/3rX3jnnXdw2WWX4cCBA9i8efOkHiBp/+So6m9OIyLx6uXQZPUOrtJNmwrPvOnoeuczwNN7Y2LfVRaVYHss03P1J1s6gi4EXqsNUkMLDPOmQxPDQWhkZBRJRucr76H7vX1B3S78PM2d6GnuhPvMWZiWzx6TC7zU2IbOjdvgtfYElgkJRmimpkPpcfhauB0uKE43eFEEeA5iVho02alwHq2C62T4zEtSQytkSyfAgNSvrh6dWTb75/H2DNx40fem3S+WWVNIbEQyyyXNhEnopiy+DKsbyeWXX44TJ06gsbERALBmzRoYjUY8/PDDWLx4Me655x54vV489NBDo1nXccPXeqbua2lcMEMVaPuJKQkwLZ+tWuY+3QhPnxnrRos/PReEEB97jNJzAfQYdCJhXi/an38HzqNnIiovN7ahbd2/Y969QbZ0+MZE2JxB6zieB59ggCY71TctfXYa+AQjdDNyoZ9dCKmqEUpP8HahOA+dQvv6LSED36ESktVPmTzt3YEMG6FI1U2qvzmRBx+j/uXxhosgxd+o3BCNgUhmuaSZMAndlMWXYV1tbr75Ztx8882Bv/Py8vD666/jhRdeQH19PaZOnYqvfvWrKC2dnPN4e1qtqr6WAKAryQ9bXjdtKhx7j6uWyZb2qEyZHQ/puSbyHbcieyBVNcJ95iwUmwNMAXi9FpqcdOhnFUy4FI89H+yHuzJ4XAKnEX3dlrrtQT/8Uo0F3e98huQbL45JHZmioP3FzSFv4HiTAczjPde9ioETeIAXwGlFuE81wNPcCa8tuE82J4rgjXooruDJvFzl1bB9fAQJl543onrrivPA67W9x2CAfc9xJKxaHDR7peJwwXFE3ZVPP2daREHnRMSb9CFvrFRl+gwyJWSioZuy+DJqt/b5+fn4xS9+MVq7G9f6z/LGaYQBA1lO4MGb1Bd+5o7el2Cs03NNxDtuxhjsB07CsfdE0Oev2BzwtFnhLDsNfUkBDItKIJjHf4sjkz2wfXxEtYzTamBaPhu66TngRAFMUSCdOQvb7uNgrt5g1777GBKvWhaTgMd1ojZoYhoxIxma+UVIKJgK9/EaeLsdkGotkGr7tA57FbirGiD2ma6d02mhL8mHmJni65utEcBpRDj2nlCl6LN9dBjmixeMaEp3XquBcVmp6j2Wai3o3rwbhgUzoMlJB5O9cJ9phPNQJZjTDU7svaSbL5o37GPHs1BjPZR+10sxMwWetq4Bu8yJmSnRriohhAAYZjeS0tJSfP/73x/tukwYvF6r+pvJ3gEf/ypuCd4u9XpeP7FaQPuaaHfcTFHQ+er7cOwJDrTVBX1dhFqffA2ePv2GxyvH4dNQHOrW4sQrlkJfkh9oUeV4HroZuUi85nzVDOdM8sC+ryIm9ew/fkJINCHxc+dDyEgODGbkdRroi/OgLZoaKOe1O6A43WDnAjaO52FaMguarNTAdpwgwFBaiITLFqmO4bXa4CqvHnHdzZeeB65f7n3Z0o7urXvQ/rd30PHyFtg/ORr0OeimTYV2es6Ijx9vwmVXcJWfgaez9zvFazXQFmSH7TKnLcimOQ0IITEzrGDbbDZjypQpo12XCUMMkTXAOcAPr/tErXriCp4LzixA4lb3258GZ54ZgKetC+1/+c/Agfk44DpRo/pbk5MOzZS0kGU1aYnQFqqvGe6K8AMORwvzeoO6uRgWzFC1APelLZzi60oCgDmlc//33fiJ2WlhW+K1+VkQM5NVy1yj8PrElASk3XVNoE4RbZOehNSvXTNqWVHixUBjPZhXgVRrUY0FEFMSoJ9dCDErBbzZAN6oh5iZAt2MXCg9Drgq6+E61QC5qW1U+tgTEo8UtwR3XbMvFeupBshN7XS+j4FhdSOZP38+Kipi0yo1HnGiAOPSWarHv64T1RBSzNDPKgj8CDLGIFU3wXGoEuB6f0wN82dM+NnPJgpPWxd6dgTnk9fmZkI7bSo4rQj5bBvclfVgfbJJyGfbYf+sHOaLF8awtqOrf59YbV5WmJLn1udkQK5vDfwdrfzUfSmO3pZpv4FuZHlRgJBiBhQW+EFiigJO4FXdSULR5GfB09ib9nC0Xp++tABpa66H5XfrwXoGvkETs1OQcf/NE/L6EclYD09LJ7S5vTN88lpN4G/F6YZU3wz3tgPBXf0MOuhn5cO4eFZU6k5IrHnau+HYVwF3VWPQpHq8yQB9aQGMi0rGqHaTz7CC7fvvvx+333473nrrLdx4442jXacJwXThPNh2HultsWa+x9muo2egyc8Cx3OQ61vh6fRlHeHE3mB7ova1nIjsnx5VP5XgOCResRTa/N7AU1c4BYYFM9D9zmeqx/22XUdhWrlg/LZA9qv3QLOk+tarA6WR9GeOVKhjMHnwevb9TPz/7F//IP1S841m2j39zFyk3nYlnEer4D5eG7hu+A7ku9HRlxZCV5wHIXHiBdpAZOM4FHvoGXhdJ+tg234QfJibEOZ0w3noFNyVDdDPzIVuAnbBIZOHbecRdP5zW9inp4rdCcf+Crgq66EvzR+0oYSM3LCC7V27dmH58uX48Y9/jJdffhnz589XTd3ux3Ec7r333iHvf9OmTThw4ADKy8tRWVkJWZbx6KOP4qabbgpZ3maz4U9/+hPee+89tLa2IiMjA1deeSXuv/9+mM2xm6SlL01mChKvOR/dm3erlnu77fCWh0+TZrpwLl3oxwnGWFC/Y31poSrQ9hNMBphWzEPPB/sDyzytVkg1FuiKxmeXLDElAX17CktnzkI/uzDszUP/1HT9U9tFA2fQgtNpVAOO5ZomCGHy2CtuCV6rDWJKgm+Ap+zx9ftlgKe1E9qc0K3ivqdUZ8Ebewe+jvYEUbxWhKG0EIbSQigONxSXG+A58EZ9YOKa8XrfFomIxnqEyEXuOlkH284jYBE8OWduGW3PbUL6d2+ErnB8fi/J5Nbz0WF0/WunuhEoDOZwo/Xpt5Bx/83Q5gTHcGT0DCvYfuqppwL/Pn78OI4fPx6y3HCD7SeffBKNjY1ISUlBZmZmIJ93KA6HA7fffjtOnDiBCy+8ENdeey0qKirw4osvYs+ePdiwYQOMxrFp6UlYvQTM6UbHhg8iKm9cXILkmy6Jcq3IaFFszqCuFAOleNTkpINPUGch8Vjax22wbZg/HfY9vd99T3s33JX10Id4D9w1TZAt7aq+0oYoTNzUH8fzMMybBsf+3j71jqNV0M4IvqFlYHCdrA/8SPFGHRSnBE6nBXNJ8LRa4WnvDtmdxHWsGt4uhyrYNiycOfovCL11m2hpJKPBY7UFDZAFAHCAmJwA5lWCBq8z2YuOF99F1iN3xO0gSm+3Ha6KWsiNbVDcki9XvNkI3fSp1FgziUkNLejatDN4BcdBTEmAInmg9EtlytwyOl7cjKwf3QZOmJypQmNhWMH2+vXrR7seKr/5zW9QUFCAnJwcrFu3Do8//njYsn/9619x4sQJ3H333fjv//7vwPL/+7//w9NPP42//vWveOCBB6Ja33A4jkPSFy6C3GaF47NjqtHyfQmJRhiXliLltivGb5eCSSjUIzohIXxKP47jICSYANbb5KBI43eQpK60AGJaIjztvV0abLuOwNNmhX52EYRkM5RuO5wnauE6ph4gzJsNMQm2AcB80XxVsM3cMqz/2gluVh6Mc6cDjPluFGrOwtvRDfC+HxzeaIAgecAJXKCRyHm4Epr8bGhzM8AZtFC67LB9fASuyjrVjYRmahq04+wmitNqAMfAk0lx42zqd9fx6qDBYPqSfBgWFUM4N+GP3N4Nx57jkM/2GU/QZYfzUCVM58+JaX0H4+12oHvLHrhO1Qe1XHq77ZDPtsK+5zhMF8wZ313UyLDYdhwOOi/0s4tgXDgjMLhbbrXCvrtclQ7V09YFZ3l1VGauJj7DCraXLVs22vVQWbFiRUTlGGN47bXXYDQag1rQ16xZg1deeQWvv/467r///jG96Ohn5EIzJR0eSwfcNU3n+u0y8AYdtHlZ0ORmQDDp6cI4zvA6bdAyb3sX+CmhH8cxRYGnvUs1WVH/NJHjCcdxSLhiKTr/8WHvQubLa+06MXAmjoRVi2M24YomPwv6WflwVdQFljGXBGnfSXQcroK3owdMCe5+wGlF6OcUQW5o6d1OUSDVnIVUc9ZXRhRDdodJuHLZuPs+C0nmc5P7DFxmvFBkD9ynGlTL9CX5MK9coFqmSUtE4tXL0PX2p/B29DaI2HaVxVWw7WnvQuszb8F9pmnALgJMkmH/pByazBQkf/nyUTkPQ+U2j+VEaGRw3h5H0MzVhnnTg2ao1mQkI+maC9C1aSe8fWbGte8qo2A7iqI/QimKampq0NLSgkWLFgV1FdHpdFiyZAmam5tRWxv9FGOD4TgOmilpMF8wF4mrFiNx1RKYV8yDNi9z3P0oEx/epIeYnqRa5jw2QIrHqrNBkxVpC7KjUrdYMS4rhfniBYMX7LvNkhKYL1kYnQqFwHEcUm+/CmLWECYx4TiYLpwH/awCiFmp4cuFuGFIuGLJuPzR0haGyUvtJ/C+MnEo1NTrHkuH+umTwMFwXnHo7Xk+qNuP3NgGb3f0M+ZEQnHLaHvu36qbgcHYdx9Hz3t7R3zscLnNbbvKIFs6Rrx/MjrcpxtUM1dzAhf26SEnCjDMV69zVzWqUmeS0TVqM0iOBX8QXVhYGHJ9QUFBoFy4MoxFMIpghBgb/DiDlRmNfYymkdRnONuG3xcL/H8s3iPjBXPQ/Z9P/HuHVGOB/cBJGM6bqbqJkhpbYf+sHL4mKd/xtUVTIWalxOwzG8xw37/E6y8CZ9Sh48V3Bz4A5+unnXzLqnP7it3r5ow6pN97E5p+8TzkuuZAT55QVeC0AhKuXAoxMwXu4zXQz5sOxR7cPx8cp27Z44DE6y6E+dKFUXlt0T6/Ob0W+rnT4Co/EzTQkBMF6OdOA6fXjtn5OtBr44w6MJsDYCxQRnGqu8SIqQngTfqw+9DkpKPv9xPwdc3oO86i7/UmlmwfH4an1f/Y33dsThSgK86HZkoqFMkD6cxZyI2tfcowdG/dB+Py2cN+IuHPbR5q4Ck8XjiPVoFPNFILdwSife74bgx79y1kJPsGh4c5npibAdX5zgCvzQkuZVyHhWMikgbTcf2u9vT47vLDZRzxL/eXC6WrqyvqF06XzQbmHKQvpOKBx2qN6j5G00jqM5xtB9vG4XBAdjrhsYefqXOgOg2XUjwVkqKAyR54ZRnMo0Deexy28iqIeZmARoDX0gFvW2+KR8XtmyxFs6AI1hh9XpEY0Tm2rBjazi5IZWcgn24Ac/e2KHJaEZppU6ApzgPLTkVXd3fw9jEirFoIdqYJcmU9UN8Kj8cDxesB8zLwJh2EqekQ87Mgp5ggyxKUjER46luBKWkQEwzwNLbBa+kAUxh4swFMUcBrBYgzc6CdNx3e84rQ1dUVlbrH5Bqg56HMzYe3rgXKuYGDfKIJQn4mvHoeGMPzdaDXr5h0kCUJHFOgnLsGyC4XZH/LNseB02thH+D6wGQPZFkOfD8BoNvWA8Ea/DMZrc84ZL0UBV3b9wfq5ZVlcCYDDFcsBgw6+NsihZxUsLpmOD8u870P58q3fLgXhssXhdn7wOTKBni6Bv6+uo6egqY4d1j7n4yidn1w2OHuc+7C4x3wfFfsruDzvacbPDdwalQSLCVl8Kem4zrYHg1JSUmDFxohm9kMhR/4reaNepiTk6O6j9E0kvoMZ9tw2zDG4HA4YDQaIRkM0JlMw6rTsCUDuq9eAevGDyFrNGD+C5XsBTvjS3XHA+DPPebmRAEanRb6OUVIXXleXHUhGuk5Jk7JhJKUCHbRAig2B5jkBacRwCcYe6dFj+E5GrKO5gQoMzRg0/Ng7+qGnvFwV9QBYIBWA44DOJ0WBv95ZDJByUiFQ4EvC0n+FHB6HQSjDuB5cFoRvNkAjuOi/tpieg3Izhy8TIwN+PpNgKekEJ7mDujPfXZyRgq8GtGXiSE1Ad4uO3QuD8S00Nd8V2U9NBoNNH3GYqTkTVHNGsoYQ1dXF5KSkmL23XWdrIPDKQPn6iVrNEhctRhieojuTaXTILR2Q6puCrwOrrwOSTdeNqz62tlZeAe5pgqMh2kMv9PjRbTPHWduNrx9zl25swN6Bb5B+SG4qpvV57sgIGVqdszG0kw24zrYTkhIAODLsx2Kf7m/XCixuGBy3ODHGazMaOxjNI2kPsPZdvD3hxuz98h8/hwwl4S2P2+KoDQHfWkhUu+8GnwMJnUZipG+f/51HMeBTwz9tCmW5+hgx+c0IkSTCZ5Eo6ovvf81+Ak6LbRZvmm+I913NMTbNSDWBnttmtREaDKSoc3NhLfLBiHJBOfBSgAcOFGAt8sBx94TSLx6edBkR4pLgvPQKQDcuf8AfUleIGNJcF24mL3PvqwRfc7HlARostLCltfPKoBUbQls47XaANkLbjhpDCV58NcZSRkSEK1zR1+cD16vg+I611LNAMeeE77B6P3Pd4cLjrIq9D3fDfOmBxqFyOgb1++sv092TU1NyPX+Pt3+coRES8Kl50FuaIHtk/I+fSvVeKMexkUlSLv78zGZPZGQyYbXaaAv7b3eKz0OdG/pHSQon21D138+gWHhTGhzM8G8XkjVTXAcOgXF5lClbzRdND+mdQ+n/2Q+QuIgLc0hWjKZWwbiNGc4GR28TgPjslLYPj4SWCbVWtC9eTcMC2ZAk5MOJnvhPtMI56FKMKdbdb6bL5w7FtWeNMZ1sF1YWIjMzEwcPHgw0JXAz+12Y//+/cjMzKRgm8SENj8LyenJkNuskKrOwmtzAkwBr9dBk5sBbX4WBLMhrgNtxS3D09IJxeGb9po36iFmpsTt5B6EDMS0Yh5sHx85l27Vx9NqRc/7+wbcTpObAf3swijXLjL9Bx962rrAFCXkdURxy3AeOwOPtQcQeHAaEUKCEbxh/KYYJZEzX3oe7HuOq2fMtbRDtrQPuJ1ueg60NBlSVI3oV//999/Hgw8+iOuuuw5XXHFFYHlVVRX+8pe/oLm5ecQVHAjHcfjSl74Eh8OBp59+WrXuueeeQ1dXF770pS9NqEdciluCu64ZrpN1cJ9qgGxpD5q0gYwtTXoyTMtn+1I8rl4K80XzoSucEtdBNgB4OnrgOlHjC7bPzY7paen0LQszIRMh8UxIMCLt7uvAaSLvhyokmZD2zWvj5vuqzc9S/a3YXZBqLUHlPJ2+76/z8CkwyQPmlnxjJ2RZNfEUmbjElASk3XUNuIFSePbfJj0JqXddPaHipHg0rJZtRVHwve99D1u3bgUA6PV6uFyuwPqkpCQ88cQTUBQFa9asGfL+X3vtNRw4cAAAUFlZGVi2d6/vceDq1auxevVqAMDdd9+Nbdu2BWaSnDNnDioqKvDxxx+jtLQUd99993BeYtyR27rh2H8CUtVZMK96tDBvNkI/Kx/GxSVjVDsy3ilON9zVZwFviBs3rwKp1gLeqKcpwsm4oyuagox7b0LTr14MTMoSjpiRhIyHvgQxOfw4n1jT5GVCk5MOubEtsMz2yVHfE7Mpvr7biluGVH0WrsoGeNq7ArOgAoCuOA/Oo1UQkkyUom8S0JcWIG3N9bD8bj1Yz8AzFIvZKci4/2YICcYBy5GRG1aw/eKLL2LLli245ZZb8PDDD+OFF17AM888E1ifnp6OxYsXY8eOHcMKtg8cOIC33npLtezgwYM4ePAgACAnJycQbBuNRrz88st46qmnsHXrVuzduxfp6en42te+hvvuuy9ospvxqGfHIVhf2xZyenAAUGwOOPZXwH2qAfrSQmhzM2JcQzLeSTUWQBkgBaZXgaelE2LK+JlBkBA/bUE2Um67Aq6jZ+A6UQtPm7V3JQdoczKgKy2EviQ/rgJtwPcE17xygWqmVuaS0PXOpxCzUqCZkg65qR3uU/VB/bs5jcY3sNerQKqxqPqzk4lLPzMXqbddCefRKriP18LT2efJBgdo87KgLy2ErjgPQuL4j5HGg2EF22+99Rbmzp2LX/7ylwBCjxAvKCjAjh07hlWpxx57DI899ljE5RMSEvDII4/gkUceGdbx4lnPtoPo+s8nA07P66fYXWh7+k1kPHBzoMWDkEgM1uIHINCPm5DxiBcF6EvyoS/Jh+J0+ya9OZey0T8mgePj81G6ceksOA+fgquiTrXc09wJT3MnvFY7mCd49j/zRfPAa32vLZLvOJk4eK0IQ2khDKWFUBxuKC43wJ8738+dE9RzJHaGFWzX1tbitttuG7BMcnJyXE3YMR5Jdc2+QLs/joOYkgBF8kCxqacTVlwS2l/YjKwf3RY3fQ5J/OvfIhayTJgnK4TEAmOA3NQO18k6eNqsYLIvj7uQmgh9cf65GSAjwxt046pLBcfzSL3rGrQ//zbkphCD3fqP2+EA04q50PUZ9BbJdzwUxe6E62QdpPoWKE4JHAfwJgO006ZANyOXupaNA7xRR5/TGBtWsK3X68PmtvY7e/YsEhMTh1Up4tOz/VDQMv3caTDOnwHeqANjDJ5WK+y7j8HT0ptuztNqhet4DQxzp8WyuiSMvhk+OJ0WYkYKtIXZ4+rHnpCx5K5pgvWf2yA3dwSt81ptkM6chZBkRsKqxWNQu9jg9Vqkr7keiiTDcbAy7GyaQnIC9KUFMMwuGtHxFKcb3R8egOt4je9Opw9vjwOypR2OfRUwLCqG6aL51LhDyACGFWyXlpZi165dkCQJWm1wSiGr1YqdO3diyZIlI67gZOXttsNZdlq1zLBgBkxLSwN/cxwHTWYKkj53AaxvfQzF3vuY376rjILtOODp7PFlDjg38JDzeCHVWiA1tMAwbzo02SFmgSOEBDjLz6DjpXcHzajh7bKh6z+fQF+cB+OSWTGqXWxxogDT4hLoi/Mh1TRBbmqH4nJD1mvBiQLE7DSICUZw+pGl+vPanGh79i24T9YHBdp9MdkD54FKtL+wGWlfuwacQLMPEhLKsG5F77jjDjQ1NeGBBx4ISu9XV1eH++67Dz09PbjjjjtGpZKTkbuyXjVgjRN5GOZPD1mWE4Wgda5TDWAeb8jyE523xwF39VlfesSqxjFLW6e4ZVWgreJV4Dxa5es3SggJSapvRsf6LWCeCNObMqDj7x/AfbohuhUbY5zAQzc9B+aL5iNx9VIYF86EfmYexFHIKsEUBe1/exvy2YFzM/flKq+G9Y2PRnxsMno47eBzI0RShoyOYbVsr169Gvfccw/WrVuHSy+9FAaDb0rbCy64AFarFYwxfPe738UFF1wwqpWdTLw96r7YYmYqeF341gptXibsnx3rXaAwKA7XoLONTRSMMciWDrhPNUBqbA1aL2akQD+7EIZ5sWvt97R0hg60/ShDACFhKU432v7yNqRzKe+8PQ5wWhFishn6knzwqYlQrDa4TtapB/8pDNZ/7UTm92+h3MHD4Nh/8tx07704gYduRi40uRmAR4G7tsmXwagP+2fHYFoxj7JhxQkhyQyvdeDuvkISZZeKlWHPIPm9730Py5cvxyuvvIKysjJIkgRFUbBy5UrccccdWLly5WjWc/Lp1/+tf27t/kK2Yk+SHxrm8cK2/RCch09DSArdsuNp7YTto05IZ87CtLQUvEkf9XpFkr2DMgSQSHFaDeAY+EnIRGmpki0dsH18GK7j1YFlitMNTZIJ5tVLoElL8i3Mz4J+3jTYPyv39S32b9/YBqnWAl3hlBjXfPyzf1Km+ps36pH0+RWqhhvdzFzITW3o3rJXve2nR6H98uUxqScZmLYwG1JDS/gGH4GHtjA7tpWaxEY0XfuFF16ICy+8cLTqQvoQktV3nJ6WTnhtTghmQ8jyfVsZmMcLxeWGs/wMOI6DkGSesAPyGGNw7SwD12yNqLzc1I7WP/8LGfd9MepTkEeSvWO4GQKigROFQTNMTpRgbjyaLC1VitMN59EquE7UqpZzWg30pQWQ61sgmI296fo4Dqbz50CqawFzSYHyjj3HxyzYVpxuSDWWwM30eLkGy5YOSHUtqmWmC+aEfEKqmZIO/bxpcJX33hA5DpxE8k2XgBOp7/ZY4w06GOZNh/NoVXDALfAwzJse9+fjRELDh+OUviQfXN9gkAH2PcfBQgxWUexOOM4NplQcLsiWDoipSVC67L6R+rUW2HaVQbYEj+Qf71xHq+BpaAtazmlEiOnJ6vfwHLmhFV2bdsaieuNKJK39EyGYG6+0hdnAQNMwT5CWKqnGN87B22+shWZqmi/jxbkJlvrieB76mbmqZWN1vZMtHbDtKoNUa4HXahtX12C5SX0t5XQaaAvCn1P9u8AxyQNPB00NHy802akwXzQf2oJsCMlmCMlmaAuyYb5oPg3Oj7FhBdvbt2/HfffdFzQ40q+5uRn33XcfPvqIBkwMF6/XwrhUPaJeqj6L7nc+g1TfAqYoUNwSnMer0fmvnWAuCczrhaejB2AK9LP79QOegAPymKLA2adVBfAF2aYL5yH1tiuRfMNKpN52JRIuXxyUY9Sx70RQv/jJTsxMGTCY4yZIMNcfpxn8AV8kZaLN31IV8jOaQC1V/tbg/l3jhD7f4VBdtPh+ra9j8dTI3yo/XgdFM0n9NE5IMAyY0o836oF+vRX774OMLd6gg760AKbz58B0/hzoSwsmxHVivBnWL8irr76KlpYWZGVlhVyflZWFhoYGbNiwAZdccsmIKjiZJVx6Hhx7T6guXrKlHbIl9ChxxeEGb9BCMzXdFzj1N8EG5Ek1lqBcswmrlqgG6HA8D920qRBSE1Sj5ZlHgWPviQmdl3eoeK2vFStkBhWBh7ZoyoS8SPNGPRSbc+AyMejjHwlNdiqEJNO47KIQKX+Q3P+plLfbDs0U38Q1obpoeVqtqr95fezfD3+rfFhxfg3ufw55rTYosgd8mJtNX+NO/32MLO0gIRPRsFq2KyoqsGDBggHLzJ8/HydOnBhWpYiPmJaE1LuuBiKcQph5vb6JHS5bFHYU/kQakCc1qPsWCqnmsCPhxeQE6KblqJb17xNKADElAfrZhRCzUsCbDeDNBohZvkwuYurEnKRqsBZ9CDzErPh55DpZWqrEjGTV33JTBxR36NZqxS0FpfvTFoRuDIqmSK6v0bwGK7IHcqsVUn0z3KcaIDd3gPWfXXIAmvxMVUs18yhwn6wLW959TP1kkTcbIKQkDLnehEx0w2rZ7urqQmrqwD8+KSkp6OzsHLAMGZxhdhHS7/kCLI++AmYb+PGcmJyApM+vGPCHN54G5I0U65eZQROqNb8PbW6Gr9X2HOpGEhqv1UCbmznW1YgZXjdwi75h3nS4K+ugDJIJhIwu/cxcOA6cDEyqwrwKnEdOwbBgBoQ+rd6Kw42eHQfBJBmc2PuTZjx/TszrHMn1daTX4FBZabxdNrhPN8JzLrjmRBFygy8FqpBghH5WAQyLigfdt5icAH1poSqzi2N/BfgEI7T5WYFGHKYocB2rhquyTvWemy6YQzNJEhLCsILt1NRUVFdXD1imuroaSUlJw6oUUdOX5CP19ivhLDsN94la9SQtHAdtfhb0pYVQnO4J2cIVVr8WfzbQ41sEp0/kInxiQCY+MSUBvFEPT0snmFfxDSbq0z3DXRm+dY9EB28yQFs0BdKZs4Fl3i4b7DvLIE5NA3PL8FhtkOuag77b+ln5g958j1d9s9IwxuA8chr2T8vV70GfbCDeHgfs+07AdaoBhjlF0ExNH3D/5ovmq4Jt5vGi5/19ENMSocnNBPN4IdU2Q7GpGys4gYfpgrkjf4GETEDDCraXLl2KrVu3oqKiArNmBU+LW1FRgW3btuHKK68ccQWJD68VYZhdBMPsIigONxSXG+A58EY9+HPp2Cb6rGn98f3SIMpN7WCMhe1CI9U0qf7un16RTG68TgNtXiZ4ow6mMWgVJcFMy2fDY2lXPVVgTIGnqQOOMF1KeKMOyTdN3LFCffMnOw+fOtf636cAx4VsdFFsTrQ+/SYyHvzSgDciuln5MC6dBce+CtVyT3s3PO3hM40kfn4FROpCQkhIw3re861vfQscx+HWW2/FU089hUOHDuHs2bM4dOgQnnrqKdx6663geR733HPPaNeXwPdjIqYmQkxOCATak4Hi8cB1sg5dm3ej858fwnmsBlJNE7xtVjDJA8XmgutETchtpfoWSA3qmSUNC2bEoNaEkOESTAYkXn2+L+tFBDi9Fulrrg/q7w1MnOmr/Vlp5JZOX6DdF8eBTzBBk5Ec1BgB+LrcdLz0bsgUsr274JDy5cthWDA94jolXrUM5ksWRlyekMlmWC3bJSUlePzxx/GDH/wATz/9NJ5++unAOsYYjEYj1q5dG7LVm5ChYozBcfgU7LuPB/V3ZAqD0mmDu8sBTuRh+7gM3vZu6OcUQUhJgNLjgKuiVjXxAnDuByuCPoyEkLElpiYi+fqLYP33Lsj1rWBK8Gy5HO/LlmO+eAG0+aEHRk6kSYE02alQHC7wZqMvM4tGBMeLMC0thfG8YvAGHRhj8LR0wv7ZMXjarIFt5bPtcJ+sh35Wftj9c6KA1LuugWJ3wb6vIqjLiJ+YlgjTBXORePXy0X6JhEwow04ee8UVV+DDDz/Em2++iaNHj6KnpwcJCQmYP38+brzxxkEHUBISCcYYrBu3wf7pMTCPeoAoxwFiehK8Da0AGBSHG1JtE8AUuAYYQQ8A5svOm1RPBYjPcKc8n0xTpccj3mSAYf4MaIumwtPUBq/DDU1mCjhRhJiWCN2MXPBGXVA+/b4m0vTVno5uuCvre7tteBUY5k+DcVFJoAzHcdBkpSLx2gvQ9eZHUJy9s2vaPikbMNj2b2+YN83Xb76hFXJDy7kc4Rx4kx66aVMhZiRDiJO0mITEs2EF2//617+QlpaGlStX4u677x7tOhES0LN1L+x7joddLySawKc4gS47AIDJXkj1rdAWZocdAGlYOBMJq5dEpb4kvg23dXMitYqOZ7xGhDY/G5xOA8PcaUPbdgJNX+2urFf10+Y0AvTzQnf74DUi9POnw7GnNxWvu6J2wPEtfXE8D11+FnRhnhgQQgY3rD7bP/nJT7Br167RrgshKh5rD7rf3xe0XJubAfPKBUhYvQT62UUQslKhyegd8MMkGUq/qZ79DPOmIfWOKyP6kSETz3CnPJ8sU6VPdBNl+ur+aUs1U9LCTjwDANoc9fwDzKMETQhGCImeYbVsZ2RkQJYnTr5mEp/snx0DlL7NN74ZInWFUwKLtAXZUGZOgfejMl9Dj6LAa7XDY+2BkJoIcL6ptnUzc6GfVQBtbgblgZ3EVK2b/Q3QujmRWkUnO/+kQONZ/8YC5hkk7aknuJ876DpISMwMK9hevXo1du7cCUmSoNXS1Kxk9DEGOPaqZyDVF+erAm0/3qCD/sL5kGpbICQZIaQnA7IHpgvnQpubCd5soACbBGiyU8EnGuE6egoC48EhsinPJ8NU6WR86J+2VG5q8w2YDJO1pX/aU16vBaejMQaExMqwgu0HH3wQBw8exL333osf/OAHmDlz5mjXi0xwcqsV7opaeFo6oUgecKIAIcUMXXG+b8p12RPUR1ZXnBd2f77pxX0/NBwHQCsCCoOQaIrmyyDjFG/QQVOcC1Ny8pC6FE2EVlESXZ7OHrgqan35wd0yOJ6HkGiCbkYOtEVTR+UY+tmF4DQCmHyuxZoB9j0nYL50YdD57O1xwNkvG5NhwQzqSkdIDA0r2L7hhhsgSRJOnDiBXbt2QafTITU1NejLy3EcPvjgg1GpKJkYpMY2dL7xEeTG1qB13i4bpBoLeLMRpvNnB60fKHDmOA6CyeCb7OeckI9OCSEkCjwd3eh6+1O4+8x46efttkNqaAG3+zjMF82D+eKFIzoWb9TDuKhENXjcXdUAxemGYcF0aKakgUkeuE83wHH4dNBU9qaL5o3o+ISQoRlWsM0Yg0ajwZQpU4KWD/Q3mdzcVY1o+8t/4GnuHLCcYnOgZ9tBcAIPTXZaYLmnrQvavMyQ2zDG4O2yqR6NctphZ7Ykw0Dp8chkJTe1o/XZf0GqaxmwHHO5YdtxGNqp6Ui87sIRtS6bL18Ex8GTva3bAOSzrZDPBjdk9KWfUwhtbujrKCEkOoYVjWzbtm2060EmOE+rFe1/fRsszBTL/XE8D4+lA5xWAzE1EQDgOlYdNtiWqpuguGQIfYJtcYApiUloit0JudUK5pbBiQL4JBPEtKSIggJKj0dGE1MUeFqtULodYIoCubnTl0t7gKwbY8Frc6Jt3b+h9ISe+CWUnu2HIKQkwLxywbCPq8lMQertV6H9xc2Rb5OditRbr4i4PN1AEzI64uuqRSasrnc+g+KSVMt4ox76WfkQ0pOh9DjgrqyDp707sF7MSoVU3RSYuEFqaIF93wkYF5eoBjx6mjvg/lSdi1tMT4aYlhTFVzSxSI1tcByogFRrUeXvBQAxJQG62YUwDjK9/USaNISMHU+PA/bth+CqrIficAGiAN6gg7fLDg4MYlYqdDNzx7qaAbZtB4JuMjmtBvqSfIjZqWBON9ynGyFb2lVlut75DMYls0Y0uNYwfzrS774Olt+/GjTpV3+a3Axk3PfFsIMoQ6EbaEJGx4iDbY/Hg5qaGvT09MBsNqOoqAiiSDE86eXtsgWlWtPmZyHh8sXgRCGwTD+7EM6DlXAcqgQAiBnJkOqb4emTM9t55DRclfXQFU0Bp9VAbmyD82wrNP1au/SlBTQAKAJMUWB962N0bdoV9sfa09kDzydHIZ1qgOG84t5Z6/qh9HhkpBxHTqPt2X+ppwf3eOB1S770dgIHuakNnpZO8Eb9mA/0Y7InaNItMSMZiVcvB6/rzdSln1UA18k62HYe6d3WLcOxv2JErduA77qZevuVcJZVwXW8JpApBwDAcdAWZkM/q8A3y+YQZ3ukG2hCRsewo+Kuri788Y9/xNtvvw2XyxVYrtfr8fnPfx7f+973kJJCj/EJ4DhQqcqXzYk8zBcvVAXawLnpgRcVQ6pr9rViiQJ0RVPhaelUtZ4wpxuu4zVhj6fNzYirlq94xRiD9bXtsO8OP0NnX56OHrQ9/SYyHvgShERjyDKUHo8Ml7uuGS3/+3ewUN0WGIPidIM3an1PtRjg2F8BADAuHLtsWM7yM1D61dd8yUJVoO2nL8mHVNcMubEtsMy+5/iIg20A4HUaGOYUQT+7EMzhgtclgxN48CZ9oNvNcO5J6AY6PMXppuscidiwgu2uri585StfQU1NDZKTk7F48WJkZGSgra0N5eXleO2117B3715s3LgRycnJo1xlMt70f3yqLZoKXh86PzvHcdCV5MGx1/dDKmYkgzfr4T03HftgNFPTYb58MeXVjoDzYGXIQJsTBAjJJngd7qBZ5jzt3ejc+CHSv3Vd2P1SeryJI1YBBWMMbX96Q5VNyI/T68CLArw2J5jkAdfn2uHYXwFNVio0U9KCtosF2dKh+lvMToGYHPrJDwDoSvJVwbbH0hHxtOmR4DgOnMkA3mQYlf0BdAMdimzpCLoB8VptkBpaYJg3fVzNRkpiY1jB9jPPPIOamhqsWbMG3/72t2Ew9H6xXS4X/vznP+PPf/4znn32WTzyyCOjVlkyPjFJ3T2BD9Mq6ieY1es1WakwX7wQtk+OwtPcEXIbzqCDfmo6Eq9aDm6gabUJAF9w07P9oGoZJ/AwLiqBrrQAvFYDxhjkhlbYPyuHt7v3Zsd1vAaypYN+UCa4WAYU7oo6SGfbVMuERDN0JfkQkk3gwEE80wi5xQqlR33j7Sw/M2bBdv9rm5A4cP9lIUF9bWNeBVAUQBDCbBEf6Aa6l+J0h27pBwCvAufRKghJpkl7I0JCG1aw/cEHH2D58uX4r//6r6B1er0eDz30EA4fPowPPviAgm0C3qBuxfa2dg1Y3tPRrfqb0+ugzc1A8nUXQm7vhlTVAG+PE2AKOJ0WYooZiaWFkKubJk2gPdIWR6nWomphAwDTinnQl+QH/uY4Dtq8TIhpF6Lzte2+aT3PsX9yFMlfvGQUXgmJR7EOKGyflKmOxRt0MCwpAd8nCOVEEdqp6WByMqQaS2C5VGeB1+aEYB691txIBV3b2qwDtlR72tTXPk4jgIvzQJuoSTWW8H3YAcCrQKqx0M0JURlWZNLS0oKFCxcOWGbBggVoaRk45yiZHLQF6gE0Un0zPGFGuDOvAteJ2n7bZwX+rUlLhGnZbCSuWozE1Uthvmg+xMKsSdVtRLZ0wLarDFKtBV6rzdfaWGuBbVdZ0GPtcPq/x0KiMewMnbxRB/1s9Q+Hq6JmWHUn40OkAcVoYIoC98k61TJt4RRVoN2XpiAbEPt83xlCTpIVC/2vbZ6OHshN7SHLMsbgOq6eybH/9iT+qQagjqAMmVyGFaEkJCSgsbFxwDKNjY1ISAjfd41MHoaFM1WTzYABtg/3B12QFLeEnu0HoNidquWmFXNjUc1xIZIWR8U5cF5cAEE5gTW5mQP2G9XmZqgP1eMMU5JMBLEMKJjzXKaRPkKm7Tz31IoXhaCMOP5zPtY5n3XFeRDTElXLbB8dhtxqVS1jHi/snx6Fp99y0wV0bRtvmDT4XBGRlCGTy7C6kSxbtgxbtmzBTTfdhBUrVgSt/+yzz7BlyxasXr16xBUk4x+v18K0tBS2XWWBZZ7OHnS+vh3avCyIaUnw9jgg1VrAZHUfSE1uBrQF2ZDrmmNd7bg0ao8weXVgPdjU9n1nqQMwqZ4kTEYxDSj44Js8pgSf47xeC8Xuy3zF+n0H/DeKsc75zHEcTBfOQ9e/PwksU+xOdG3aCc2UtHN5tiW4q88GTeglJBphmD89pvUlhIyNYQXb9913Hz766CN885vfxCWXXIKlS5ciLS0N7e3t2Lt3Lz7++GPo9Xrce++9o11fMk4lXr0cropadZ9FBkh1zZDCBNKcVkTKVy6nfNl9jFaLY/+gRKq1gC0rDUrHGFjfr8uAkGQa9BiERILTa9VPvgBfus8idR9sPskMxemG4pbg7eyB0Kd1mzfpxyzns3nlAjjLqoK+I3JTe9guJeCAlK+sCvt9I4RMLMMKtmfMmIHnn38ejzzyCHbs2IEdO3aA4ziwcwOo8vPz8eijj2LmzLHLf0riC2/SI/3b16Ptz5vC/wD1wWkEpH3jWmhzQ0/PPlmNVoujYcEMdG/e3buNW4bjUCVMS0uDysptVrhO1asGchnOo+82GR0cx8G4cKZ60GONBZrsNNUATF4UIGamwH2qQTXLKScK0BZOGbOcz5woIP3u69C2LsJrG88h9bYroZ9dGP3KkahgigKpoRXuU/XwdvSAebzgtSLEjBToZuVTX3wSZNiT2ixatAhbtmzBgQMHcOLECdhsNpjNZpSWlmLx4sXUGkmCiGlJyHzoy2j+fxvhOlYd1GUEAMAB2vxsmC9eoMqMQUaXJjMFuuI8uCvrA8ucR07D2+2AYd40iBnJYA4XXKca4DxyWpWJBDwH0/lzxqDWZKIyXTgX1n/tDPzNPL6ZGXXTpkKckgZOFODt6IHU0Awme8EZdeDOTRxjWlKChFWLxzTVGm/SI/3em6B4XoPz8KmgLiN+mqnpMF00H8bFJTGuIRkt7hoLbNsPwttv3Iti93WPdFXWQTM1HbrpOUFjXcjkNaJ51TmOw5IlS7BkyZLRqg+Z4HiTHgkXL4Bh/nS4qxrhabWCSTI4QYSQYoZuZi4EkwG8kXKURlvilUvReqpe1UooVZ+FVH12wO1MK+ZCSKRuJGT0aPOyoC3Igruqd+A9k2W4TtYCJ/tkzuEFiKkJ4HVGaDJTwGkEpNx2ZVzkNOa1GpiXz4ahtBBSdRNkSzsUtwROEMAnGKGbkQsx2RyVaxun1QChZt7sX4aMiO2To+h+d3fohqI+PC1WtD71BtK+cS30YbI8kcllWMH2T3/6U9xwww0UZJNh47UaGEoLgeBeCyRGdNNzkHzjxbC++fHQtrl+ZRRrRSarhNVL4O3ohrejJ7INeA6pt18FTWZKdCs2RJwoQDczF7qZuTE7ppBkhjdMOtW+ZcjwOY9Vw/rGDlXjxECYW0b7395B5n99GZosmgBsshtWSoHXX38dd9xxBy6//HL8v//3/1BVVTXa9SKExIB55QKk3LIKnDj4pUA3Iwfpa75Ag7pIVPA6DRKvXQGhXyq9UDidBunf/Dxl8zhHW5gdSI0Y0hgNHp0omKKg662PgwJtMTURpvPnIOHKZTAuKgZvUg/qZW4Z3e98FsOakng1rJbtDRs2YNOmTdi6dSuee+45rFu3DnPmzMH111+Pa6+9FqmpdBdHyHhhWj4bns6r4Dx8Cq6KWii23hzanCBAO30q9KWF0BVkgdOMqOcZIQPi9VqYls+G3NQOqaEFnuZO9I1wBLMepgvmwjB/Og0w7IM36GCYNz10Dn6BH7PBo8DIZ7uNB+6KOnja1TMbGxbMgHHJrN7xaflZMMyfgZ7tB1Wz8zrLz8Bj7aEnC5PcsH45Fy1ahEWLFuFnP/sZduzYgX//+9/46KOP8Nvf/ha///3vceGFF+L666/HqlWroNONny8UIZOVYNTBuHAmDAtmQHG4wNwyOIEHbzJQSzaJOTE1EWJqIhSvF8wlA0wBp9GATzTCMKcIvI76H/enyU6FkGSKq8BWtnQE3QB4rTZIDS0wzJsOTfb4aJiz7z2u+ltMSVQH2udwogDzxQtgfX1H70IGOPZVIGE1dbudzEbUTCWKIlavXo3Vq1fDZvv/7d15fFTlvT/wzzmzL8lkhUAgCQESlrDvi6hIQYVSVKqtC7YVW1vtr9bbqrV7+6r0ttfbKqVXaet+XVFuKYpbRVEw7Pu+JZANQvbZz8w5vz+GhJzMTPbZks/79fKFc+Y5Z74zczLznec8z/exY9OmTdiwYQO2bNmCLVu2wGKxYNeuXb0VK1HCURQFvksNkCovQW5yAQLgOVYatyWiBEGAxmIC2lwOJYoGxeeHt6wa0rkLkF0eKIoCUaeFmJYMw5BMVrnqgGgydLygVZR0ZrVbjc2SED3cUlWt6rahcGjYc1E06KHPHwy58Uq1El+b/an/6bVrwlarFV/96lexZMkSvPjii1i9ejUcDkdvHZ4o4UgX6+Buu3y6qIGvrokloohaURQFzv2n4Sg+BF9lLRT5yoqlfrcH/iYHpNJK6AZlwJCXxWpFCaDXVruNA22rj4gdVGPSJFtUybbM5dv7vV5JthVFwdatW7FhwwZ89NFHcLkCYz5nzJjRG4cnSgity2+5jpbAtfs4FH/bZc7VvSEsEUX9naIoqF/3CRxbD0LxtV9STbpQh/oNW5F6yzXRCY66rbdWu40HolGP1p/k/up6IGdg2Pa+S/VB+1P/1qNk+9ChQ9iwYQPeffdd1NTUQFEUjBgxAkuXLsXSpUuRlRVfl8iJIqm5/Jbn3AU4th0MXSIqxPhnloii/qzpo11wbDvU6fayw4WGd7YhaeG0TiUxfWGCXiLqrdVu44E+NwtSxZXVQd3Hz8E0YUTI+Sz+RkfLCqit96f+rVvJ9v/8z//gX//6F86ePQtFUZCRkYG7774bX/nKVzB6NAsnU/+kz8uC9/wFOL84FJRoa6xm6IYOgLEoH3KDHe7j5yE7rlT9aC4Rlf6txVGOmih2/I1ONL2/I2i7Js0GXVYaBL0Wvtom+MqrVVeJ/A0O2D/di+RF7V897SsT9Ci2LLPGwvHF4ZbbstONpo93wzpvouoHn7/BjqZ/71Z9/gt6LVcMpe4l208++SRMJhOWLFmCpUuXYs6cORDFbpXs7hf64upeffE59ZRoMkA0GuC3u1Xb9XmDYSwcCn3eIGhTkwCg3RJR2pSkqMZNFCuO7YehtBnXa5o0Etq0K7W2dZmpkIcNgmv3cfhbfeY4vjiMpAVTIWhCV8vpSxP0KLb0QwcGOlNKqlq2ec9dQN1rH0GfOwiaZDN8NQ3wnr8IKAoE7ZXUyjx1FESTAYrSydVwqEsS5cpVtzLk3//+99i6dSv++Mc/4qqrrmKi3YHO1NdMtBqcffE59QbPmXLostIgWs2ATgttqg2WOUUwjh3WkmgDV0pECbpWicLlElFE/YWzTUk1w4gh0A1KD2on6nUwjB2m2uZvcMBz/HzYY3d2gl5v6kwHQ3/rhOgrUpZfC6FNyUnF54fndBmce0/Ae+4C0Cah1qYnI/mGmdEMs1+Rqmph//wAvKVV8NfbA1etSqtg//xAUAWZWOtWz/ayZct6OYy+TZ+XBW/ZxfAf/G1W9wr1S032xNfYtq4+p/5CqqqFoNVAm5oExe2FeWohDENDT6RhiSiKZ/4mJ9zHSiGVX4Ls9kIQAdFigj5/MAwjhkBEz3qOFJ8fvkvqhUKMhUODFg9ppk22QJNsVm2TqmrDLm4Tiwl6XDa979JnZyBj5RJU/vq5DifyAoFEO+M7X4HGyjKqkZBoV67YJR0Fzat7hVxOt83qXuF+qbkOnYGvrinKkYfXlefUn3SnRFRrLBFFsSY73Gj8YCfq3vg3XPtPwXepHrLdCX+jE1JlDRxbD6LulQ/h2H28R5fGQ02O6+jvpe1niiKF/3uJxQQ9LpvetxlGDEHKV6+FftggIEydbUGnhbEoD5kP3gptZkp0A+xHYnHlqic61bM9atQoiKKId955B8OGDcOoUcErJ4UiCAKOHDnSYbv+oDOre7X7S01W4C2tgmg2xs3qafG4YlmssUQUJTJ/gx3Va9bDc6o8dDWdyxTJB+f2o6h96X2k3bkQQjeGEgpGPSBA9Ti+Sw3hHxMK/I1OiKYrfyOCMb4+Z+J52fRYkL0SfBfrIDsC81hEixHaAakQE3gojTbFiuTrpkJ2uOA5WQZfnR2K3wdBr4M2MwWG/GxoU63s0Y6wRCst2alke9q0aQAAk8mkuk1d09HqXp35pea7WAf90AHtPo6/yQnfpXooXh8ErQaa1CTVhKPeFE8rlsUDloiiRKVIPlz627/gq67v9D6uvSfRkGxByrKruvx4gihCP2RAYFLZZe7DZ6EP8+PUV10P2eVRJdv63PA/ZGOFnRABvtpGuI+dgyL54K+zt1y1E416mCaOgC4jJbYB9pBoMcE0cWSsw+i3mq9KyS4PpIt1UNxeCKIIMdkM7YBUCIIQV6UlO5Vsv/TSS+3ept7RmV9hstMdcruiKJAu1MJzqgzesuqg+7UZKTCOzoVpwvAex0nhsUQUJSpH8WFVdRwgMJHXUDAUusEZUCQ/vGcrAhPBWrFv2QfrnHHdumRumTVWlWxLFZcgO9zQ5w1SLQDlq7fDfbhEta9uUHrc/jjt750QsssD95ESuI6dg6/iUtAYZ9f+UzDPHAvrzLExipASnXSxDs6dx+EtqQiqaKRJMsM4Og+myQUxii5Yry3XTj3XqTGGUvDEDMUvw75lH5x7TkJjM4fYKzBcwf5ZPTxnK2CeMgqapNDtqGd6VCJq2qh+1fNF8UNRFNi3HlRt0ySbkbx4NjSWK5fDjSOHwHv+Iho/aFUbWwHsWw92q3fbNLkQDRu3QW5V0s97thLecxegHZgKQaeFv64J/vrL81XEK1eIrFeN79RwRoq+xo92oWnz3rBj6hVJgnPnUUhnK6HPHQhTUX6UI6REpSgKmj7cifp1n4adqOpvcsKx4wjcJ8/DNHZYyApH0dYnJkgqioIPPvgAd911F+bOnYsJEyZg0aJF+MUvfoHz58OXhuoLFFlG08e74Tld3qn2vqo6XHr6/yC7vRGOrP/qdomo61kiimJDOncBvgt1qm2W2eNViXYz/dABQRVAnDuPdmuypGjQIeXW+UHbFUmCVHYR3rMVVxLtVnTZGTDPGNPlx6PIcx0+i7rX/t3+kEgA8Pmh+PyoefYduA6fjU5wvYDlHWOr6f0daNy0vVNt5SYXqte83aWhcZHSqZ7tn/zkJ906uCAIePzxx7u1b1f853/+J5577jlkZmbiuuuug9VqxbFjx/DGG29g48aNeO2111BQED+XE3qT+/BZeEuDZ9wKOm2gDFWTA0qbsoFSRQ3q129B2tcXRCvMfoUloijRSJU1qtui1QRddkbY9sbCHFWNa9npgdzkDKqu01q4xSfME0ZAufVaXHxqXadi1WWlI/n6Gd2alEmR5W90oval90Mm2uLlH27NK+cq8uUfZwpQ+9L7yPrpioS44sryjrHjPlmGxhArzgqiCE1qoESybHep7pMdbtS8sAkD/uNrMb0S1qlke/369SG3C4IQsjejeXs0ku3q6mq88MILyM7OxoYNG2C1XjnJn3/+eaxatQrPPfccVq1aFdE4YkGRZbgOqXsEBJ0W5umjYRg5BKJWC0WW4T13AY4vDquWB3fuOgbb4lntfjlS9zWXiLJ/tj8wpCTU34lOC+PYQIkoJtoUS22Hp2mSzO1+MYnJwUlR2x/1rXW0bLplVhFspVVwfH4Q/noHIPuDjiHodTDkD0byDTMTIinrjxzFh4LOA+3AdBhHZEM0GwEE5rG4T5XBV32l8ozikeAoPozkL8V/8QWuMRE79s171BuEwGrMpqL8llU6fRfr4PjisKrSl1R+CZ6TZTAWDI1uwK10Ktn+97//rbotyzJ+97vfYf/+/VixYgWmTp2K9PR01NTUYOfOnXjppZcwceJEPPbYYxEJurXy8nLIsozJkyerEm0AuOaaa7Bq1SrU1vbNhUK85y+qEmgASLp2smo2vyCKMOQNgjYtGfVvfXKloawEPtwWTo9StP0PS0RRomhbQs9X2wjFL0MIUzPaXx1cok8IU7ays4tP6AdnQLtkNvTDBsF18AxklwdQ5MDfS2oStAPSIJoNEDQiew7jkCLLcGw7pNqmzUyFaXw+BFz54SaajTCNHw73obOqCeKObYeQdN2UuL9iwfKOseGraYD7WKlqm3nKKJhbVYQRBAG6gWlIvnEm6t/eAqXVcFnH1gPxn2xnZ2erbq9duxYHDhzAP//5TwwYcKUMXX5+PqZNm4ZbbrkFy5Ytw3vvvYd77723dyNuIzc3FzqdDnv27IHdblcl3J9++ikAYObMvjkWVmo1ix8ANKmWsGWzNMkWGIYPgedMRcs299FSJttRwBJRFO/altBTPBI8p8pgLMwJ2d51pER1W5ueDDHMj8auLj5hGDEk0NPeSz2HiqIEygY2OKDIMgSDDrqBaUyIeplUUQN/g0O1TZ8/WJVoNxMgwDBiCDwny1q2+evtkCproW9n+FK8YHnH6HMfPxdUvctYNCxkW1Gvg2lcPpw7j13Z/2hpy4iLWOhWNZJ169bhhhtuUCXarQ0cOBA33HAD3nzzzYgn26mpqfjhD3+IP/zhD7jxxhsxf/58WCwWnDhxAl988QVuu+023HnnnWH378kKaL1NUcLHoygKFCiBNSAut5FdHlUbbUZKu89Hm50Bz5lyNJ+x/kZHTJ5/e88zXJtw+zRvUxSlW8eNpEjEE6nnGG+vXaS1Pm8I0GamQD98MLwtE60DV74EswH6IVc+5xVFgWvfSXjPVlyuHR94/cyzxrbc35avwd7h6xxoE9hf0GuhyxkI6dwFKH71cBJBFGAsyodg1Hd4TL/XB/eB03AdK4XcqE4CIQjQ5w2CeWphF//+eN6E429y4Eo2pAA6LTTJZihhVkcSbZbLE8mv3O9vdEAZHPvKEZ0hGPUwjAr+Mdred3h791P7/I1OtD5XtFnpEDSasK+nLjsT2Hm0ZR9F8kF2eyOycFxnEvhuJdtVVVXQ69sP2GAwoKoqOktl3nPPPRgwYAB+8Ytf4NVXX23ZPmnSJCxduhQ6XfiZwQ0NDXFz8rvtdihtEuhmXrcbikeCIMvwOwJfHB6vF75WYy1ltwcOhyPk/gAg2R2QJAmyJ3BpReP1or6+vveeQCe19zybCbIPvlaxdbSP0+mE5HLB187zD3XcSOrO84zFMSN53HjX0BB+xcL+RpkwDJ4jgTkgfkmC4pNRu3EbNOnJ0AxKAyQ/fOcvtpTpExQZsscLQaeBVDA47GeJu6auU+cWgCvt9CLknEzI1fVQXIG1BQSTEdqcAXAYRaCD89B/qQH1//s+/LXBlUyaSSfOwXmmDC7IMH1pSpd6vHjeBJPsdnguf7f4JQl+yQu3yx1+WXPZD6/LDb/nSk9wk8MOdx/7jGmL5073uJzOlvMLAODzQWzn+97f2KjKdwCgobERgrv3K16npqZ22KZbj5qVlYWPPvoIDz74IAyG4EsmLpcLH374IbKyojNJ4K9//Sv++te/4oEHHsCyZcuQnJyMo0eP4ve//z1WrFiBP//5z1i4cGHIfW02W1Ri7Ay71QpZDP2WiEYjFEGEaNDDaLk8qTHNBnfllfHoSk0jzObwE5uaLtRDp9NBZwj8UDIMykBKSkqvPofOaO95NhPNRlhbxRZuH0VR4HQ6YTab4TWZYLC0P+Gz7XEjqTvPMxbHjORx45WiKGhoaIDNZmOt5suUOROhOVUF94FTkHQ6KMLlXuVGJ5RGJwBAA0CjC5wnglYDnUGPlFvnwzJkUNjjdvbcAqBuZwGQagtq19E56KttRPVLH0Hj8kLUtf+4glYDpfgoRKMJtqVz2m0L8Lxpj5SjwHv5u0XS6SBAhNbhgTYj9Hesv8EJRRRbvo8AIGXoIOj6yGdMWzx3ekY3ZCDkVueKVFULk6gNO2zHebxMle8IZiNSMtMTaxjJ8uXL8d///d/4+te/ju9973uYMmUKUlNTUVdXh927d2PNmjUoLy/HQw891NvxBvniiy/w5JNP4hvf+Abuu+++lu1TpkzBM888g+uuuw6rVq0Km2zH00kvCOHjCWwXWv0/YMgfDHer+qSy0wvP4bMwjQteJdJbXg3vuQuXF1EJ7G+aODImz7+95xmuTUf7CILQreNGUiTiEQRAtrvgPlYKqfwSZLcHgiBAtJqgzx8Mw4gh3XqO8fbaRUvgvOlbz6m7BEFA+p0LUfO8H1JlZyaVC7B9eS6ss4o6OG7nzq3mGHpyLEVRUPfyB5CbXECbscKixQTRqIO/3t5qxbnA56r9k70wjhwSVD88fBw8b9rSDUiFbnAGpIoaKAoge7xwbD0ITboNkBUIGhFikhn67EyINgs8J85BNBrQ/D7pBqdDd3mZ7b6M5073mMfmo0GnhSJd7gRQAvX9rfMmBr2e/kZHYAIuruRN5okjIcZw8m23ku2VK1eipKQEb7/9Nr7//e8DAERRhCwHPsAURcHNN9+MlStX9l6kYTRPgpwxY0bQfWlpaSgsLMTevXtRW1uLtLS0iMcTTdoBqdCmJ8NX09iyzbH9CHx1TTCOGQZtejLkJifcx8/BfeiMal/BoIN5yqhoh0w9IDvcaPxgJ9zHS9F2GKS/yQmpsgbOHUdhnj4alqsm8AOdukzQaZF+z2LILjecu08EVTtqps1MhXVOEZLmT45yhO3zllSpJlsCgDYtGZZZYwNjPAUBstsL95GzcO49qWrXtHlPp5NtCiYIAixzxqHm2XfhPRNYjEhRFPgbndAkmyEYDfDbXfCerYDs8kCTpJ7Qb53LFUEpPNFihGlSAZw7jrZs85wsg+L0wDh+OHSD0gMTu0+Xw7n3BBTJp1qh2TJ7XCzCbtGtZFsURTz++ONYtmwZ1q9fj+PHj7dUAhk1ahSWLVuG6dOjU+VCurwcbLjyfs3bOxpjnogEQYBpUgGaPtql2u45cR6eE+2vnJl07SSIBq5ylSj8DXZUr1kPz6nyoES7NUXywbn9KGpfeh9pdy6M+zJaFH8EUYR54kgYRgyB99wFSOXVgRVnBQEaS+AKii4zBaI5/qouOD4/oLotmo1IXjwLYqvLz6JRD/PkQgg6LZy7T7Rs95wqh1RVC11W3+qUiSbRYoT3dDmUVuNkFZ8PvtrGoLay2wsx2QzdoHRo05NhmlIYzVApASVdOxmuPceh+K5UKvKWV8NbXt3ufsaiYTGvctOjkeLTp0+PWlIdzuTJk/Hyyy/j+eefx6JFi5CUlNRy3/r161FaWoqxY8cG1eDuKwx5g+CfVADn3hMdN77MND4fSQmweAAFKJIPl9Zu6NKSs669J9GQbEHKsqs61V7Q6wBnB5PYuARxv9Jco9+QF348drxpW4fXVJSvSrRbM44ZBtfhkqD9mWx3j7esGnX/+yEMBUPh2x5+YmprvopLkIcNRvrKL0Pk5wt1QJeVhtQ7F6H2hU2d32dwOtJu/1IEo+qc3p+WGWXXX389XnvtNezYsQMLFy7E/PnzkZycjOPHj2Pr1q3Q6/VRWVwnlkyTCyDotUE93KEYi4YhbcX17PFMII7iw5Aq1MtpC1oNDAVDoRucAUXyw3u2At5zF1Rt7Fv2wTpnHLSZKR0+BpcgpkSnyHJLpZRm2uzMsO0FjQh9doZqH7nJGbH4+rqGf22FIvkhmo3QDxsE97FSCLIC0WKCoNMAPj/8DjcUX6vVSvVaaDNs0A7suJoDEQCYJ4yAcM8SXPjDK+pzKQT90Exk3n9zXNQ+T/hkW6PR4B//+AdeeOEFbNq0Ce+88w4kSUJ6ejqWLFmC73znOygoKIh1mBElCAJM44ZDAaB4JbiPnVOV2hJ0WhhGZMM4Og/6IZkQNJrYBUtdoigK7J8fVG3TJFuQvHgWNJYri4gYRw6B9/xFNH6wo9XOgH3bIaR8ZW6Hj8MliKlP6uDLWPG1WRZe5Jjh7pAu1qmGLooGPcxTCqBJSYZUVg1/fWAYiWA1BRa+8UoQk80w5GRBtrvgPVMBw/DscIcnUjGNHYa0OxfCtf8U3EdLWxYWAtBSQ980Jhf6/OyWSkexlvDJNhAYj33vvfdGfAGdeKcxGWAYNxzmyYWQ7S7IXh9EnQai1cSe7ATlLa2C72Kdaptl9jhVot1MP3QAjKPzVF96zh1HYFs6p8OJR1yCmBKdIIrQ2CyqVQy9JVXQDQw9LET2eCGVV0ObeaVXVZOaFLItta/1pDUgMAHfOCYP8PmhH5QOWfJB8QbmVwk6LZw7jkD2+IDL30uOHUeZbFOXaJLMMBXlwzh2GBSXJzCvRBQhWowtJT/jaV4aM7AEEVitrYM2zfVvBQGaJDN06cnQJFuYaCcwX5V64q+YZIKunYkexjYrmslOz+UyaB3TZaXBOnc89LlZ0KRYoUmxQp+bBevc8RzHShHXmTkBHbUxTRihuu0+WgJfiOFRiqLAufOYaqIVRAGmouCyqdQxqUo9zM0wcggEzZXvHVGnhcZigsZigqjXBVb3a8XXZn+ijjQPaxQEAaLZCG1aMrQpVlVt/Xga+tgnerb7A9FihGxvP2kSLfFxuYR6T3NvUDNNkqXdXmoxydzhMdojmgwwjs7tfIBEvaQ35g1Y5oyDfcv+ltuKz4+GDZ8HqquMHALBoIPvQi1cB87Ae/6CqjSYafwIaJKD/36oY4pXPVxHY7NA8YT/3AnU175CbqctUSiJNvSRyXaC0A5Ihe9SO8u8akRoB6aFP/EoIQltvpR8NQ1Q/LKq16g1f4hzRDD2vbKX1Pf0xpenbkAqTJNGwtWqhrbileDYcQSOHUfC7idoRCRdN6VbcRMgmtSfMb7qhnZ/uPga1ctsc4gadVWiDX3k+IIEIep10OdmhU6ymk+sOBqfRL1DnztQdVvxSPCcKgvb3nXkrOq2Nj2ZVzwoLiiyDG/FJbhPlsF9/By85y5AbnXVpfnLE+19xnXiyzP1tuugzxnQ+cAEIPVr10E/JHzlEmqfPlddHtJ7ugxyq1rbrck+P3wVl9rsHz89kJQ4EmnoI3u2E4g2NQnaDBv0Qwa0zL7V2KzQ52VBNBngOXEuxhFSb9MNTIMhfzA8ZypatjmKj0C0mFTJgSLLcO0/Be/ZSvWqWbOKuCpbgpBdHnhLqkL+bScyv9MD1+7jcB0rVVVJAi5XShqeDfO0wGq2uqw0aGyWHr0OokGHjO/eBOlCbWARqHYIOg3S7r4B5jZjvalrzNNGofHdL6Bc7mFU/Aqcu4/DNGaY6n2TvRJcB88ESraJV+YhWWaNjXrM1DckytBHJtsJRjToEuLEigVB1/HpnIgLs1jmTVAl24okofG9YmgzU67U2S6phOx0q/YT9FqYZ4yJdrjUDVJVbdDlUH+9Hd6yizCNGx53vTSd5TlTgbpXPwq77Lsi+eA+VgrP6XLoBqbBMnNsr3x5ikY9km+YBW9JJVyHz0IqqYIiX3ltNckWGEfnwjRhJBPtXqBJMsM0cSScu4+3bJPrHbB/fgDazBRokszwO9zwV9dDkdXlFg0FQ8NWjCHqK5hsU5/RmeES8TQ7ubNM44fDND4frgNnVNt91fXtriqZctM8aKzBJQIpvsguT+hxhwDgl+E6eBoamyXherg9JZW49PT/tTtRroUC1L3+MQDAMrN3ejkFIXBlSDcwDbLPB8XhhuKXIRp0EMzGQBUDY+L9+I5XtqVz4Dld3maSqwJfdR181XUh9xEMOqTccnV0AiSKIY7Zpj5DOzAt9HjPZnE2O7mzBEFA2p2LAnVrO8m2dE6vJS0UWd6SqvYnNvvlQJsEInsl1D6/CYrkD7pPk2yBNjUZCDG6qe7NzZAu1Abf0UOiVguNzQptWnJgRUMOrep1mmQLMr7zFWhSLndodFByVtBrkHLzPOgGcPVI6vuYbFPU9UY93VBEg65XJljFI0GnRfo9i2GZNRZiiAVtmmkHpMK2ZBaSrp0cxeioJ1Srn/WgTTxx7TmhWlwGAHSDM2G76Wqk3jofKbdcjdSvLYBxVJvhIrKiKt1HiUWXlYYBP7wNxtG5EAyhL5wLggjtwHRYZ4+HsSAnZBuivobDSCjqeqOebji9McEqXgmiCPOkQL1g77kLkMqrA6tmCQI0VhP0+YOhy0iBaE7s59nfdKYOeldqpccDx7ZDqtvazBQkXz9dtcCWxmKCde54AFBNZHTuPg7bl+dAZMnKhKRJNiPp2kkwjs5F0+a98Nc3QfH7IWg00FjN0A5KvzyUx5CQVxqJuoPJNkVdpIvRJ8rs5O4SRBGGvEEw5A3quDFRlPmbnPCev6jaZppUEHYlW9OkkfCcvpJsKx4J3jMVXRo2RfFHk2yBdd4EeEtDDJPSiDAMG5zwHSBEncVkm6Iu0YrRE1HnhVrpVp8dvoa1xmIKjOFuxd/k7PW4KPq0qUkQzUb4Lta1VEsSzUZoB6RCm5p4k9WJuovJNsVEV4d7CHod4PQEbQ9qQ0Q91qO/txCTDwPDCMJPEVL8fghodbwOJtdR4hANOuiHdmGRIaI+iMk2xUxXhntEcpw3Ean15O9Nk2INVBpRrmzznq2EsTD0ZDipphH+BgdE85XSnS0VLYiI+gB2H1BC0OdltVvWT9BqONmGqJd09PfW3rwK0agPqjLi3HsCsiu4p1yRZTi3H1Hvn2SGIZ/zEYio72CyTQmheZx3uLJ+xqJ8jvMm6iUd/b11NK/CMmec6rZsd6H+n5/BffwcZK8ExS/DU1qFhn9thVRRrWprnV0EQaMBEVFfwWEklDBCjfMWbRb4UkwJu5w1UbzqSRlN4+hc6IcOUFUlke0u2D/bD3wWvo62aDYEJerdxXkescPXnkiNyTYllLbjvBVFgbu+PnYBEfVh3S2jKYgi0r51I6qfXAepsqZz++g0SL9nCTRJ5i4/Xiic5xE7fO2J1DiMhIiIep02JQmZP1gObWZKh21FixGZ998MQ/7gXnv8now7p57ha0+kxmSbiIgiQpuShJRbrkbSwunQDxkQqFLS+v6MFFivmoDUO74EfW7vJl89HXdO3cfXnkiNw0iIiChiBFGAIWcgDDkDIXulwOImsgLRZGhJuERtZCZE9mTcOfUMX3uiK5hsExFRVIh6HcQoT4zr7rhz6jm+9kQBHEZCRERERBQhTLaJiIiIiCKEw0iIiIiIekh2eThGnUJisk0UIVzYgYiof5CqauE6eBrwyy3b/PV2eMsuwjRuOLQDU2MYHcUah5EQRUhnFm3gwg5ERIlNdnmCEu0Wfhmug6chu9rveKG+jck2UYRwYQcior7PW1IVOtFu5pfhLa2KXkAUdziMhChCmhd2CNnjwYUdqBV/owPuY6WQyi9BdnshiAJEqwmG4dnQD8+GCJ4nRPGqeYx2+20cQJYtCtFQPGKyTRRBXNiB2uNvcqLx/R1wnzgHKMH3SZU1ELYfhWXGaFiumgBBEEIfiIhiRvFKHbfxdNyG+i4m20QRxoUdKBRffRMurXkbntMVQYl2a4okwVF8BNrMD5H69QUQRI7+IyJKJEy2iYiiTPZKqHlmA3yXGju9j3PXcWiSLbB9eU4EIyOi7pKdHkgXa6F4JAiiCNFmgTYzhVekiMk2EVG0ObYdglRVq9om6LQwjBwK3eB0KJIf3jMV8J6/oGrTtHkPLHPGQZuWHM1wiagd3spaOHcdg7ekElDUl6k0NiuMo3NhnDgyRtFRPGCyTUQURYqiwLH1oGqbxmaF7caZEC2mlm3GkUPgOXcBTR/ubLVzIFG3LZkdrXB7jPXmqa9SFAWNG7ehYf0WKD5fyDb+BjscxYfhPlkGS24GkJIS3SApLnDwHxFRFHnPVMB3qUG1zTp3nCrRbmbIGQjjqBzVNseOo1CUdgZ5xxnWm6e+qmHDVjR9vKdTbeUGO5r+/g58dU0RjoriEZNtIqIoki6oh49obGZos9LDtjcUqpNtuckJpYOe4njCevPUF7kOn4X9k71B2wWNCG16MkSzMeg+ucmFupfeT6gfy9Q7OIyEiCiKFK/6crOYZGl3ApUmyRy0TfZKEC3BX+bxiPXmO0d2eVgiNIHY2/ZoCwLMkwtgHJMH0aCHoijwVdXAse0wfHVXJkJ7SyrhLa2CIW9QlCOmWGKyTUQURaJRr7rtq2mAIsthS/q1HXIS6hjxjvXm2ydV1Qb9GPHX2+EtuwjTuOHQZaXFMDpqS6qsgedMhWqbZcYYmIryW24LggDdoAwkL5mFunWfANKVH9mOrQeZbPczTLaJEggnmyU+fa56yITi8sJ7ugKGkUNCtncfKVHd1g5ITcgElfXmQ5NdntC9/gDgl+E6eBoamyUh3/O+yn20VHVbMOlhHJ0Xsq1o0MM8dhic+06G3Z/6Po7ZJkognGyW+HSD0oPGKNu/OARvebVqmyLLcOw+Bm9plWq7ZdbYiMdI0eMtqQqdaDfzy4E2FDdku1N1W5+dCaGdeQnaIQPU+zvcUOR23nPqc9izTZRA9HlZ8JZdDP/lzMlmCcF61QTUtkqgFK+Exk3F0GamQDc4A4rkg7ekEnKbqxiCQQfL9NHRDpciqHlYTU/bUBS1mWOh+P3tt297vxB8DOrb2LPdh3Rm+ACHGCS25slmIas7cLJZwjBNGglj0bCg7b7qerj2n4L7SElQog0AKbdcE7LKASUuxSv1ShuKHk1qkuq2dL4asif8e+Q5W6ne32blqpL9DHu244zf7oL7WCmksmrIbg8EQYBoMUGfPwiGEUMgmsMnUhqbFf769ntAOMQg8XGyWeITBAFpdy5C7fPvQqqs6cQOgG3ZVbBMGxX54IioXaZx+ahfvwWQAyX8FJ8fzt3HYJlVFJRE++qa4DlaGujNbt6fq0n2O0y244TscKPxg51wHy8F2pTg9Dc5IVXVwLnzGMxTR8Eyd3zIygUcYtB/cLJZ4hMNOqSvXALZ5YVzz3HITnfIdtqBqbDOHoekqydGN0AiCkljs8I0Lh+u/adbtrmPlEC2u2Aalw9tVjoUlxeek+fh3HcKit8PQatpaWudXRSLsCmGmGzHAX+jE9Vr3obnVHlQot2aIvng3HkMtS++h7QV1wcl3KxnS5RYBI0G5skjYSgYAu+5C4ErWh4vIAjQWE3Q52dDl2Fr94oWEUVf0oKpcB0809K7DQDecxfgPXeh3f1MUwqhzUyJcHQUb5hsx5ji86Pm7/+C72Jdp/dx7T+NhvWfIeWWq4Pu4xADosQjiCIMeYNYe5coQeiHDEDq1xag7pUPO72PdmgmUpZfG8GoKF4x2Y4xx44j8J6/qNomaDQwFAyBLjsTkPzwXF5xqjX75wdgmTMu5GIHHGJAREQUWZZpoyDotbj4X69C8fnabavPy4LpmzdANLBIQX/EZDuGFEWBY+tB1TbRaoZt8SzVEs2GkUPgLa9G0/s7VG0dWw+G7N0mIiKiyDNPGIG0u66Ha99JuI+Vwt/oaLlP0IjQ5w2GcUwudLlZ8DPR7reYbMeQVHYRUoW6EoF1dpEq0W6mz86Eceww1cpTzl3HYLvpqrDLPBMREVFkiUYdTOOHwzguH4rTDdkjQdCIEC2mlomRLPXXvzHZjiGpSj1OWzQboBs6IExrwFCYo0q2ZbcX/gYHtG1qfhIRUeKQJR88p8rgPV0B2eGCoigQjQbosjNgHJXLCbIJQhAECBYTRIsp1qFQnGGyHUOKpC6CLyab2/31q0kO7vFW2imkT0RE8UtRFDh2H4dzx1EoknrMr2x3wXepHq4Dp2AszIVpciE0ViZxRImI4w9iSDSqeyv8NY1QfOGXffVV1wcfw6Tv7bCIiCjCFFlG7Uvvw7k9ONFWNwQ8p8pR/eSbXLY9TnVq9WaO1+7XmGzHkD53oOq2IvnhPnk+bHvX4bOq25oUK8RkS0RiIyKiyGnYsBWuvSc73d53qQGX1m5oPzGnmOjMyswaG7+r+zMm2zGkTbfBUDBUtc254yg8bYriK7IM576T8J6pUG23zA5eGpaIiOKbr7oe9i37grbrcwYi6epJSFowFcYxeapVBwFAqqiBo/hwlKKkztLnZQGadtIpjQh9Lldv7s84ZjvGrFeNh+fEld5sRfKh6YMdcKXboBuSCUXyw1taBdnhUu0naEVYZoyNdrhERNRD9q0H1asFCwKSF06HvtUEeUPeIJgmjEDjO9sgO72qfS1zx7OjJY50evVmjyv0AajP61PJ9ocffohXXnkFR44cgcvlQkZGBiZOnIgf//jHGDQoPldmM44dBtOkkUGXE301DfDVNITdz7ZsXsgJk0REFL8URYFz51HVNuOYPFWi3UxjMcEyezyaPtrVss13oQ7e0iquNhpnOlq9WVGUDo5AfVmfSLYVRcEvf/lLvP7668jJycGNN94Ii8WCixcvYufOnSgvL4/bZFsQBKR9fQFqJB+kypqOdwBgWzwL1jnjIhwZERH1NrnJCdnpUW0zFuaEba/LzoDYpgqJr6qWyXYc4urNFE6fSLZfeuklvP7667jjjjvw05/+FBqNepybr4NlVGNN0GmR/s0bITs9cO4+Btke+lKTNjMV1tlFSFowNcoREhFRb1C8wd9HYoiFzJoJghC00JniZclXokSS8Mm22+3GmjVrMHToUDz22GNBiTYAaLXx/zQFUYR5wnAYhg+Gt6waUtlFyC4PIAjQWEzQ5w+GLjOFixsQESUwwRhcrtV/qQHioPSQ7RW/DF9tI7Rpya2Owe8BokQS/1loB7Zu3Yr6+nrcdNNNkGUZH3zwAUpKSpCUlITZs2cjNzexLukIoghDzkAYcgZ23JiIiBKKaDFCm5EM36XGlm2uI2ehC5Nse06VBS1eps9jZQuiRJLwyfahQ4cAABqNBkuXLsXZs1dqUYuiiG984xt45JFHwu4fT5MWFKXjeDrTpj9pfi34mlBXxNN5w7/7xNFb54155lg0btzWfFR4z1bCsfs4TJNGqqqMeMsuXi71p6C5fIl+eDa0mSk8HxJMPH3mUO/qTGWghE+2a2oCkwqfe+45jBkzBm+++SaGDx+Oo0eP4uc//zmeffZZDB06FLfffnvI/RsaGuLm5Hfb7VBcnnbbCLIPvvr66ASUQBoawlduIQonHs4b/t0nnp6eN3JhNrwb/FAkP/ySBMUnQ9pxBPZDp6EdOgDQaeCvrIW/JtD7LWhFyJ5A+T/dhGGo57mQsOLhM4d6V2pqaodtEj7Zbk6UdTod1qxZg4EDA8Mvpk6diqeeegpLly7Fc889FzbZttlsUYu1I3arFbLY/lsimo2wpqREJ6AEoCgKGhoaYLPZWHeWOi2ezhv+3SeOXjtvUgDD1xei/vV/Q9LpoAj+wHbJD+VMJYDAinOiLnBeCFoNdAY9jOOGI23OxJifs9R18fSZQ9GX8Mm21RpYJrWoqKgl0W42cuRIDB06FKWlpWhsbERycnLQ/vF00gtCx/F0pk1/JAgCXxfqsng4b0SDrsOebdGgi3mcdEVvnDfWmWOhuDy49MyGzjwijGOGIf2uRRBELvycyOLhM4eiL+H/avPz8wEASUlJIe9v3u52u6MWExFRZ2ls1l5pQ4kn6drJsC2ZBe2A8JehRYsJltljkX7PYgi6hO8fI+qXEv4vd8aMGQCAM2fOBN0nSRLOnTsHs9mMtLS0aIdGRNQhfV4WvGUXg5d5bqYRWX2iD9PnDERKRgqkS/XwnqmA3+4CFAWiyQDd4AzocwZCYzWxR5sogSV8sp2Tk4O5c+fi888/x5tvvomvfvWrLfetXbsWjY2NWLp0aULU2iai/kc0GWAaNxyug6eDE26NCNO44RBNrKvc1+kyUqDLSIl1GEQUAX0iA/3lL3+Jr33ta/jZz36Gjz76CPn5+Thy5AiKi4uRnZ2Nhx9+ONYhEhGFpctKg8ZmgbekCv4GO4DA0BF9XhYTbSKiBNcnku2cnBy89dZbeOqpp/DZZ59h69atyMjIwB133IH7778f6emhFwsgIooXoskA4+jEWoSLiIg61ieSbQAYNGgQVq1aFeswiIiIiIhacMYFEREREVGEMNkmIiIiIooQJttERERERBHCZJuIiChGBL2uV9oQUfxisk1ERBQjXEGUqO9jsk1ERBQj+rwsQNPOVzFXECVKeEy2iYiIYqR5BdGQCTdXECXqE/pMnW0iIqJExBVEifo2JttEREQxxhVEifouDiMhIiIiIooQJttERERERBHCZJuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy2iYiIiIgihMk2EREREVGEMNkmIiIiIooQJttERERERBHCZJuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy2iYiIiIgihMk2EREREVGEMNkmIiIiIooQJttERERERBHCZJuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy2iYiIiIgihMk2EREREVGEMNkmIiIiIooQJttERERERBHCZJuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy2iYiIiIgihMk2EREREVGEMNkmIiIiIooQJttERERERBHCZJuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy244ig1/VKGyIiIiKKD0y244jGZu2VNkREREQUH5hsxxF9Xhagaect0YiBNkRERESUEJhsxxHRZIBp3PDQCbdGhGnccIgmQ/QDIyIiIqJu0cY6AFLTZaVBY7PAW1IFf4MdQGDoiD4vi4k2ERERUYJhsh2HRJMBxtG5sQ6DiIiIiHqIw0iIiIiIiCKEyTYRERERUYT0yWT7b3/7GwoLC1FYWIh9+/bFOhwiIiIi6qf6XLJ9+vRpPPXUUzCbzbEOhYiIiIj6uT6VbPv9fjzyyCMYNWoUFixYEOtwiIiIiKif61PJ9t/+9jccO3YMjz/+ODQaTazDISIiIqJ+rs8k2ydOnMBf/vIXfPe738XIkSNjHQ4RERERUd+os+3z+fDoo49i+PDh+Pa3v92lfRVFiVBUFA3N7x/fR+oKnjfUHTxvqLt47vRdgiB02KZPJNtPP/00jh8/jjfeeAM6na5L+zY0NPDk7wMaGhpiHQIlIJ431B08b6i7eO70PampqR22Sfhk+9ixY3j66afxrW99C2PHju3y/jabLQJRUbQoioKGhgbYbLZO/bokAnjeUPfwvKHu4rnTvyV8sv3II49g6NCh+P73v9+t/XnS9w2CIPC9pC7jeUPdwfOGuovnTv+U8Mn2sWPHAADjxo0Lef9tt90GAFizZg3LARIRERFRVCV8sr18+fKQ23ft2oWSkhLMnz8faWlpyM7OjnJkFA2CIHRqvBRRazxvqDt43lB38dzp3wSlj84OfPTRR7F+/Xq8/vrrmDhxYqzDISIiIqJ+qM/U2SYiIiIiijdMtomIiIiIIqTPDiMhIiIiIoo19mwTEREREUVIwlcjof7pwIEDWL16Nfbt2wdJkjBixAjcfffd+PKXvxzr0ChO/fOf/8Tu3btx6NAhnDhxApIkYdWqVbj55ptjHRrFsQsXLmDTpk3YsmULzpw5g0uXLsFms2Hy5MlYuXIlJkyYEOsQKQ41NjbiqaeewsGDB1FWVoaGhgakpqZi2LBhuOOOO7Bw4ULW2+5HOIyEEs727dtxzz33QKfTYfHixUhKSsIHH3yAsrIy/PCHP8R9990X6xApDs2fPx/l5eVITU2F2WxGeXk5k23q0H/913/hb3/7G3JycjBt2jSkp6ejtLQUH330ERRFwRNPPIEbb7wx1mFSnCktLcWyZcswYcIE5OTkICUlBTU1Ndi8eTNqampw66234re//W2sw6QoYbJNCcXn8+GGG25AVVUVXn/9dYwZMwYAYLfb8bWvfQ1nz57FO++8g7y8vNgGSnFn27ZtyM3NRXZ2NtauXYsnnniCyTZ16IMPPkBaWhqmTp2q2r5r1y584xvfgMViwWeffQa9Xh+jCCke+f1+KIoCrVY9gMBut+O2227DqVOnsHHjRowcOTJGEVI0ccw2JZTi4mKcO3cOS5YsaUm0AcBqteJ73/sefD4f3n777RhGSPFq9uzZXNyKumzhwoVBiTYATJ06FTNmzEB9fT2OHz8eg8gonmk0mqBEGwh8V82dOxdAoPeb+gcm25RQduzYAQAtH1atzZkzR9WGiCiSmpOpUEkVUSgejwfFxcUQBAEjRoyIdTgUJfyEoIRSUlICAMjNzQ26z2azITU1lb0FRBRxFRUV2LZtGzIzM1FQUBDrcChONTY24oUXXoAsy6ipqcGWLVtQWVmJBx54gMMd+xEm25RQ7HY7ACApKSnk/VarFVVVVdEMiYj6GUmS8PDDD8Pr9eJHP/oRNBpNrEOiONXY2Ii//OUvLbd1Oh0efvhhfOtb34phVBRtTLaJiIg6SZZlPPbYY9i5cyduvfVWLFu2LNYhURwbMmQIjh8/Dr/fj8rKSrz77rv405/+hL179+LPf/4zhyD1ExyzTQnFarUCAJqamkLeb7fbw/Z6ExH1hKIo+NnPfoYNGzZg6dKl+PWvfx3rkChBaDQaDBkyBN/+9rfx4IMP4sMPP8Qbb7wR67AoSphsU0JpHuMWalx2Q0MD6urqQo7nJiLqieYe7bfeegtLlizB73//e4giv0Kp65on+HMyf//BTwpKKNOmTQMAfP7550H3bd26FQAwffr0qMZERH2bLMv46U9/irfffhs33ngj/vCHP3CcNnXbhQsXAIDnUD/CZJsSyqxZszB06FBs3LgRR48ebdlut9vx17/+FVqtFjfddFMMIySivqR1on399dfjj3/8I5Mk6tDRo0dDDnesr6/Hn/70JwDAvHnzoh0WxQhXkKSEU1xcjJUrV0Kn02HJkiWwWq0ty7U/+OCD+O53vxvrECkOvfnmm9i9ezcA4MSJEzh8+DAmT57cMuxowYIFWLBgQSxDpDi0evVq/OUvf4HZbMaKFStCTmhbsGABRo8eHYPoKF797ne/w7p16zBjxgwMHjwYJpMJFRUV+OSTT+B0OrFo0SL8+c9/5lCkfoLTYCnhzJw5E6+88gqeeuopbNq0CZIkYcSIEfjBD36ApUuXxjo8ilO7d+/G+vXrVdv27NmDPXv2AACys7OZbFOQ8vJyAIDT6cTTTz8dsk12djaTbVJZtGgR7HY79u3bh507d8LtdsNms2HKlClYtmwZFi9eDEEQYh0mRQl7tomIiIiIIoTXL4iIiIiIIoTJNhERERFRhDDZJiIiIiKKECbbREREREQRwmSbiIiIiChCmGwTEREREUUIk20iIiIioghhsk1EREREFCFMtomIiIiIIoTJNhHRZWVlZSgsLMSjjz4a61D6jGi8pnzfiCieMdkmIqK4N3/+fMyfPz/WYRARdZk21gEQERH1xMCBA/Huu+8iKSkp1qEQEQVhsk1ERAlNp9Nh+PDhsQ6DiCgkDiMhIuqEiooKPPbYY7jqqqtQVFSEefPm4bHHHkNlZWXI9seOHcO9996LSZMmYcqUKbj33ntx4sQJPProoygsLERZWVmHj7l9+3YUFhZi9erV2LlzJ+68805MmjQJ06dPx3/8x3+gqqoq5H4nT57Egw8+iFmzZqGoqAjz58/H448/jvr6+qC2zcMzGhoa8LOf/QyzZ8/G+PHjsXz5cvz73/8Oat9e/KtXr0ZhYSG2b9/e4XM7dOgQfvOb32DJkiWYMmUKxo8fjy9/+ctYu3YtJElqadc8Hru8vBzl5eUoLCxs+W/16tWqNqHGbHflfbvrrrtQWFgIn8+HNWvWYP78+SgqKsKiRYvwv//7vx0+JyKiUNizTUTUgZKSEtx+++2oqanBtddei5EjR+LkyZN466238Mknn+DVV19Fbm5uS/tjx47h9ttvh9vtxpe+9CXk5ubi8OHDuP322zFq1KguP/6+ffvwzDPP4JprrsFdd92Fw4cPY+PGjdi9ezfWrVuHjIyMlrZ79uzBPffcA6/Xi0WLFiE7Oxv79u3DCy+8gE8//RSvvfYaUlNTVcf3er345je/CbfbjWXLlqGpqQnvvPMO7r//fvzhD3/A0qVLu//ihfHGG29g8+bNmDZtGubNmwe3240dO3bgiSeewMGDB1sS6eTkZDzwwAN44YUXAAB33313yzGmT5/e7mN09X1r9tBDD+HAgQOYN28eRFHEpk2b8Jvf/AY6nQ633nprL74KRNQvKEREpCiKopw/f14pKChQHnnkEdX2FStWKAUFBcprr72m2v7aa68pBQUFyt13363a/vWvf10pKChQNm3apNr+1FNPKQUFBUpBQYFy/vz5DuMpLi5uaf/GG2+o7lu9erVSUFCg/OQnP2nZ5vf7lYULFyoFBQXKli1bVO2feOIJpaCgQHnsscdU26+99lqloKBAWbFiheL1elu2nzp1Shk/frwydepUpampqWX7I488Ejb+5udXXFzcsi3ca1pWVqb4fD7VNlmWlZ/85CdKQUGBsmvXrqA4r7322pCvU2+9b3feeadSUFCgfPWrX1U959OnTytjxoxRFi1aFPLxiYjaw2EkRETtqKysRHFxMUaMGBHUq3nrrbdi+PDh+OKLL1qGJZSXl2P37t0YM2YMrr/+elX7lStXIiUlpcsxDBs2DMuXLw86VlpaGt555x14vV4AgV7tkpISzJs3D1dddZWq/X333YeUlBRs3LixpX1rP/jBD6DT6VpuDx8+HLfccgsaGxtDDifpqezsbGg0GtU2QRBwxx13AAC++OKLHh2/q+9baw899BCsVmvL7fz8fEyePBlnz56F3W7vUVxE1P8w2SYiaseRI0cAANOmTYMgCKr7BEHA1KlTAQSGjrT+d9KkSUHHMplMKCws7HIMkydPDnpso9GIsWPHwu12o6SkRBVrqOEVZrMZRUVFqvbNdDodJk6cGLRP2+fWm7xeL5577jksX74ckydPxqhRo1BYWIibb74ZAHDx4sUeHb+r71trY8eODdo2cOBAAEBTU1OP4iKi/odjtomI2tHck9l6XHRrmZmZAK4kYc3t09LSQrYPd5z2pKent3usto/d2VibpaSkQBSD+16aHzcSCeb/+3//D5s3b0ZeXh5uvPFGpKenQ6vVorGxES+++GLI3veu6O5rASBkCUGtNvB16ff7exQXEfU/TLaJiNrRPJzg0qVLIe9v3t7crvnf2tradtt3RU1NTbvHak4Ouxprs/r6esiyHJRwNz9u6+SzuZc4VNLZ2aT8wIED2Lx5M+bOnYu1a9eqhpPs27cPL774YqeO057uvhZERL2Nw0iIiNoxevRoAMCuXbugKIrqPkVRsHv3blW75moje/fuDTqWy+XC8ePHuxzDnj17gh7b7Xbj8OHDMBqNyMvLAwCMGTMGALBjx46Qj33o0CEYjUYMGzZMdZ8kSdi3b1/QPrt27VI9JwCw2WwAgAsXLgS1P3r0aKeez/nz5wEA11xzTdC47ebHbEsUxS71Knf1fSMiihQm20RE7Rg8eDBmzJiBkydPYt26dar71q1bh5MnT2LmzJkYNGgQgMDEv8mTJ+PIkSN47733VO3/8Y9/hKx13ZGzZ88GPfbf//531NbWYvHixdDr9QACY7tzcnKwZcsWbNu2TdX+mWeeQV1dnap9a08++aSqvvXp06fx1ltvISkpCdddd13L9qKiIgDA+vXrVfu/9957IZP8UAYPHgwALQlvs5MnT2Lt2rUh97HZbKirq4PH4+n0Y3TlfSMiihQOIyEi6sCvfvUr3H777fj5z3+OzZs3Y8SIETh16hQ+/vhjpKWl4Ve/+pWq/c9//nPccccdeOihh/Dee+8hJycHhw8fxv79+zFt2jTs3Lkz5BjpcObOnYtf//rX+PTTT5Gfn4/Dhw/j888/x6BBg/DQQw+1tBNFEatWrcLKlSvx7W9/u6XO9v79+1FcXIycnBz86Ec/Cjp+ZmYmmpqasGzZMlx99dWw2+3YuHEjPB4Pfvvb36qGWixYsABDhgzB22+/jcrKSowePRpnzpxBcXExrr76anz66acdPp/x48dj/Pjx2LRpE6qrqzFhwgRUVlbi448/xtVXX433338/aJ+ZM2fi0KFDuO+++zBlyhTo9XpMnjy5ZaJjKF1934iIIoE920REHcjPz8dbb72Fm266CQcOHMA//vEPHDhwADfddBPWrVsXNCxjzJgxeOWVVzBr1ix8+umnePnllyGKIl555ZWgsd2dMXHiRDz33HOoq6vDiy++iAMHDmDx4sV49dVXgyYATp06Fa+//jrmz5+PrVu34tlnn8X58+dx11134fXXXw85cVOv1+PZZ5/FpEmT8H//939Yv349hg0bhjVr1gQtaGM0GvH888/juuuuw4EDB/Daa6/B4/Hg5Zdfxrhx4zr1fDQaDZ555hnccsstOHfuHF5++WWcOnUKDz/8MH784x+H3Od73/sebr31Vpw8eRJr1qzBE0880WF5wK6+b0REkSAobQezERFRRPj9fnzpS1+C2+0OGuYRyvbt27FixQo88MAD+P73vx+RmObPnw8A+PjjjyNyfCKi/o4920REvczn84WsRrJ27VqUl5djwYIFMYiKiIhigWO2iYh6mdPpxLx58zBnzhzk5eXB5/Nh//79OHjwIDIzM/HAAw/EOkQiIooSJttERL3MaDRi+fLlKC4uxs6dO+H1epGZmYnbbrsN999/PwYMGBDrEImIKEo4ZpuIiIiIKEI4ZpuIiIiIKEKYbBMRERERRQiTbSIiIiKiCGGyTUREREQUIUy2iYiIiIgihMk2EREREVGEMNkmIiIiIooQJttERERERBHy/wFUX+8cT2M+fwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"utils.plot_scatter(np.log(WAFFLE_DIVORCE.Population), WAFFLE_DIVORCE.Divorce, label=None)\n",
"\n",
"utils.plot_errorbar(\n",
" xs=np.log(WAFFLE_DIVORCE.Population),\n",
" ys=WAFFLE_DIVORCE.Divorce,\n",
" error_lower=WAFFLE_DIVORCE[\"Divorce SE\"],\n",
" error_upper=WAFFLE_DIVORCE[\"Divorce SE\"],\n",
" error_width=7,\n",
")\n",
"plt.xlabel(\"log population\")\n",
"plt.ylabel(\"divorce rate\")\n",
"plt.title(\"Error decreases with state population\");"
]
},
{
"cell_type": "markdown",
"id": "6fcbae6d-070c-4fad-af16-783c59d33f87",
"metadata": {},
"source": [
"## Measured divorce model"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8028569f-a1cb-48e2-8bcb-0597d65f5beb",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"M \n",
"\n",
"M \n",
" \n",
"\n",
"\n",
"D \n",
"\n",
"D \n",
" \n",
"\n",
"\n",
"M->D \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"M* \n",
"\n",
"M* \n",
" \n",
"\n",
"\n",
"M->M* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"D* \n",
"\n",
"D* \n",
" \n",
"\n",
"\n",
"D->D* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A \n",
"\n",
"A \n",
" \n",
"\n",
"\n",
"A->M \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A->D \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A* \n",
"\n",
"A* \n",
" \n",
"\n",
"\n",
"A->A* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"eD \n",
"\n",
"eD \n",
" \n",
"\n",
"\n",
"eD->D* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"eM \n",
"\n",
"eM \n",
" \n",
"\n",
"\n",
"eM->M* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"eA \n",
"\n",
"eA \n",
" \n",
"\n",
"\n",
"eA->A* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"P \n",
"\n",
"P \n",
" \n",
"\n",
"\n",
"P->D \n",
" \n",
" \n",
" potential backdoor \n",
" \n",
"\n",
"\n",
"P->eD \n",
" \n",
" \n",
"population confounds \n",
" \n",
"\n",
"\n",
"P->eM \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"P->eA \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"unobserved \n",
"\n",
"unobserved \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[\n",
" (\"M\", \"D\"),\n",
" (\"A\", \"M\"),\n",
" (\"A\", \"D\"),\n",
" (\"M\", \"M*\"),\n",
" (\"D\", \"D*\"),\n",
" (\"eD\", \"D*\"),\n",
" (\"eM\", \"M*\"),\n",
" (\"A\", \"A*\"),\n",
" (\"eA\", \"A*\"),\n",
" (\"P\", \"eA\"),\n",
" (\"P\", \"eM\"),\n",
" (\"P\", \"eD\"),\n",
" (\"P\", \"D\"),\n",
" ],\n",
" node_props={\n",
" \"unobserved\": {\"style\": \"dashed\"},\n",
" \"A\": {\"style\": \"dashed\"},\n",
" \"M\": {\"style\": \"dashed\"},\n",
" \"D\": {\"style\": \"dashed\"},\n",
" },\n",
" edge_props={\n",
" (\"P\", \"eA\"): {\"color\": \"blue\"},\n",
" (\"P\", \"eM\"): {\"color\": \"blue\"},\n",
" (\"P\", \"eD\"): {\"color\": \"blue\", \"label\": \"population confounds\", \"fontcolor\": \"blue\"},\n",
" (\"P\", \"D\"): {\n",
" \"style\": \"dashed\",\n",
" \"label\": \" potential backdoor\",\n",
" \"color\": \"red\",\n",
" \"fontcolor\": \"red\",\n",
" },\n",
" (\"A\", \"A*\"): {\"color\": \"red\"},\n",
" (\"P\", \"eA\"): {\"color\": \"purple\"},\n",
" (\"eA\", \"A*\"): {\"color\": \"red\"},\n",
" (\"A\", \"D\"): {\"color\": \"red\"},\n",
" },\n",
" graph_direction=\"LR\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d3f9dd66-c976-44e0-a746-07e62a3cabc0",
"metadata": {},
"source": [
"## Thinking like a graph\n",
"\n",
"- **Thinking like regression**: which _predictors_ do I include in the model?\n",
" - stop doing this\n",
" - To be fair, GLMs enable this approach\n",
" - The scientific world is SO MUCH LARGER than GLMs (e.g. think about the difference equation in tool use example)\n",
"- **Thinking like a graph**:how do I model the network of _causes_?\n",
" - e.g. Full Luxury Bayes\n",
" \n",
"## Let's start simpler"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "5b79ccbe-a2a8-40c5-8fda-e56907fc8c7e",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"M \n",
"\n",
"M \n",
" \n",
"\n",
"\n",
"D \n",
"\n",
"D \n",
" \n",
"\n",
"\n",
"M->D \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"M* \n",
"\n",
"M* \n",
" \n",
"\n",
"\n",
"M->M* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"D* \n",
"\n",
"D* \n",
" \n",
"\n",
"\n",
"D->D* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A \n",
"\n",
"A \n",
" \n",
"\n",
"\n",
"A->M \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A->D \n",
" \n",
" \n",
"Divorce Model \n",
" \n",
"\n",
"\n",
"eD \n",
"\n",
"eD \n",
" \n",
"\n",
"\n",
"eD->D* \n",
" \n",
" \n",
" Divorce Measurement \n",
"Error Model \n",
" \n",
"\n",
"\n",
"unobserved \n",
"\n",
"unobserved \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[(\"M\", \"D\"), (\"A\", \"M\"), (\"A\", \"D\"), (\"M\", \"M*\"), (\"D\", \"D*\"), (\"eD\", \"D*\")],\n",
" node_props={\n",
" \"unobserved\": {\"style\": \"dashed\"},\n",
" \"D\": {\"style\": \"dashed\", \"color\": \"red\"},\n",
" \"M\": {\"color\": \"red\"},\n",
" \"A\": {\"color\": \"red\"},\n",
" \"eD\": {\"color\": \"blue\"},\n",
" \"D*\": {\"color\": \"blue\"},\n",
" },\n",
" edge_props={\n",
" (\"A\", \"M\"): {\"color\": \"red\"},\n",
" (\"A\", \"D\"): {\"color\": \"red\", \"label\": \"Divorce Model\", \"fontcolor\": \"red\"},\n",
" (\"M\", \"D\"): {\"color\": \"red\"},\n",
" (\"eD\", \"D*\"): {\n",
" \"color\": \"blue\",\n",
" \"label\": \" Divorce Measurement\\nError Model\",\n",
" \"fontcolor\": \"blue\",\n",
" },\n",
" (\"D\", \"D*\"): {\"color\": \"blue\"},\n",
" },\n",
" graph_direction=\"LR\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "fe6342d4-36f2-4701-b949-d809972a0a2c",
"metadata": {},
"source": [
"### 2 submodels\n",
"\n",
"#### Divorce Model \n",
"\n",
"$$\n",
"\\begin{align*}\n",
"D_i &\\sim \\text{Normal}(\\mu_i) \\\\\n",
"\\mu_i &= \\alpha + \\beta_A A + \\beta_M M\n",
"\\end{align*}\n",
"$$\n",
"\n",
"\n",
"#### Divorce Measurement Error Model \n",
"$$\n",
"\\begin{align*}\n",
"D^*_i &= D_i + e_D \\\\\n",
"e_{D,i} &\\sim \\text{Normal}(0, S_i) &S_i \\text{ is the standard deviation estimated from the sample}\n",
"\\end{align*}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"id": "d004052d-31ed-41a6-8b4d-8dcbafaf310c",
"metadata": {},
"source": [
"### Fit the Divorce Measurement Error Model\n",
"\n",
"- two simultaneous regressions\n",
" - One for $D$\n",
" - Note: these are just parameters in the model, they are not observed 🤯\n",
" - One for $D*$"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "36a1cbe4-ac2b-41cf-83de-d477a4c95c85",
"metadata": {},
"outputs": [],
"source": [
"DIVORCE_STD = WAFFLE_DIVORCE[\"Divorce\"].std()\n",
"DIVORCE = utils.standardize(WAFFLE_DIVORCE[\"Divorce\"]).values\n",
"MARRIAGE = utils.standardize(WAFFLE_DIVORCE[\"Marriage\"]).values\n",
"AGE = utils.standardize(WAFFLE_DIVORCE[\"MedianAgeMarriage\"]).values\n",
"DIVORCE_SE = WAFFLE_DIVORCE[\"Divorce SE\"].values / DIVORCE_STD\n",
"STATE_ID, STATE = pd.factorize(WAFFLE_DIVORCE[\"Loc\"])\n",
"N = len(WAFFLE_DIVORCE)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f8064b5f-f720-4ec9-9aff-a3ab27907a10",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [sigma, alpha, beta_A, beta_M, D]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9c32c493ca84e1d834ed757e039e1e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.\n"
]
}
],
"source": [
"coords = {\"state\": STATE}\n",
"with pm.Model(coords=coords) as measured_divorce_model:\n",
" sigma = pm.Exponential(\"sigma\", 1)\n",
" alpha = pm.Normal(\"alpha\", 0, 0.2)\n",
" beta_A = pm.Normal(\"beta_A\", 0, 0.5)\n",
" beta_M = pm.Normal(\"beta_M\", 0, 0.5)\n",
"\n",
" mu = alpha + beta_A * AGE + beta_M * MARRIAGE\n",
" D = pm.Normal(\"D\", mu, sigma, dims=\"state\")\n",
" pm.Normal(\"D*\", D, DIVORCE_SE, observed=DIVORCE)\n",
"\n",
" measured_divorce_inference = pm.sample()"
]
},
{
"cell_type": "markdown",
"id": "d2832efc-924b-4c6e-b32e-f56793e65fd0",
"metadata": {},
"source": [
"#### Posterior for True Divorce Rates"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5c611c90-8248-487e-b20f-437ac6584496",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" mean \n",
" sd \n",
" hdi_3% \n",
" hdi_97% \n",
" mcse_mean \n",
" mcse_sd \n",
" ess_bulk \n",
" ess_tail \n",
" r_hat \n",
" \n",
" \n",
" \n",
" \n",
" D[AL] \n",
" 1.202 \n",
" 0.365 \n",
" 0.546 \n",
" 1.897 \n",
" 0.006 \n",
" 0.004 \n",
" 3821.0 \n",
" 2742.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[AK] \n",
" 0.705 \n",
" 0.558 \n",
" -0.325 \n",
" 1.781 \n",
" 0.008 \n",
" 0.007 \n",
" 4484.0 \n",
" 2868.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[AZ] \n",
" 0.439 \n",
" 0.343 \n",
" -0.197 \n",
" 1.076 \n",
" 0.005 \n",
" 0.004 \n",
" 5020.0 \n",
" 2553.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[AR] \n",
" 1.443 \n",
" 0.478 \n",
" 0.587 \n",
" 2.366 \n",
" 0.007 \n",
" 0.005 \n",
" 4344.0 \n",
" 2760.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[CA] \n",
" -0.913 \n",
" 0.130 \n",
" -1.147 \n",
" -0.670 \n",
" 0.002 \n",
" 0.001 \n",
" 5309.0 \n",
" 2611.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[CO] \n",
" 0.684 \n",
" 0.398 \n",
" -0.054 \n",
" 1.416 \n",
" 0.006 \n",
" 0.005 \n",
" 5191.0 \n",
" 2965.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[CT] \n",
" -1.394 \n",
" 0.346 \n",
" -2.057 \n",
" -0.781 \n",
" 0.005 \n",
" 0.004 \n",
" 4951.0 \n",
" 3122.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[DE] \n",
" -0.329 \n",
" 0.504 \n",
" -1.253 \n",
" 0.657 \n",
" 0.008 \n",
" 0.008 \n",
" 4483.0 \n",
" 3030.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[DC] \n",
" -1.916 \n",
" 0.598 \n",
" -3.033 \n",
" -0.761 \n",
" 0.010 \n",
" 0.007 \n",
" 3756.0 \n",
" 3303.0 \n",
" 1.0 \n",
" \n",
" \n",
" D[FL] \n",
" -0.628 \n",
" 0.173 \n",
" -0.978 \n",
" -0.321 \n",
" 0.002 \n",
" 0.002 \n",
" 5325.0 \n",
" 2963.0 \n",
" 1.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n",
"D[AL] 1.202 0.365 0.546 1.897 0.006 0.004 3821.0 2742.0 \n",
"D[AK] 0.705 0.558 -0.325 1.781 0.008 0.007 4484.0 2868.0 \n",
"D[AZ] 0.439 0.343 -0.197 1.076 0.005 0.004 5020.0 2553.0 \n",
"D[AR] 1.443 0.478 0.587 2.366 0.007 0.005 4344.0 2760.0 \n",
"D[CA] -0.913 0.130 -1.147 -0.670 0.002 0.001 5309.0 2611.0 \n",
"D[CO] 0.684 0.398 -0.054 1.416 0.006 0.005 5191.0 2965.0 \n",
"D[CT] -1.394 0.346 -2.057 -0.781 0.005 0.004 4951.0 3122.0 \n",
"D[DE] -0.329 0.504 -1.253 0.657 0.008 0.008 4483.0 3030.0 \n",
"D[DC] -1.916 0.598 -3.033 -0.761 0.010 0.007 3756.0 3303.0 \n",
"D[FL] -0.628 0.173 -0.978 -0.321 0.002 0.002 5325.0 2963.0 \n",
"\n",
" r_hat \n",
"D[AL] 1.0 \n",
"D[AK] 1.0 \n",
"D[AZ] 1.0 \n",
"D[AR] 1.0 \n",
"D[CA] 1.0 \n",
"D[CO] 1.0 \n",
"D[CT] 1.0 \n",
"D[DE] 1.0 \n",
"D[DC] 1.0 \n",
"D[FL] 1.0 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"az.summary(measured_divorce_inference, var_names=[\"D\"])[:10]"
]
},
{
"cell_type": "markdown",
"id": "d90211ed-6633-4def-9d63-c5b1f82974bf",
"metadata": {},
"source": [
"#### The effect of modeling the Divorce measurment error"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d3f29dfd-4744-4879-817a-84e8c203862c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4VNXWwOHfmV7SOyQkgUASeu8dQcSCiKDId1HkKgIiV1Hs3WtBxRYQ67UgIBYQBSsivffeQigJ6T2ZZOr5/ogZOCRISE/Y7/PwhNPXyZlMVvbsvbYky7KMIAiCIAiCIAjVTlXXAQiCIAiCIAhCYyWSbUEQBEEQBEGoISLZFgRBEARBEIQaIpJtQRAEQRAEQaghItkWBEEQBEEQhBoikm1BEARBEARBqCEi2RYEQRAEQRCEGiKSbUEQBEEQBEGoISLZrgdkWSYnJwcxv1DdE8+i/hDPov4Qz6L+EM+i/hDPov6o789CJNv1RH19gVyNxLOoP8SzqD/Es6g/xLOoP8SzqD/q87MQybYgCIIgCIIg1BCRbAuCIAiCIAhCDRHJtiAIgiAIgiDUEJFsC4IgCIIgCEINEcm2IAiCIAiCINQQkWwLgiAIgiAIQg3R1HUAgiAIgiA0PE6nE7vdXtdh1BlZlrHZbBQXFyNJUl2Hc1Wr7meh1WpRq9XVEFkJkWwLgiAIglBhsiyTkpJCTk5OXYdS51wuF1lZWXUdhkD1PwsfHx9CQkKqJXkXybYgCIIgCBVWmmgHBQVhMpmu2lZdWZZxOp2o1eqr9ntQX1Tns5BlGYvFQlpaGgBNmjSpcnwi2RaEq4DNZmPHjh0cPXqUgoICNBoNgYGB9OzZk2bNmtV1eIIgNBBOp9OdaPv7+9d1OHVKJNv1R3U/C6PRCEBaWhpBQUFV7lIikm1BaMSsVisrV65k/fr1WCyWMtv/+OMPWrRowahRo4iJiamDCAVBaEhK+2ibTKY6jkQQalbpa9xut1c52RbVSAShkSooKOCtt97it99+KzfRLnXy5Enefvtt1q9fX4vRCYLQkImWXKGxq87XuGjZFoRGyOFwMG/ePE6dOlWh/WVZ5quvvsJsNtOlS5eaDU4QBOECsixz7tw5MjMzcTqdeHh4EBkZiVarrevQBKFaiGRbEBqhNWvWcPLkyTLr27ZtS8uWLSkoKGDHjh3k5uYqtn/11Ve0a9cOnU5XW6EKgnCVslqtbN68mTVr1pCcnKzYZjKZ6NOnD4MGDSIwMLCOIhSE6iG6kQhCIyPLMmvWrFGs8/X15emnn2bGjBlcf/313Hbbbbz66qsMHz5csV9hYSE7duyoxWgFQbgaJScn8+KLL7J48eIyiTaAxWJh1apVPP/882zcuLEOIry0pUuXEhMTw/79++s6lFo3YcIEJkyYUKF98/Ly6NmzJytXrryiayxcuJClS5dWeP+tW7cSGxvLtm3b3OtmzZrFtGnTrui6NUkk24LQyBw9epT09HTFuokTJ5apOqJWq7nllluIjo5WrBd9twVBqElpaWm8+eabZGRkXHZfh8PBl19+Kd6XGqC5c+cSFBTE9ddff0XHLV68mGXLllXp2g888ABr165l8+bNVTpPdRHJtiA0Mhf30w4JCblkpRFJkhg8eHCZ42VZrqnwBEG4irlcLj744AMKCgrKbDObzZcsJ7ho0SISExNrOrwGp6ioqK5DKFdOTg5Llizh//7v/+pkMG14eDj9+/fn448/rvVrl0f02RaERqa4uFixHBYWpnizc2TkYktMQxcWhCbAm7CwMMX+LpcLm82GXq+vlXgFQbh6HDhwgKSkJMW6sLAwxowZQ2xsLJIkkZ6ezs8//8ymTZvc+7hcLlatWsXEiRNrNL4dO3YQFxfHvn37cLlctG7dmilTpjBo0KAy++bl5fHUU0/x119/YbPZ6NWrF0899ZTiU8RDhw7x7rvvsm/fPvLz8/Hx8aFNmza8+OKLhISEACVd/xYtWsQ333xDQkICer2e3r17M2vWLMW5JkyYQHZ2Ns899xxz5szh8OHDDBkyBKvVyuHDh/nzzz9RqZRtqGPHjsXhcLhbiit6LVmW+eSTT1i0aBEZGRm0bNmSBx98sMLfx2XLluF0Osu0ap89e5a33nqL7du3k5OTg5eXF61ateLxxx+ndevWDBkyxP36KG0kCg0NZfXq1QDEx8fzyiuvsGPHDgwGA8OHDy/32QCMHDmSmTNncubMGcLDwysce00QybYgNDIXD268uEuJ7XQKriIrttMpaAK8y2yXJEkMkBQEoUasXbtWsRwYGMisWbMwGAyKdXfddRd6vZ6//vrLvX779u2MHTsWs9lcI7Ft27aNSZMmER0dzcsvv4xOp2Px4sVMmTKFt956q0zi+PTTT9O7d2/efPNNUlJSeOedd5gwYQI//vgjXl5eWCwW7r77bsLCwnj22WcJCAggPT2drVu3UlhY6D7Ps88+y7Jly5gwYQKPPPIIubm5zJs3j3HjxrF8+XICAgLc+6anpzNr1izuueceHnroIVQqFXl5eUybNo0tW7bQp08f977x8fHs27ePp59++oqvNXfuXObOncuYMWMYPnw4KSkpPPPMM7hcLpo3b37Z7+WaNWto3bo1Xl5eivX33nsvLpeLWbNm0bRpU7Kzs9m9ezd5eXnu686YMQNPT0+ee+454PzvtIyMDCZMmIBGo+G5557D39+fn376iZdeeqncGHr27Iksy6xdu7bC/cxriki2BaGRCQ0NVSyfPn2as2fPulstZKdL8XXDhg2K/Zs0aSJq6AqCUO0cDgeHDh1SrLvuuusUifaFbrjhBtatW4fT6XQff/jwYbp161Yj8c2ZMwcvLy8WLFjgTugHDx7MqFGjmD17NiNGjFC8N7Zr146XXnrJPWthy5YtueOOO1i4cCFTp07l5MmT5OTk8PLLLzN06FD3cRcm7Xv27OGbb77h8ccf5+6773av79atG8OHD+ezzz5j1qxZ7vU5OTm888479O7d273O4XAQEBDA999/r0i2ly5dilar5cYbb7yia+Xl5fHxxx8zbNgwXn75Zfd+pfdXkWR779693HzzzYp12dnZJCQk8OSTTyq2XXvtte7/t2nTBoPBgIeHB506dVIc//nnn5OVlcUPP/xAbGwsAAMHDmTSpEmcO3euTAz+/v4EBweza9euOk+2RZ9tQWhk2rZtW6Y14fPPP3e3HFxo48aN7Nq1S7GuX79+NRqfIAhXp4KCAlwul2Jd+/btL7m/p6cnkZGRinUXlyutLhaLhb179zJ8+HBFy7larWbkyJGkpKSUKadamsSW6tKlC6GhoWzduhWAiIgIvL29efPNN1m8eDEnTpwoc92//voLSZIYOXIkDofD/S8gIKBMhQ0Ab29vRaINoNFoGDlyJH/88Qf5+fkAOJ1Oli9fzjXXXIOvr+8VXWv37t1YrVZuuummcu/vcvLy8igqKirT/97Hx4fw8HA+/fRTPvvsMw4dOlTm9fBPtm7dSqtWrdyJdqmLn8OF/P39SU1NrfA1aopo2RaERkaj0dC/f39FuaXExET3R55hNg0FeXnsOHqIRLtykJJWqy3zRi4IglBTLpdslbZql6qpT93y8vKQZbncmt5BQUFASavyhcrbNyAgwL2fp6cnCxYs4IMPPuDtt98mNzeXwMBAbrvtNqZOnYpWqyUzMxNZlhUt0he6uIrUpWqO33rrrfzvf/9j5cqVjBs3jg0bNpCens7o0aPd+1T0WqXxX9h95cL7u5zScUMXj/uRJInPP/+cefPm8cknn/Daa6/h4+PDTTfdxIMPPoiHh8c/njcnJ6fMGKPLxaTX68uMY6oLjS7ZTk1N5ZdffmHdunWcPHmSjIwMvL296dKlC/fccw8dO3as6xAFocYNGzaM7du3k5aW5l5ntVpZs2YN9rRscLlApUIb5Ks4bvTo0ZhMptoOVxCEq4CHhwcajQaHw+Fet2fPnjIVkUplZ2dz5swZxTofH58aic3LywuVSlVmDAvgfh8tbSEuVd6+GRkZisF4MTExvP3228iyzNGjR1m6dCnz5s3DYDAwefJkfH19kSSJhQsXljtW5uJ1l/pjo2XLlnTo0IGlS5cybtw4vv/+e4KCghSfVFb0WqXf4/JKM2ZkZFy2dbv0+Iv/OIGSbo6vvPIKAAkJCfzyyy/MnTsXm83Giy++eNnzXiqmS8nJyalQa3xNa3TdSBYsWMCrr77K2bNn6dOnD3fffTddu3blzz//ZNy4cfz88891HaIg1Dij0ciMGTPw8/Or8DHDhw+/5C89QRCEqtJoNGW6jfz666/llgGUZZlly5YpWr71ej1t2rSpkdhMJhMdO3bkjz/+ULSEulwufvzxR0JCQsr0VV6xYoViedeuXSQlJdGjR48y55ckidjYWJ588km8vLw4ePAgAIMGDUKWZVJTU2nfvn2Zf5cq21qe0aNHs3fvXnbs2MFff/3FLbfcglqtdm+v6LU6deqEXq/np59+Kvf+Lken09GsWTPOnj37j/s1b96cadOmER0drejLr9Ppym2N7tmzJ8ePH+fIkSOK9Rc/h1IOh4OUlBRatmx52ZhrWqNr2e7QoQMLFy4sM4Bix44dTJw4kRdeeIGhQ4eKagtCoxcYGMjjjz/O4sWL2bNnzyVrZ3t7e3PzzTfTt2/fWo5QEISrzaBBg9i9e7d7OScnh1dffZWbb76ZLl26oFarOXXqFD///DP79u1THNuzZ89LDqasDjNnzmTSpEnceeedTJo0Ca1Wy6JFizh+/DhvvfVWmVblAwcO8Oyzz3LdddeRmprK22+/TXBwMOPHjwdK+kgvWrSIoUOH0qxZM2RZ5vfffycvL8/9ftu1a1duv/12nnzySQ4cOED37t0xGo2kp6ezc+dOoqOj3ee7nBtvvJHXXnuNhx9+GJvNxi233KLYXtFreXt7M2nSJObPn89TTz3FddddR0pKCnFxcZfsxnKxHj16sG7dOsW6I0eO8NJLL3HdddcRERGBVqtly5YtHD16lMmTJ7v3i46OZuXKlfz888+EhYWh1+uJiYnhrrvu4vvvv2fy5Mk8+OCD7mokF/elL3X06FGKioro2bNnhWKuSY0u2b5wVOuFunXrRs+ePdmwYQNHjx79x0EZdUGjaXSPQqgHvL29mTJlCpmZmaxfv56jR4+SZT+FRpII8A9g4LhRdOzYUdH6IQiCUFNiYmJo0aKFIkHKyMjg008/5X//+x9arRabzVbmOI1Gw7Bhw2o0th49evD5558TFxfHE088gcvlIjY2lvnz55f7qd9///tfli9f7k5ue/bsyVNPPeXuRhEREYGXlxeffPIJaWlpaLVamjdvzmuvvaZIhF988UU6duzIkiVLWLx4MS6Xi6CgILp06UKHDh0qHL+npydDhw5lxYoVdOnSpdyqIRW91n/+8x9MJhOLFi1i+fLltGjRghdeeIH//e9/FYrlpptu4vvvv2ffvn3u8wYGBhIeHs6iRYtISUkBSvqJP/bYY4pqIQ888ADp6ek8/fTTFBYWuutsBwYG8tVXX/Hyyy/z/PPPYzQaGTp0KM8880y5U7OvWrUKX1/fejHoX5Kvoqni7rvvPtasWcMPP/xA69at6zocN0e+hfy1u/G5oY8ouVbHZFkmJycHHx+fRvssCrcdRrbZkXRazD3qz8/Bxa6GZ9FQiGdRf9T1syguLiYhIYHmzZtXupU5JyeH1157jezs7ArtL0kSkydPpkuXLpW6Xk2RZRmn0+ku/Sco3XTTTXTp0oUXXnihxq918bNwOp0MGzaMm266iYceeqhS56yO13qpq6Y59dy5c2zatInAwECio6MvuV9d/O2Ru3w9STPeJee6noS+Pg1t6OVH+wo1o/T5N+a/QWXkv+9Prtf3eTU8i4ZCPIv6o66fxYXXr2wM3t7ePProo8ybN++y/XoNBgOTJk2iY8eO9fr1V59jqyuzZs1i+vTpTJkyxT1bZm2QZZnly5djsViYNGlSpZ9NRV/rFflD66po2bbb7dx9991s376d2bNnM2rUqEvum5OTU6s/NCqVCi8vL/JWbibpsfm48goJeepO/O+9CacsY7FYypQ+EoSqsO467m7Z1ndpVdfhCILQgNhsNjIyMoiIiKhya5/T6WTPnj2sW7eOY8eOKbb5+/vTv39/+vTpg6enZ5WuI9SdhQsXEhsbS9euXWv1usuWLSMoKKhKY5GKi4s5ffo0AQEB/zjO7+IqNeVp9Mm2y+Xiscce48cff+S222675LSeperi2+H+66mgiJT/fkHmpyuJWvk65l5txV/LtUyWZXJzc/H29m60HwsWbj+MbLUj6bWYu9fvbiSN/Vk0FOJZ1B91/SyKi4s5deoUkZGR1TpYMTc3l6ysLJxOJ56engQFBTWI11pp1wWh7lX3s6joa70ir9NG3Y1ElmWefvppfvzxR0aOHFmhfkN19cNd+uYZ+vo0AqaMQt+iKbIsk/X5z/jefg0qU82NwBbKkiSpQbzRV4aEBJKERMO4x8b8LBoa8Szqj7p6FqXXrO7r+/j41FgN7ZpyYWOY+LmoWzXxLKrztd7o6myXcrlcPPnkk3z//ffucjgqVf293QtfKPoWTQGwHj7NuSc/4ljfaeT/ubOuQhMEQRAEQRAqqf5mn1Xgcrl46qmnWLp0Kddffz2vv/56g/yYx9AmkugN76OLCCZh7DOcue8NHOk5dR2WIAiCIAiCUEGNLtm+MNG+7rrreOONNxpkol1KHxVK82WvEDZvJvl/7iTn+zV1HZIgCIIgCIJQQY2uz/a8efNYunQpJpOJyMhI5s+fX2afoUOH1qs625cjSRJ+dwzF69ruqL09AMj8/Gc8+nVA3zKsjqMTBEEQBEEQLqXRJdtJSUkAWCwWPvjgg3L3CQ0NbVDJdimNvzcAriIr6fOWcu6JDwl6eByBM8ag0mnrODpBEITKS01NZd26dZw4cQKLxYJWqyU4OJhevXrRvn37ej3mRhAE4Z80umT7tdde47XXXqvrMGqUyqgneu1cUt9cTOrsheR8v5awd2Zg7tmmrkMTBEG4IhkZGSxatIiDBw+W2ZaUlMSuXbvw9/fn1ltvrfVavULNc+YWULj5IJZdx3Dm5CM7XajMRgwxzTD3bY8uIkRU+hAaPNFU0ECpTAaaPHs3rf56D5XZQNaXv9Z1SIIgCFckMTGR1157rdxE+0KZmZl89NFH/Pbbb7UUmVDTZIeTnO/Xkvzi5+T9tg1Heg6y3QkuGVe+BcuOo6S/+x3p732HIzO3rsOtUR988AGrVq2qkXMnJiYSExPD0qVLa+T8QsWIZLuBM7ZrQcvf5tB09lQAcpatI/fHDWIyHEEQ6rW8vDzi4uLIz8+v8DFLly5l69atNRiVUBtkh5PMT36iYMM+cP3z7yrbqRTS3vkWe3JmLUVX+z788MMaS7aDgoJYsmQJgwYNqpHzCxUjku1GQFKrUXsYAcj/cyenJ77Cqf97EVtieh1HJgiCUL6VK1eSk5OjWGcymRg2bBiTJ0/mtttuIzw8vMxxS5YswW6311KUQk3I+W4NxUfPVnh/V0ERGR//iMtSXINRNS5OpxObzYZOp6NTp074+flVy3mLi4tFY14liGS7kWk29yEivnyaor0nONZnChkf/IDsdNZ1WIIgCG7FxcVs3rxZsS4qKoqXX36ZMWPG0LVrV6655hqeeuopbr31VsV+hYWF7NwpJvlqqOwpWRRuPaRcqZIw925LwNRRBD10G9439kHtZVLs4swuKGkJr0FxcXHExMRw6NAhpk+fTpcuXejatSuPPPIIWVlZin1dLheffPIJN954I+3bt6d37948+uijpKSkKPY7dOgQ9913H71796Zdu3b069ePyZMnu/eLiYnBYrGwbNkyYmJiiImJYcKECe7j09PTefbZZxkwYADt2rVjyJAhzJ07F4fD4d6ntKvIxx9/zPvvv8+QIUNo3749W7ZsuWQ3kh07dnDXXXfRuXNnOnbsyLhx41izZo1in6VLlxITE8OGDRt44okn6NWrFx07dsRms5X7/du6dSsxMTH89NNPvPHGG/Tr14/OnTszZcoUMjIyKCgo4JlnnqFnz5707NmTJ554gsLCQsU5ZFlm4cKF3HzzzXTo0IHu3bszY8YMzp5V/nG2ceNGpk6dyoABA2jfvj3XXnstzz//PNnZ2eU+0+PHjzNz5ky6du1Knz59eOKJJ67oU7WqanQDJAXwvrEPHgM6kvLS52R/twb/e2+q65AEQRDcdu3ahdVqdS9LksSkSZMwmUxl9r322mvZv38/x44dc6/buHEjvXr1qpVYhepVuHG/YlnSqgmcfiu68GD3Ol14MOa+7cl4fxm2s2nnj918EM+h3ZBquDLN9OnTue666xg3bhwnTpzg3XffJT4+nm+++QattqTy1/PPP8+SJUsYP348gwcP5ty5c7z77rts27aNpUuX4ufnh8Vi4e677yYsLIxnn32WgIAA0tPT2bp1qzvJXLJkCXfddRc9e/Zk2rRpAHh4lJT4TU9PZ+zYsahUKu6//37Cw8PZvXs38+fPJykpiVdffVUR94IFC4iMjOSxxx7Dw8ODiIiIcu9v27ZtTJo0iejoaF5++WV0Oh2LFy9mypQpvPXWW1x//fWK/Z988kkGDRrE66+/TlFRERrNP6eOb7/9Nj179uTVV18lKSmJ2bNnM3PmTDQaDTExMbz11lscOnSIt99+G7PZzNNPP+0+9tlnn2XZsmVMmDCBRx55hNzcXObNm8e4ceNYvnw5AQEBAJw5c4bOnTszduxYPD09SUxM5LPPPmP8+PH89NNP7udU6oEHHuD6669nzJgxHDt2jDlz5gCU+R7WFJFsN1JqLzOhb9yPy2pHUqux7DxK7k8bCX50PCqToa7DEwThKlZaorVU69at3b9EARwZudgS09CFBaEJ8KZfv36KZPvi44WGQZZlLDuPKtZ59O+oSLRLqQw6fMYOIu2tb9zrnDkFWI8nYogp272oOg0bNoxHH30UgH79+uHv788jjzzCL7/8wsiRI4mPj3cn2k899RRqtRpJkmjTpg1jx47liy++4KGHHuLkyZPk5OTw8ssvM3ToUPf5L0xmO3XqhEqlws/Pj06dOiniiIuLIzc3l5UrV9K0aVMAevfujcFgYPbs2fz73/+mZcuW7v31ej2ffvqpItFMTEwsc39z5szBy8uLBQsWYDabARg8eDCjRo1i9uzZjBgxQlEBpnfv3rz44osV/v5FR0crktiTJ0/yxRdfMGHCBB577DEA+vbty549e/jpp5/cyfaePXv45ptvePzxx7n77rvdx3fr1o3hw4fz2WefMWvWLADuuOMO93ZZlunUqRNdu3Zl2LBhrFu3jmuuuUYR05gxY7jnnnsA6NOnD6dPn+b777/nlVdeqZVqN6IbSSOn0pf80BUfPUPGh8s51nca+at31XFUgiBczS7+GDooKEi5/XQKroIibKdTyt1+Yau40HC4CopwFSmfnan7pee80DULRhPkq1jnSM+pidAUbrpJ+WnwiBEj0Gg07sG5pV9vueUWxX4dOnQgKirK3UUqIiICb29v3nzzTRYvXsyJEyeuKI41a9bQs2dPgoKCcDgc7n8DBgwASlqoLzRkyJAyLboXs1gs7N27l+HDh7sTbQC1Ws3IkSNJSUnh5MmTimOuvfbaK4p78ODBiuWoqCiAMoM0o6KiyMnJcbfy//XXX0iSxMiRIxX3GxAQQGxsrOJ+MzMzefbZZxk4cCBt2rShXbt2DBs2DID4+PgyMQ0ZMkSxHBMTg9VqJTOzdgbeipbtq4Tf+GGYe7YhcWYcCWOexmfsYJq+eh8aP6+6Dk0QhKuMwaD8dO3i/piy06X4evF2o9FYg9EJNUV2lB0/dHHf7PK2O9LO98Mt7xzVLTAwULGs0Wjw8fFxD+gt/XrxflDyh+G5c+cA8PT0ZMGCBXzwwQe8/fbb5ObmEhgYyG233cbUqVMvmxhnZmby119/0bZt23K3X9w/ubx4LpaXl4csy5eM/cL7u5LzXsjb21uxXHqfl1pvtVoxm81kZmYiyzJ9+vQp97zNmjUDSvrLT5o0ibS0NKZNm0Z0dDRGoxGHw8Edd9xR7h/jPj4+imWdTgeUjB+pDSLZvoroo0Jp8cOrZH/9J+nvflvX4Qj1zLlz5zh8+DAFBQVoNBoCAgLo0KGDSGyEahcZGalYjo+P58yZM+VWH5FlmbVr1/7j8ULDoDLqy6yzJiRjbNu83P1luwP7RVW1yjtHdUtPTyc4+HzXFofDQU5OjjthK/2anp5eJhFNS0vD1/d8a3xMTAxvv/02sixz9OhRli5dyrx58zAYDEyePPkf4/D19SUmJoYHH3yw3O0Xf+JTke4QXl5eqFQq0tPLVitLS0tzX/dKz1sdfH19kSSJhQsXupPhC5WuO3bsGEeOHOG1115zf7ogy3KZFvn6RCTbVxlJkvC7Yyi+tw9BUqmwp2WTNDOOJs9PQt8yrK7DE2qZLMvs2bOHP//8k+PHj5fZrtfr6dGjB9ddd52iT60gVEXHjh3x9PRUVAP45JNPmDZtGiEhIe51doedhQsXlul32r9//1qLVag+KoMObWgA9qQM97qCNbsxtIksN6Er3HoIV7Gyy5G+RdMaj/Onn36iXbt27uVffvkFh8NBjx49ANyDc3/88UfatDk/c/O+ffuIj49nypQpZc4pSRKxsbE8+eSTLFu2TDGRk06nK7eFddCgQaxdu5bw8PAyrcKVZTKZ6NixI3/88QePPfaY+1Mml8vFjz/+SEhICM2bl//HT00bNGgQH330EampqWUGaV6o9LVycUL+7bf1txFRJNtXqdLR3I6ULIoPneJY//sJengcgTPGoNL980dbQuPgcrlYtGgR69atu+Q+VquV9evXs337dqZMmULr1pfuXykIFaXRaOjfvz8///yze11qairPP/887du3p6ldQ05ODruPH8bqoWzJ9Pf3p3379rUdslBNPPq2J/ubv9zL1hNJ5HyzGu+b+roH78suF5adx8j9cYPiWH10MzSBPjUe4x9//IFaraZv374cP36cd999l9jYWEaMGAFAixYtuP322/nqq68AGDhwoLsaSZMmTZg4cSJQ0gd50aJFDB06lGbNmiHLMr///jt5eXn07dvXfb3o6Gi2bdvG6tWrCQwMxGw206JFC2bMmMGmTZsYN24cEyZMoHnz5thsNhITE1m3bh0vvPCC4o/Tipo5cyaTJk3izjvvZNKkSWi1WhYtWsTx48d56623aq0l+2Jdu3bl9ttv58knn+TAgQN0794do9FIeno6O3fuJDo6mvHjx9OiRQvCw8OZM2cOsizj7e3N6tWr2bRpU53EXREi2b7KGTtEEb3hfVLfXEzq7IXkfL+WZvMfxtSpVV2HJtQgWZb59veVbE0qO5CkPMXFxcydO5eZM2e6B7sIQlUMHz6cPXv2uPu3Qsnrct++fexMywaXC1QqtBck2yqVigkTJqCq4dJvQs0xdokhd8UmXJbz/WoLtxzCsusYhthwJL0Oa3wSzqyyNZA9BnSslRjj4uKIi4tj8eLFSJLEkCFDePLJJxUtqc8//zzNmjXju+++4+uvv8bDw4P+/fvz8MMPu7thRERE4OXlxSeffEJaWhparZbmzZsruj8APPXUU7zwwgvMnDmToqIievTowYIFCwgKCuK7777j/fff59NPPyU1NRWz2UxoaCj9+/fHy6tyY6569OjB559/TlxcHE888QQul4vY2Fjmz59fZnBjbXvxxRfp2LEjS5YsYfHixbhcLoKCgujSpQsdOnQASvp6f/DBB7z88ss8++yzaDQaevfuzSeffKKo+lKfSLKYCqjOybLs7g9WV39RAhQdOEnSI/MIffN+jO1a1Fkcdam+PIuaVLjtMPsPHeSj5d+gvWikv6enJ1FRUVgsFk6cOIHL5VJs9/X15b///e9l66xWh6vhWTQUNfUscnJyeOedd0hOTlast1+YbP/9GtVoNNx9991069at2q7fENX1z0VxcTEJCQk0b968zEDXiio6lEDmJyvgCrIPc882+Nw+pEbvOS4ujrlz57J58+YKzbgoyzJOp9Nd+k+oOzXxLKrjtV5KtGwLbsZ2LYj65U0kSUK2O0i44wX87xyO1019xRtJI7Nm51bFskaj4fbbb6dPnz7uRDo7O5slS5awe/du937Z2dns3r2b7t2712q89YEsyyQmJpKRkYHT6cTDw4PIyMgqvwlfzXx8fHj00Uf58ccf2bRp0yVL+sXExDB69GgxMLKRMLZpjt+E4WQv+gPZ4brs/qZuMfiMHSR+DwkNlki2BYXSNzNnQREqvZbTE1/B87qehL4+DV3YlZX/Eeqn1MwMjp1JgAs+ih87dqy7dmspX19fJk+ezKuvvsqZM2fc69euXXtVJdtWq5VNmzaxdu3aMi2wer2enj17MmTIEJo0aVJHETZsJpOJcePGMWrUKLZt28aJEyfIOhSPTlIRFBTEwH+NEd/bRsjUORpNkB/5f2ynaH88uMo2c2tDA/Ac1Blj1xiRaAsNmuhGUg/U9ceClyLLMnkrNpH02HxcBUU0feU+/P51ZcXtG5r6+iyq028fLmDJz8vdH9GbTCZef/31S9Z83bZtG59++ql7WZIk5s2bh1qtrtE468OzSE1NJS4urtwyWRdSqVSMHTu2zMQJjUVtP4vCbYeRbXYknRZzDzEo90J1/XNRnR+tl3LmFlC0Lx5HVj44nag8TRiim6END67X78OiG0n9IbqRCA2WJEl439QXj4GdSHnpc3d9U1mWxRtLA2YpsiiWmzdvrki0L54qu1Ur5WBZWZaxWCx4enrWSrx1JT09nTfeeENRnu5SXC4XS5YsweVy1dsBOoJQX6m9PfDoXzuDHwWhLogh3cJlqb3MhL5xPz63DgTg7H1vkPzCZ7gstTPzklC91Cpli3TpVLmlLp4q++LtwGVnPmvoZFnmww8/LDfR9vT0JCgoqNw/OL/77jsSEhJqI0RBEAShgRAt28IVkWUZQ2wEqW8sIveH9YTOmY7nkC51HZZwBQIumh3s1KlTpKamumdMu3iq7G3btin2N5vN6PU1M4ubxWIhNzcXSZIqXdaqOhw5cqTMFOFhYWGMHTuWmJiS/qPZ2dn89ttv/PXX+ZrBpXV077vvvtoOWRAEQainRLItXBFJkgiaeTveN/cjcWYcCWOexveOoYTNfUh0LWkg2kS1wqQ3YrGfr/ywaNEiHnjggTIl/c6cOcPq1asV63r16lWtz9rhcLB7927Wrl2rmMVSlmXCw8MZMWIEnTp1qvE+4hdas2aNYtnf359Zs2Yp+u35+voybtw49Ho9v/76q3v9nj17FFM7C4IgCFc3kWwLlaKPCqXFD6+SvXgVjrTsknKBDieoVSLprue0Gi292ndi9a7z5f+OHDnCiy++yLBhwwgtAEt+Prvjj7Il8QQOh0Nx/MCBA6stlnPnzjF//nzS0tLK3X7ixAk+/PBDmjZtytSpU92t7zXJ5XJx4MABxbprr732kgNkhg8fzurVq7HZbO7jDx06RJ8+fWo8VkEQBKH+E8m2UGmSJOE3fph7Oe3dbylcv5fQOdPRR4XWYWTC5Qzu3ottR/ZzYVXj1NRUvvrqq3InFCnVp0+fakt4k5KSePPNN7FYLJfdNzk5mddff51HH320xhPuoqKiMn9gtGvXzv3/iweQmkwmoqKiOHz4sHuf3NzcGo1REARBaDjEAEmh2pi6xmA7k8qxftNInfM1Lpu9rkMSLsHbw5PJY8ZfUd/rmJgYxo8fXy3Xt1qtzJs3r0KJdqmCggLmzp2L3V6zr6vyPplxOp3u/188gBQok5yL6cQFQRCEUuI3glBtPAd1JnrD+wRMGUXqa19xfNAMHFl5dR2WcAnNQ5sxa9YsQkJC/nE/SZLo27cvDzzwQLVVIdm8eTOZmZmKdU2aNOHee+8lLi6O9957j0mTJhEYqJxIKS0tje3bt1dLDJdiMBjQ6XSKdRfOonnxANK8vDxOnjyp2F/01xYEQRBKiW4kQrVSmQw0ee5ufG4dSM53a1D7ltRidlmKUZnEtNb1TbNmzXjuuec4ePAga9eu5ciRI5S2G/t4etH32msZMGBAmaS3KmRZLjMAMTw8nFmzZimS3J49exIREcGHH36omLlx7dq11d4fOisri/Xr17Njxw4yMzM5fPgwWVlZ+Pj40LRpU37//Xd69epVJomWZZlly5YpWr61Wq2i24kgCI3H0qVLeeKJJ/juu+/Ez7lQYSLZFmqEsV0LjO1aAJD361YSZ8YR+toUvG7qKwZQ1jMqlYr27dvTvn17ZFkme+M+VA4nWpOxRmbvS05OLjPt+ejRo8u0JkNJK/OoUaOYP3++e92pU6fIzMzE39+/yrE4HA6WLFnC+vXruXAy3ZCQEFJSUkhLSyMtLY2TJ0/yzDPPMG7cONrggUaGU0lnWbt9Nfv27VOcs3v37pjN5irHJgiCIDQOItkWapyhXQtMnaM5PfEVvEb0ounsqejCqq+lVKg+kiSh1+mQqbl+0dnZ2Yplk8lEbGyse7l0AKI2NBA00L59ezQajaJfdFZWVpWTbbvdzty5czly5EiZbZ6envj4+JCTkwOUdBVZt24d2dnZ6AptqJFwIpcZQKrRaLj22murFJcgCILQuIg+20KN04UFEvHVM0R88RSW3cc41mcKhVsP1XVYQh1xuVyKZY1Go/i04+IBiJIklan/ffE5KuOrr74qN9EuvWbr1q0xGo3n47LZOHjwIA6HA6fLWe4xEydOpEmTJlWOTRCEuhMfH8/MmTPp06cP7dq1Y9CgQTz66KPu8p5QMrPu888/T9++fenZsyfTp08nNTVVcZ6ff/6ZSZMm0a9fPzp06MCIESPKrcD0+OOP07lzZ06fPs29995L586dGThwIK+99primgApKSnMmDGDzp07061bNx5++GH27dtHTEwMS5cuVey7f/9+pkyZQo8ePWjfvj2jRo3i559/rubvllARomVbqBWSJOF9U188BnYife5SjB2iAHBk5aHxq7uZAoXa5+npqVjOy8sjKSmJ0NCScpHuAYh/J9SnTp2iuLhYcUxVZ5dMSkpiy5YtinVqtZp+/frRrVs3DAYDhw8fxsvLi82bN5OXVzLQt7i4mOSMdJoFKcsPGgwGJk6cSOfOnasUlyA0VI6MXGynU9w/v3VJUqvQRYSgCfC+4mOPHDnCHXfcga+vLzNmzCAiIoL09HRFLX2Ap59+moEDB/L666+TlpbGG2+8waxZs/jyyy/d+5w6dYoBAwZw1113YTQaOXnyJB9//DH79u1T7Acln7RNnTqVMWPGMGnSJLZv387777+Ph4cH06dPB0pm2L3zzjvJzc3lkUceISIigvXr1/PQQw+VuY8tW7Zwzz330LFjR55//nk8PT35+eefeeihhyguLmb06NFX/L0RKk8k20KtUnuZCXlyAgDW+CSOD3oA/3tuInjWHWIA5VWiWbNmeHl5uRNYgBUrVjB58uQy/fllWWbFihWKdf7+/lWutb127VrFslarZdasWURERLjXhYeHM3DgQObMmcPu3btJTk4mOzub1Mx0wgKDkP6OZeDAgfTp06fMHxGCcDWxJabhKrJefsdaIAO2pPRKJduvvvoqGo2G7777Dj8/P/f6kSNHKvbr378/Tz/9NE6nE7VaTW5uLm+88Qbp6enuAeXTpk07H5Ms06VLF6KiovjXv/7FkSNHFN3n7HY7DzzwACNGjACgd+/eHDhwgBUrVriT7WXLlnH69Gk+/vhjBgwYAEC/fv0oKipiyZIlivheeOEFWrVqxRdffOH+ZLB///5kZ2fz1ltvMWrUKFGitBaJZFuoM9pmQQQ+eBtpby4m94f1hM6ZjueQLnUdllDD1Go1/fv3Z+XKle51u3bt4n//+x8333wzpR030rMy+eGL3zh8+LAiCR84cGCVfkm4XC62bt2qWDd06FBFol3KYDDwf//3f5w5cwZ/f3/sdjuF59K4ZfC1dGjTjohr+4gBv4IA6MKC6lfLduiVjwsqKipi+/btjBkzRpFol2fIkCGK5ZiYGKBkVtzSZPvs2bO88847bNmyhczMTMUg7JMnTyqSbUmSyj3nhZ/Abd++HbPZ7E60S914442KZPv06dOcPHmSxx57DFDOAzBgwAD++usvEhISiIqK+sd7FKqPSLaFOqPSaQl+eBw+o/qTODOOhDFP0/SVyQRMGVXXoQk1bMCAAaxatQqr9XxL2LZt29i+fTv+Lg2yw0lKdiYub5OiSonRaKRv375VunZBQUGZbim9e/d2///iGSIjIyMJDg4mNTUVrVaL2WhCp9UR6OsnEm1B+JsmwLtSLcn1SV5eHk6ns0KfnF1cBrT0far0vaWwsJDx40smDnvwwQeJjIzEYDCQkpLC9OnTy7wHGY3GMpOM6XQ6xXtkTk4OAQEBZWK5eLB4RkYGALNnz2b27Nnlxn/xQHWhZolkW6hz+qhQWvzwKtmLV+ExoCMAtsR0tKEBIplppHx8fLj77rv58MMPFa09siyTnJ7mni7+QiqVinvuuQcPD48qXbu8GSgv7ANuO52Cq8iK7XSKO3nw9vZWDH66eMZIQRAaPm9vb9RqdZmBjpWxZcsW0tLSWLBgAT169HCvz8/Pr/Q5fXx8ypQahfPJdSlf35IqSffddx/Dhg0r91zNmzevdBzClRMddoR6QZIk/MYPQxcWhKvYRvx1D5Nwy5NY45PqOjShhnTu3JnJkydXaFZKvV7P1KlTq2USifJqYMfHx7v/f/EMkTabjTNnzij2N11QpUQQhMbBYDDQvXt3fv31V7Kysqp0rtKGoovnD/j6668rfc7u3btTWFhYZszJhV3yAFq0aEFkZCRHjhxxz6Fw8b+qNloIV0Yk20K9ozLoCIt7ENuZVI71m0bqnK9x2Wqu7vPVRLY7cBYW4Sq2KVqU60qXLl14/vnnueaaaxRl9kqZTCauvfZann/+eTp06FAt1zQYDISFhSnW/f7775f8fqxfv77MR74tQptVSyyCINQvTzzxBHa7ndtuu41vvvmGLVu2sHLlSh5++GEKCgoqfJ7OnTvj7e3Nc889xx9//MFff/3FzJkzOXr0aKVju+WWW4iIiODRRx9l0aJFbNy4kVdffZUNGzYAKMayvPDCC2zevJl///vfrFixgu3bt7Nq1So+/PBDZsyYUekYhMoR3UiEeslzcBeiN7xP6huLSX3tK4r2niDyy6frOqwGSbY7sOw5QeGm/dhOp+BIzUZ2uVCZDNgT0/Do0x5tk6rPxlhZAQEB3Hbbbdx8882cOHGClM17weHE28eb8CG9CAwMrPbuRAMHDmThwoXu5aNHj7JgwQLGjBnjXudyudi4cWOZ2rWtW7QkwEc5mY0gCI1DbGws3333He+99x5z5syhsLCQwMBAevXqVe4st5fi6+vLhx9+yOzZs5k1axZGo5FrrrmGt99+m1tuuaVSsZlMJr744gteeeUV3njjDSRJol+/fjz33HNMnjxZURGpV69efPvtt3zwwQe88sor5OXl4ePjQ1RUlLviiVB7JLk+NG9d5WRZJicnBx8fH9FHuRxF++ORrXZM3WKxJaah9jKj9qqZ6bAb27Ownkgka8FvOPPOT6LgSCtJtiWVCs3fMyCausXge9sQJK2Gwm2HkW12JJ22RqZrv5zS66PTYG/VpEaehdVq5YknnqCwsFCxXqvVEmXyQ69WcyLpLIVGdZlj7xl8A63DIuvs+1MXavvnoq5fg/VZXb9HFRcXk5CQQPPmzTEYru5yrbIsu0v/1eXviw8++IB33nmHNWvWEBISUmdx1KWaeBbV+VoXLdtCvWdsf748UdLMuRQdOEno7Kl43SjKrv2T4kOnyPzfygqV4rLsOIozu4CA+0Zedt/GQK/XM3HiRN5//31F9xG73c7+40fcAzS1RmUL9oABA2jTolXJHwOCIAi17KuvvgJK+mXb7Xa2bNnCggULGDly5FWbaDcEos+20KCEvvUAps7RnL7rZU7/6yVsiel1HVK95EjPIfOLX66o5q01Pomc79defsdGokOHDtxzzz1lpoK/lL59+3LHHXfUcFSCIAiXZjAYWLJkCffffz/3338/q1at4t577+W///1vXYcm/APRsi00KLqwQCK+eoa8FZtIemw+J4bPJHbX/1DpL1/R4mqS/+dOZJuyPJ0uIhiPwV1wZufjzC3ElnAO+7kMZLvTvU/h1kOo/bxQmfQXn7JR6tatGyEhIfzyyy/s2rULl6vsHyeRkZEMGzaMrl27ik9SBEGoU2PGjFGMLREaBpFsCw2OJEl439QXj4GdKNoXj0qvxZlXiO1sGsa2onaoy1KMZZdyxLuxY0v87hyOpFJRuO0wkkaNtok/2qYBpL/7DbLjfJJZdODkVdVPNiwsjHvvvZfc3Fx2797Nua37cNpseHh60uWW68qdWVIQBEEQKkok20KDpfYy49GvpBxcxofLSX19EYHTbyV41h2oTFfvwJ2iAwmK1mpUEj6jByKVM8W5LiwQc5/2FKzb615nPXrmqkq2S3l7ezNo0CAKTcHnB+eJRFsQBEGoItFnW2gUAv8zluDH/0XGBz9wrO808lfvquuQ6owzK0+xrG8ZhtrLdMn9jZ1bKZZdBUVX1NdbEARBEIRLE8m20CiodFqCHx5H9Ib30YYHkTDmaYqPna3rsOqE7HQqllUGZX92Sa1SfFUZyumfLSqCCoIgCEK1EMm20Kjoo0Jp8cOrRP38BoboZsguF3m/bq0XsyXWFpWHshXbejIZ2XE+AddFhKDyNKGLKCkTZT2RqDyBVg1q8dYgCIIgCNVB/EYVGh1JkjD3agtAwfp9nBr/Agm3PIk1PqmOI6sdhmjlVOKugiIKtx1yL2sCvDF1bIkmwBvZ7qBg7W7F/rpmwaLqhiAIgiBUE5FsC42a58BONP/uv9hOp3Ks3zRS53yNq5FPSKJt4o++RVPFutxl68hfuwfZfr4coD05k4wPluPIUPbxNnaIQhAEQRCE6iGSbaHR8xzSheiN7xNw382kvvYVuUvX1XVINc5jYCfFsuxwkfvDepKf/ZT0+T+Q+sYiUl9fhPXkufP7yDIqswFZJWFPzsRZUFTLUQuCIFx9PvjgA1atWlUj505MTCQmJoalS5fWyPkvlJqaSlxcHIcPH67xa1XG0qVLiYmJITEx8fI7VzNR+k+4KqhMBpo8PwnfcUPRtwoFIOf7tXgO64bay1zH0VU/Q/sWmPu0o3DTAcV6V7EN60UDR102O47ULJyZeeijm5G3dB2yy4WkUmE9dApz33YYO0QhqdW1eQuCIAhXhQ8//JDhw4czdOjQaj93UFAQS5YsITw8vNrPfbG0tDTmzp1LaGgorVtffeVj/4lItoWriiG25A3HkZFL4sw4VGYDobOn4nVjn0bVT1mSJHxuHQgqicIN+y+5nyMjB2v8OSSVhKF1BCqTAdcFLdrW+CSs8UlowwLx//cNaHw8ayxmV7EN64lEivbHI9sdqHw8kMIDaux6giAIjZXT6cTpdKLT6ejUqVO1nbe4uBi9Xl8tvy+LioowGo3VEFX9J7qRCFclTYA30RvnY+zUitN3vczpf72ELTEdAL2+cUxVLqlU+N46iIDJIzHENCuz3ZGejS0hGW0TP4ydWpWpYnIhe2I66XHf48wrrPY47WnZZH/7F8nP/4/MT1dSsHoXBWv3kPfTJnJmLyZn6VocmbnVfl1BEIQLxcXFERMTw6FDh5g+fTpdunSha9euPPLII2RlZSn2dblcfPLJJ9x44420b9+e3r178+ijj5KSkqLY79ChQ9x333307t2bdu3a0a9fPyZPnuzeLyYmBovFwrJly4iJiSEmJoYJEya4j09PT+fZZ59lwIABtGvXjiFDhjB37lwcjvPjb0q7inz88ce8//77DBkyhPbt27Nly5ZLdiPZsWMHd911F507d6Zjx46MGzeONWvWKPYp7XaxYcMGnnjiCXr16kXHjh2x2Wxlvndbt251TyP/xBNPuO8lLi4OgMcff5zOnTtz9OhRJk2aROfOnZk4cSIANpuN999/n+uuu4527drRq1cvnnjiiTLf8yFDhnDfffexbt06brnlFjp06MB1113Hd999VyaePXv2MG7cONq3b0+/fv2YM2eO4ntW20TLtnDV0oUFErnwWfJ+2kjS4x+QHvcdobOnYjKZGlWpQEPrCAytI3Bk5GI9kYjLYsWZm0/ujxsxdY2Bi2aWlPRa5OKyb6bOrHyyvviVgOmjq+1TAMvOo2R/vUoxXfyFZKudwg37sGw9hO//XYupY8tqua4gCMKlTJ8+neuuu45x48Zx4sQJ3n33XeLj4/nmm2/QakvmLXj++edZsmQJ48ePZ/DgwZw7d453332Xbdu2sXTpUvz8/LBYLNx9992EhYXx7LPPEhAQQHp6Olu3bqWwsKThYsmSJdx111307NmTadOmAeDh4QGUJNpjx45FpVJx//33Ex4ezu7du5k/fz5JSUm8+uqrirgXLFhAZGQkjz32GB4eHkRcYgbcbdu2MWnSJKKjo3n55ZfR6XQsXryYKVOm8NZbb3H99dcr9n/yyScZNGgQr7/+OkVFRWg0ZVPHtm3b8uqrr/LEE08wdepUBg0aBEBISIh7H7vdztSpUxk3bhz33nsvTqcTl8vFtGnT2LlzJ//+97/p0qULSUlJxMXFsW/fPr7//nsMhvMzQh85coTZs2dz7733EhAQwLfffstTTz1FeHg4Xbp0AeDEiRNMnDiR0NBQXnvtNQwGA4sWLWLFihUVfg1UN5FsC1c1SZLwHtkPj0Gd3etyV2xCFxmCsV2LOoys+mkCvNEEeAOQtfB31Bd1CTF2aoXn0G7Yk9JxFRVjO5OG7VQyzqx89z7Wk+ewJSSXqXZSGZbdx8j66vcK7SvbnWR98QvSpBsa3XMRhMbCnpKFPVXZGqnx8UAXEYKr2Ebx0TNljin9A7r4eCIuS7Fimy48GI2vJ46MXGxJ6Yptag8j+qhQZKeTogMJim3aYD+0IX6Vvo9hw4bx6KOPAtCvXz/8/f155JFH+OWXXxg5ciTx8fHuRPupp55CrVYjSRJt2rRh7NixfPHFFzz00EOcPHmSnJwcXn75ZUV/7AuT2U6dOqFSqfDz8yvT3SMuLo7c3FxWrlxJ06Yl77m9e/fGYDAwe/Zs/v3vf9Oy5fkGCL1ez6effur+gwAodzDgnDlz8PLyYsGCBZjNJWOWBg8ezKhRo5g9ezYjRoxQNKj07t2bF1988R+/Zx4eHrRqVTIbcXh4eLldV+x2O/fffz+33nqre93KlStZv349cXFxXHvtte71sbGxjBkzhqVLlzJ+/Hj3+uzsbBYvXuz+fnTv3p0tW7awYsUKd7I9b948ZFnmiy++ICCgpCvioEGDuPHGG//xHmqS6EYiCIDay4zay4wsy6TP/Z7jg2eQ/MJnZd78GwNnQRFFe44r1pn7tMPvzuHoQkvemCS1GkNMOEEP3obKU9m9pGDDvirH4MjJJ3txOaPvJdAE+pT8UXBx47kMWV/9jjPfUuXrC4JQ/TI//5kTg2co/qW8sgAA+7mMMttODJ7hPjbx/rfKbMv/YzsAOT+sK7Mt6dH5ALgKrWW2ZX7+c5Xu46abblIsjxgxAo1Gw9atWwHcX2+55RbFfh06dCAqKorNmzcDEBERgbe3N2+++SaLFy/mxIkTVxTHmjVr6NmzJ0FBQTgcDve/AQMGACUt1BcaMmSIItEuj8ViYe/evQwfPtydaAOo1WpGjhxJSkoKJ0+eVBxzYRJcVcOHD1cs//XXX3h5eTF48GDFPbZu3ZrAwMAy99i6dWt3og0lf2BERkZy7tz5ylpbt26ld+/e7kS79P4ubrGvTaJlWxAu0uLH10iP+560NxeTu3w9oXOm4zm4S12HVW2sR04rum1IGhVe1/Ust2uI2tOE5+DO5P640b2u+MBJZFmuUleSwo37ke3KaeVNPVrjNaIn1mOJyDY7zmIreSfOwtHzLTOy1U7hloN4Dete6WsLglAz/Cdej9eIXop1Gp+SLhHapgG0/Ou9Sx4bNm9muS3bAD6jBmDqrqxuofYoGVinMuvLnFcbXPlWbYDAwEDFskajwcfHh5ycHAD314v3g5LqH6WJn6enJwsWLOCDDz7g7bffJjc3l8DAQG677TamTp162cQ4MzOTv/76i7Zt25a7PTs7+x/jLk9eXh6yLF8y9gvv70rOWxFGo9HdRaZUZmYmeXl5tGvXrtxjLr5HHx+fMvvodDqKi8+/dnJychSJdqny1tUWkWwLwkWsTgdBM2/H5+Z+JD48l9TZC/EY1LnRVCtx5ioHOeoimqD2vPTgSGO7FopkW7Y7kYusSCbDJY/5J7LDSeGWQ4p1xk6t8B13DZIkYf17ndrLjPm2Qbi+30jxoVPufQs3HcDzmq5IKvHBnCDUJ9qQS3ffUBl0/zjmwtAq7JLbLuwCdzFJra72sRzp6ekEBwe7lx0OBzk5Oe5Er/Rrenp6mUQ0LS0NX19f93JMTAxvv/02sixz9OhRli5dyrx58zAYDEyePPkf4/D19SUmJoYHH3yw3O2lyXGpivyO8vLyQqVSkZ6eXmZbWlqa+7pXet6KKO88vr6++Pj48Mknn5R7zIWt7xXl4+NDRkZGmfXlrastItkWhIsUFxdjMBjQtwyjxQ+v4swpQJIkCrcewnrynDspbLAuHvx50a1IahXy319LVpRzr1UYP2o/l6EoLwjgNbxHud9TSZLwHN5DkWw7cwpwpGajbeJf+SAEQRAu4aefflK0tP7yyy84HA569OgBQK9eJa33P/74I23atHHvt2/fPuLj45kyZUqZc0qSRGxsLE8++STLli3j4MGD7m0Xt8yWGjRoEGvXriU8PBxv7/L/2LhSJpOJjh078scff/DYY4+5Bx+6XC5+/PFHQkJCaN68eaXOrdPpAMq9l0sZNGgQK1euxOVy0bFjx0pd92I9e/Zk9erVZGRkuFuznU4nP/9cte5FVSGSbUH4B5IkofEtGUiYv2oHaXO+JmfJn4TOmY4+KrSOo6sc1UWT+NhOp+AqLEZlLnnT1UWEYEtKRxda0mJTfEg5+EjSqpGMukpf31mg7HOt9jL942AmXbOgkgopVvsF5yjinz+ArX72tGyKdh+jcPsRZJsdlYcJlUmPoU2kaGUXhEbkjz/+QK1W07dvX44fP867775LbGwsI0aMAKBFixbcfvvtfPXVVwAMHDjQXY2kSZMm7pJ2f/31F4sWLWLo0KE0a9YMWZb5/fffycvLo2/fvu7rRUdHs23bNlavXk1gYCBms5kWLVowY8YMNm3axLhx45gwYQLNmzfHZrORmJjIunXreOGFFxTVPipq5syZTJo0iTvvvJNJkyah1WpZtGgRx48f56233qp0Y1J4eDgGg4GffvqJqKgoTCYTQUFBik8JLnbDDTfw008/MXnyZCZMmECHDh3QarWkpKSwdetWrrnmGoYNG3ZFcUydOpXVq1dz1113cf/992MwGFi4cCFFRXU3K7JItgWhgkKeuhNz73YkPTyXY/2mETxrPAHTR6PS1XbaVzWG2IiS1mtnSb9t2e4k74/t+IzqDyg/snVZisn/a7fy+NYRVUouJUl5rMtqV/QBd7es/30N2eUCp7J/t6SqvU8WrAnJ5P261T3zpiMt2z3DpiM5E7WPBx79O+IxsKOYZVMQGoG4uDji4uJYvHgxkiQxZMgQnnzySXfLLZSU/mvWrBnfffcdX3/9NR4eHvTv35+HH37Y3Q0jIiICLy8vPvnkE9LS0tBqtTRv3pzXXntNMbjyqaee4oUXXmDmzJkUFRXRo0cPFixYQFBQEN999x3vv/8+n376KampqZjNZkJDQ+nfvz9eXl6Vur8ePXrw+eefExcXxxNPPIHL5SI2Npb58+czePDgSn/fjEYjr7zyCnPnzuXf//43drud6dOn88ADD1zyGLVazfz58/nyyy9Zvnw5H330EWq1mpCQELp37050dPQVxxEdHc1nn33G7Nmzeeyxx/D29mbkyJEMHz6cZ555ptL3VxWS3JgKCjdQsiy7+4M16O4JjUBFnoXLUkzq64vI+X4t0Rvmofb2KHe/+izzy18p2n1RRZKebfC8piuaQB9kl4viw6fJ/XEjjjTlAJWAqaMwRJedJKei7ClZpM5eqDzn5JEYWpfUhC0t86VtGkCBRkZ/JpOsz39R7B/yzF1o/Cr3i+ZyCrcdRrbZkXRakGWyv1kNrvNvkxcm25qg830bDbHh+E28HpW+Yf3xVRG1/R514TMw9xDTPl+orn9fFBcXk5CQQPPmzRX1jxuDuLg45s6dy+bNm/Hzu/wgS1mWcTqd7tJ/Qt2piWdRna910bItCFdIZTLQ5PlJBD86HpXJgP1cBulzlxL8+P+h9rrywRx1wXNIl5Lyfxf8qV249RCFWw+h9jbjKrYpum2U0oUHof+HgUwVoQn2RdvEH3typntd7oqN6Fo0RaXXulvWZVnGlZJG3spNyhgiQ2os0b6Q9UQilh1HKtw/vfjIGbIW/Ir/pBtEtxJBEATBTfxGEIRKUv1djaPoYAJZX/3G0d5TyF2x6TJH1Q+6sCB8bh1U7jZnbmG5ibbay4TfxOur3GogSRLmfu0V6+znMkl7czGFWw/hKizGWVBE4ZaD5M39AUd6jmJfcx/lsTVBtjvI/3NnmURbZdJjaNscY+dWaIJ9yxxXfPAUlh1Hazw+QRAEoeEQLduCUEVew7oTvekDkh59n9N3/hev63sR+vo0tE3rrqZnRXj0bY+kVpHz/ZpLTpdeShPsS8C9N7kHi1aVqVssBat34cjMc69zZOSS/fWfZPPn32tkXFYb6M/3k9QE+WLq3KpaYvgnxcfOlkxZf8EnFR4DOuJ9Yx8su4+7uziovc1kffkrLovVvV/hhn2i64MgNEAPPPDAP/YvFoTKEi3bglANdGGBRC58lojPn6ToQALOvIYxy6G5V1uCH/8XHoM6ozLqy2zXhgXie/sQgh8eh8a/ekpPAah0WvzvuQmVqew1L3mMp4mAe29C0tT8IMTig6cUy/pWYXiP6o+kVbZPGGLC8RkzSLHOdjYNW2JaDUcoCIIgNBSiZVsQqokkSXiP7IfX9b2RNGpcVjuJD7xN4IwxGNu1qOvwLknj743Pzf3wvr4XtqR0XIXFSCoVan8vNIE1NwhLG+JH4H/Gkvm/lThSs/9536b++E+6oVoT/kuRnU4c6dmKftceAzpe8vtg7NgStfcGxWRBtoRkdGFB5e4vCIIgXF1Esi0I1ay05dWRkknR/pMcHzyDwOm3EjzrDnc/7/pI0mrQRzap1Wtqg3wJfnQ8xQcTKNiwH+vxs+f7SUsS2ugw/If1rHK5wStR7sDQZpdOnCWVCm1YoCLZdhXbaiQ2QagvRCEzobGrzte4SLYFoYboIkJotTaO9LjvSXtzMbnL1xP23oN49OtQ16HVK5JKhbF9FMb2UbisdlwFFpAkJLOBPEshhloucSZpyr4tOrLz3SUey8ywCTgv6HsOlOluIgiNhVZbUtrSYrFgNBrrOBpBqDkWS0l30NLXfFWI3wiCUINUOi3BD4/D5+Z+JD48F2dOQV2HVK+p9FpU+pKuIrIsQ110fdeqUXuYcFnOTzls2XbY3ep/8QybtjOp2FOylKcIvnyNXkFoiNRqNT4+PqSllYxLMJlMV22NaVFnu/6ozmchyzIWi4W0tDR8fHxQV8NkZSLZFoRaoG8ZRosfXkWSJGRZJnHGu5j7tMN33DXiTbqekSQJfetwinYec68r3HKwpORf2+bKGTYLi8le8qfieLW3GX1M5Sf9EYT6rnSK8NKE+2rmcrlQibr69UJ1PwsfHx/3a72qRLItCLWkNKmWbQ5km53E+98iZ8mfhM6Zjj4qtI6jEy5kaBOpnGFThsxPVmBoG4mpczQqox5rfBKFmw/iKrIqjjX3bismtREaNUmSaNKkCUFBQdjtZcc4XC1kWSYvLw8vLy/RaFLHqvtZaLXaamnRLiWSbUGoZSq9lvAPZ+F72xCSHpnHsX7TCHnyTgIfuLWuQxP+pvYwYeoWi+1UimJ98cFTZcoCXkgT4IXHgE41EpPL5eLYsWMkJydjs9kwGo20aNGCsLCqzegpCJWlVqurNSFpaGRZpri4GIPBIJLtOlbfn4VItgWhjnhe05Xoje+T+voiXLaS1iFZluvlG8XVyNSrLZoA7wrPCKn2NhMw+eZy65VXhdVqZfXq1axfv57MzMwy25s3b87gwYPp0aOHeO0IgiDUQyLZFoQ6pDIZaPL8JPdy6uyFODNzCXlmIuoLZi8Uap8kSfiOH4YmyJf8P3eWWxKwlCE2HJ/bh6DxqZ4ZNktlZGTw3nvvkZqaesl9EhISSEhIYMeOHdx7773odLpL7isIgiDUPpFsC0I9ogn0IWPeUnJ/3kLo7Kl439inrkO6qkmShNew7nj074hl11GKdh7DkZWH7HShNhvQtwrD3Kc92pDqrz6Sm5vLnDlzyMrKuvzOwL59+/jggw+4//77r+qP9gVBEOobkWwLQj0S8O8b8Rrek6RH3+f0nf/F6/pehH/yOCqDaK2sSyqDDo8+7fHo077WrvnVV1+Vm2gHBwcTEBDA2bNnyctT1vc+ePAgf/75J9dee21thSkIgiBchki2BaGe0YUFErnwWfJ+2kjBur2oDLqSmtOyLKpcXCVSU1PZt2+fYl3Tpk2ZMGECzZs3R5IkXC4XO3bsYPHixe7JFwBWr17N0KFDyy2BlZ+fT3JyMlarFYPBQGhoKCaTqcbvRxAE4Womkm1BqIckScJ7ZD+8R/YDIPfHjaTHfUfYu//B2LZ5HUcn1LR169Yplg0GAzNnzsTT83yfcJVKRY8ePfD09OSdd95xr8/Ozmb//v107NgRKBl0e/ToUdasWcPevXtxuVzufdVqNV26dGHw4MFERUXV7E0JgiBcpUQzmSA0ANqmAbgKizk+6AGSX/hMMbuh0PgcPnxYsdy/f39Fon2h1q1bExERUe7xdrudTz/9lLfffpvdu3crEm0Ap9PJ9u3bef311/nqq69wOp3VeBeCIAgCiGRbEBoEc/dYWq2NI/ix/yNj/jKO9ZuGNT6prsMSakh+fr5iOSYmxv1/R0Yulj3HcWTklrsdoKCgAKfTyfz589m+fXuFrrl+/Xr+97//lXRZEgRBEKpNo0y2ly9fzrPPPsvo0aNp164dMTExLF26tK7DEoQqUem0BD9yB9Eb3sfcrwPasCAAXP9Qkk5omC6uJlJUVOT+v+10Cq6CImynU8rdXnr8ihUrOHjwYJlzq1QqfH19y63JvWPHDv78888y6wVBEITKa5R9tt99912SkpLw9fUlKCiIpCTRAig0HvqWYTR770EAig+d4uStTxHy7N34jrtGTGpSRU6nk9yCfJxWGx5entRVpfOAgACys7Pdy9u3b6dHjx4AyE6X4qvD4WDPnj2K4728vFi9erVincFgYOTIkfTt2xeDwUBhYSHr1q1j5cqViim3//jjDwYPHizKBwqCIFSTRpls//e//yUiIoLQ0FA++ugj5syZU9chCUKN0AT64DGgE4n3v0XOkj8JnTMdfVRoXYfVoMiyTEJCAmvWrGHXrl1YktLA5UJSq4nd1I2BAwfSpUsXNJrae7vs0aMHx48fdy/v27ePAwcO0K5duzKxL1++vEy3E7VaTXGxsl//jBkzFIMgzWYzI0aMIDQ0lHnz5rnX5+TksHfvXrp06VKdtyQIgnDVapTJdp8+YiIQ4eqgCfQh/MNZ+N42hKRH5nGs3zTCP35MTIZTQRaLhU8//ZQDBw6U2SbLMidOnODEiRMsW7aM++67j8jIyFqJq0ePHnz//feKhHnevHn069ePzuZgfE1mzp5NZ8uWP8p0FYmOjubs2bOKde3bt79ktZEOHTrQokULTp486V63Z88ekWwLgiBUk0aZbFdFXQwOKr2mGJhU9xrqs/AY0oVWG+aR9tYSjF1jkGUZZ54Fjbe5wd1LqZp+FhaLhTfffLP8bmayMobMzEzeeOMN/vOf/9CqVasaiedCer2e4cOH88MPP7jXOZ1O1q5dy5/pOeB0gVqFJtBHcZwkSdx0000sWbJE8X1r3769e9mRkYs9MQ1tWBCaAG/39vj4ePf+OTk5iuNr++dCRv77WnKDff3WlIb6HtUYiWdRf9Tls6hI902RbF8kNze3zn5wcnNzL7+TUCsa6rMwTL+ZQkA+e46U4Y/hfWNvQp6ZiORhxGKxKPrmNhQ18SxkWebjjz8mISGhzDan3Q4uF7hUuGw293qbzcbbb7/N448/jpeXV7XHdLFevXoRHx/Pzp07KxQfwG233UZgYCBWqxXbBdsKCgrIyckBwHowHrnIipSbh75jlHv7hfsXFRW5979Qbf1cWPMLkG12JJsWezlxCA33PaoxEs+i/qiLZ+Hr63vZfUSyfRFvb+9av6Ysy+Tm5uLt7S0GuNWxxvIsZE9PXP8ZQ8rLX5L78xZCZ0/F+8Y+DaoFpiafxcmTJ4mPj0en07nXmc1mhg8fTmu1F3pZxbHkM6w9c1TRJcPpdLJjxw5Gjx5drfFcyv33388PP/zAb7/9dr5lWqs937L9d/xGo5F//etfdOvWDYCQkBDS0tLc54mPj+f6668HoNBkQlZrkfRazD4+7u0Xfi+aNGmCz9/boPZ/Lgo9PZCtdkWMQonG8h7VGIhnUX/U92chku2L1OVDkiSpXr5IrkYN/VlIGg0BU0bhdWMfkma9z+k7/0vA9Ftp+uK/6zq0K1YTz2Lt2rWKc5rNZp588kkCAgIo3HYY2Wana+v29P3XrcydO5dDhw659920aRMjR45Eq9VWa0zlkSSJ0aNHM3DgQNavX8/mzZtJT8+Bv0Nv1qwZ/fv3p1evXhgMBvdxnTp1Yv/+/e7lgwcPcvz4caKjo5GQQJKQKPm+7tmzh1OnTim+H507dy73e15bPxcXxyiU1dDfoxoT8Szqj/r6LESyLQiNmC4siMhFz5H740Z0oQEAONJzUPt5Il2lpd2cTie7du1SrBs+fDgBAQFl9lWr1dx+++0899xz7nUFBQUcOXKE9u3b13ispfz9/Rk1ahQ333wzmev3UFxYiMnTE79+Hcvdv3v37nz33XeK+ttxcXHceOONdDEGYlRpyC8sZPVPP/Hrr78qjvXx8XFP9S4IgiBUnUi2BaGRcGTlYUtIxmUpRtJq0AR4o2vRFEmlwufmfkDJR22n/vUSstNJ2Lv/wdi2eR1HXfvy8/PL9F0v7X4B4MwpwH4uHW3TQKCkS0ZYWBiJiYnufbKysmon2ItIkoTRYMCgUiPpLt2yrtfrueaaa1ixYoV7nc1mY+nSpSxJy8bDYKSguAhtUNm+hsOHD0elapTznQmCINQJkWwLQgNXfPQMBev2Unz4lLuKRim1nycevdth7tcBlUGHJEk0eWESiQ/FcXzwDAKnjyZ41nhURn2dxF4XXC5XmXUXdsGwp2bhKrJiT80qdzuUtI7XdzfccANnzpxh3759ZbYVWAqhnIS6Z8+eDB48uDbCEwRBuGqI5gtBaKBkl4vs79eQ8cFyig+dKpNoAziz8slduZnUNxa5k0dzr7a0WhtH8KPjyXh/GfE3zGpQAyerymwuOy/k4cOHzy/8PTNj6VeLxcLp06cV+3t6etZYfNVFpVJx33330atXrwrtP2jQICZOnFgv+zsKgiA0ZFVq2U5KSiIlJYXs7GyMRiN+fn60aNECvb5uW8m+/fZbd7msY8eOuddt27YNgKFDhzJ06NA6i08QqkqWZXK+W0Ph5oOX35mSpDt93jKCHhyLxs8LlU5L8CN34DOqP9b4JCRJwplbgGx3umsvN1Z6vZ6oqChFXenffvuNzp07lztF+apVqxTdTlQqFdHR0bUSa1VpNBruvvtu+vXrx9q1a9m1axcXdqDRarV069aNQYMG1dqEPYIgCFebK062N2/ezNKlS9m6dSvp6ellT6jR0K5dO4YNG8Ytt9xSofqD1W3nzp0sW7ZMsW7Xrl3uQVGhoaEi2RYatKI9x8tNtCW9Fm3TAFz5FhwZynqjrnwLWV/9RuADY9ytl/qWYehbhgGQ8upX5Hy3hiYv3YPvuGsadQvnwIEDFcn2mTNnmDdvHrfffrv7TdFiLWbjjz/y888/K47t3LlznZQIrYpWrVrRqlUrLBYLJ3/bQHGhBaOHmajr+pfpIiMIgiBUL0mu4OfHP//8M++++y5nzpxBlmWaNm1K27Zt8ff3x9vbG6vVSm5uLgkJCRw6dAibzYZOp2PkyJHMmDGDoKCgmr6XBkuWZXJycvDx8WnUCU5D0FCeRdrbS7CdOV9HWdKo8LqhD+be7VDptciyjO10CjnfrcGelKE4NujBsegiQsqc05Gew7mnPybn27/wGNCR0DnT0UeF1vi9XEpNPguHw8EzzzxT7kBHv3QLOlQk5Wahbtm0zPbHHnuMFi1aVGs8V6K0NKGk02Lu0bpWjq/tn4uq3mNj1lDeo64G4lnUH/X9WVSoZfu2225j3759tG3blscff5wRI0b8Y/LscDjYvn07P/74I7/88gsrV67k9ddfZ9iwYdUWuCBcrWxnUxWJNoDPrYMw92rrXpYkCX1kEwLvH03Kq1/hyre4txVs2IdfOcm2JtCH8A9n4XvbEJIemcexgdOJ3fW/citWNHQajYbJkyczZ86cMpVJzmVlIjsdSGoNF3cqGTlyZJ0m2oIgCELDU6FkW6/X88UXX9CzZ8+KnVSjoXfv3vTu3Zsnn3ySzz77jOTk5CoFKgiOrDwcaTnIDgcqox5taCAqg+7yBzYyxUfOKJbVPh6YLtH6pzLq8ejfgbyft5w//ujZcvct5XlNV6I3vk/+X7vQBvkiO50UHzyFsUNU1YOvR5o3b85//vMf3n//fSwWy2X3v+mmm9yzMDZkst2By2IV5f0EQRBqSYWS7QULFlT6Ap6ensyYMaPSxwtXN9nlomjPCQo37sd68pxim6TTYOoSjblfR/eELVcDV0GRYlkfFYp0QeLkyMjFlpiGLiwITYA3hthwRbLtKrAgy/I/ftSmMhnwvqEPADlL13F2ypv4T7qekGcmovYqW82joWrVqhXPPfccq1evZsOGDRQWFiq2q1QqOnfuzNChQ+t9i3ZRURE7duzg3LlzWK1WjEYjkZGRdOrUCVWxHcvWQxRuPUTxoVPILheSSkXBuj2Ye7fD3D0WlUn03RYEQagJos62UG858y1kfrYSW0JKudtlm4PCLSUJhNfwHnhe26Ne9tWqbpJa2SIp25TdIGynU3AVWbGdTkET4I2rWLldUquu6PvkM3oAzsxcUl7+ktyftxA6eyreN/ap/A3UMz4+PowePZqbbrqJw4cPk7DoFxxFxXh5e9Pj4bvr/WDInJwcVqxYwdatW7HZbMqNskyrfBU9bR6Eh4aiVivf8h2p2eT+sJ68X7bgM6q/oiuSIAiCUD1Esi3USy5LMenzluJIzb78zjLk/boN2ebA+6a+NR9cHVP7Kms8Fx89g6vI6p6YRv67PnTp16K9x5XH+1xZjWhJrSZgyii8buxD0qz3OX3nf2n+7Ut4XtO1srdQL2m1Wjp06EDoriRcRcWojIZ6n2ifOXOGuLg48vLyyt3eIqmI0NRiEskkKz2Ddu3alemHDiBb7WQvWY2roAjPod3K2UMQBEGorAol20888USlTi5JEq+88kqljhWubtnfrC430ZZ0GlQeRpxZ+WW25a/eha55E4zt6vfH/VVl7BBFzg/rwVVSSEi2Ocj9aSM+YweXabG2JaZj2XJIeXznVpW6ri4siMhFz1Gwdg8eAzsBkL9mNx79OyCVU5+6IZEdTor2HMey5zj5f+5CtttRmY1oQwMw92yL2stU1yGWkZ6dRdySTygoKCh3e0iGlfDUYveyxVLIgQP7ads0ArVUfn/t3JWb0QT7YmzfuPrnC4Ig1KUKJdsX16wuJUlSuTPPla4XybZQGY70HIr2xivWqb3NeI/sh7FDFJJGjTO3gIK1e8hfs1sxc2L+6p2NPtlWe3tgbN9C8T0q3HwQR2YenoM6I9scOHMKsMYnYT+X4W7hBkACc592lb62JEl4DuoMgDU+iYRbn8bUJZrQd2ZgbNu80uetK7IsU7h+L3m/b8dVWJKYOnMLwOnEZbGS9/MW8n7diqlrDD6j+terfs3f/LqCAosy0VapVLRp04ZA/wCMC9diQdkHPUHvoChUy/XXDseZb8GVV0jR/pOKffJ+3oKhXYurokuWIAhCbahQsv3nn38qll0uFy+//DJ79+7lzjvvpFu3bvj7+5OZmcn27dtZsGABnTp14sknn6yRoIXGrWDjfsWypNcSOGMMGj8v9zq1twfeI/uh8vYg94f17vW2hBRsienowgJrLd664Dm0O8UHEhSJtPXYWazHzuJIy3YPgNNcVLbP3LsdmivsRnIp+qhQola+TuKD73F88AwCp48meNZ4d3eW+k6WZXK+/evys3C6ZCzbj2A/m0bA1FvqrJVblmVOnDhBwu4dpKSksG7XNnzDm2IylcTTqlUrJk2ahJ+fH0X748mMzqCgaQFHjhymqKiII+EmjhvsWHavRxfij5ePNzHXDcAnIoTcFZvc17GnZGE7ea5Oa6wLgiA0JhVKtkNDlW+6H330Efv27WP58uWKetstWrSge/fu3HrrrYwaNYpff/2Ve++9t3ojFhq94oMJimVz73aKRPtCHv3aU7B6J86886Xbig8lNPpkWxcWiO8dQ8la+LuiZf+f6KNC8bllQLXGYe7VllZr55L+3rekzfkaSacl5PF/Ves1akrer1srPN09lCShmZ/8ROCMMUia2us2Y7PZWLduHWvXriUtLQ17WjYJZ89wLjMdVdo5vL29iYqKYtq0ae7E27KrpJ++h4cHrVu3ZsWOjaw8k0BhYSGuYhufLF9CSGAw2h3riAgP59piiWC9h7s127LrmEi2BUEQqkmlCq1+9913/zixTXBwMCNGjODbb7+tUnDC1cmZr6x5bGgT6f6/IyMXy57j7qnIJbUafWyE8vg85UfnjZWpawz+d19foZZkU9cYAu4bWSNJokqvJXjWeFqtf5/A+0cDkP/nzjLTxdcnjux88lftuGitjCbEF13zJmgjm6AJ9AHVRX3gz6ZRuKXiCXpVZWZm8sorr/Dtt9+SlnZ+IqO8wvPdR3Jzc0lLS2PBggXuCXqcWSXfe7vdxvHjJzjkyleUNcy/4P+nz5xh1dkjHDiwH4fD8ffx5Q+4FARBEK5cpaqRpKSkoNP982Qier2elJTyS7YJwhW5YFzAxWXtAHC5lPtfRX1Nje2j0LdqhmXHEQo37seecn76cUmrwdy7Lea+HWqlDrmhVRgALpudxIfew2Wx0vS/9+Jz+5B61/+3cNN+9wBTXC4cGTloQvxwpGRjS0gGpxPUajSBPjiyclCZjaj0Je95BRv2Ye7bvsbvKS8vj7feeouMjIwy2xxOp2LZy8uLXbt24XA4uHfseGyJ6dgLLew/epjCwkK0Hiawluwr/X38hfHbNRI5OTkcPHiA9u07IDuU5xcEQRAqr1It2yEhIaxatQqr1Vru9qKiIv744w9CQspOCS0Il3PxpCnFFwzgurisnexwlp1RsRFNulIRKoMOj34dCH7s/2j633vxu2sEfneNwH/KzfjeNqTWJ/xR6bS0+vNdPId04ey0OSSMfqrMhER1SZZlCrceBsBVZMWy9wTOgiJwlbOz0wWSiqI9x3Fk5AAltantZ1JrPM6FCxeWSbT1VidRKjOdjAFEYEQvlyTMpe/F+/bt44/vl4NKIv7ocXdrtk++4/w5zCaahDTBp2mwe51PfkmLeF5eHqfPnEZlNtbovQmCIFxNKpVsjxkzhrNnz3LHHXewatUqsrNLSrRlZ2ezatUqxo8fT1JSEmPHjq3WYIWrw8XTghduPYg9rfx62/l/7Sozo+LVXLZMZTag9vFA7WFUzCpZ2zSBPoR/9CjNv30Ja0Iy5x6bX+PXlGWZtLQ0jh49ypEjRzh37ly51ZJcBUW48i24im0UHziJXGxDE+R3yfOqfTyQNBqsxxNxpJe8Du3JmTVyD/n5+Zw4cYINGzawfv16XC4XyDKB2Tb6n4P7VBGMNzTnDlNz7jS24H51C66xeuNMTHff65qtm3D4e5KWWZKou1wygVlW/DVG2rVrR88+vbnr/vt44713uO+++whWGfDPPT/xUfK5ZFSRweXGJwiCIFy5SnUjueeeezh16hRLly7lgQceAEpKTrn+/jhflmVGjx7NPffcU32RClcNc5925K/e6R74J9udpL/3HV7X93K3Pjpy8sn+ZnWZAW76qFC0IZdOnITa5XlNV2I2znf3oy/ceghUKszdY6vtGlarla1bt7J27VoSExMV2wICAhgwYAD9+vXDbC75xEO2O0CWsR497e4uoTKe7xYn6bQgq92fnkiShMqgw2mzY40/h8psxGVVzspZFbIsc+DAAdasWcPBgweRZZmEhATOnj2LSaXlZlUIUVovevfujU6nw5GWTaCvP5l5OXgYjXSVgmiRnkXq3kRyOoaRmZvDinNH8MaFWi5prZZcMhOMzYnXepIL9OrVC0mSaGPww2Rszm7Of/JglZ0cIp/GPz2UIAhC7ahUsq1SqXjllVcYNWoUy5Yt4+jRoxQUFODh4UFsbCyjRo2iR48e1R2rcJXQ+Hlh6hKDZedR9zpXYTE5367BkZ4DGhXYnWXK2gFi9rt6SGU2oDKX1KfO+OhHcn9Yj/+/byDk6YlVLqOXlJTEvHnzyMwsv6U5IyODpUuX8ttvvzF58mRiY2NR6XU4cvJxWc53g3MVFmOIbob3TX2xnk3DkZKJZNAjW21Ydh07v68sY0/ORKXXVinuUhaLhY8++ojDhw8r1mdnZ6ORYXieCQ+XhQKzRGpaKs3CSvrF+3p5odfpsVMyPkaj1RKcmEdx/hGSArT8lplBBySCM/JwOBwYjEa8XCo6H8vHFBqM+qdtpCRn4szKxwM1vr6+7k8okwP0FB8/Rt9BA6vlHgVBEK52VZquvUePHiKpFmqEz9jBONKysZ1NU26QZWSrvdwuEl7X98IQG15LEQqVEf7RLDK7x5Ly8pfkrdxM09lT8b6xT6XOlZSUxBtvvEFRUdFl9y0sLOS9997jgQceIDY2FtdFFW9c+RYC/zO2pAW7oAi12YCk02Lu0Rp7SiYWx/k+z46MnJJKJVVktVp55513OH36dJltNpuNPsUeBLhK3qJ1Oj2nEhJwOZ001XsiuWQigkI4kZmCJIFep8dhtxOR6+Jkfgr7HDmc0hsZ5QrEFzV6XUnFGklS0corgIJ1e0sGfRpKWvR9fHzIzs4m36QhoakRTX7ZGVoFQRCEyqlUp865c+eyffv2f9xn586dzJ07t1JBCYJKryVgys0YYppVYGcJ71H98RrWveYDE6pEUqsJmDKK6M0fYOgQxbknPsRVVP5A639it9t5//33y020tVotBkPZmR6dTicffvgheVnZcFEJREmrpnDTgTJ9vK0JyTgvKmGoMhlKBlRW0aJFi8pNtFUqFT4aA63s50s6yrKMTaPiN1UmZ9sE4jG4M5Fjh9Pk1iG4JJDl86M7OzrMSDLYJJmfTXlkqpzIsgtJkoiNjcGEGtnuwFVw/g8Op9NFrlnD3lYeuNQSanXt1REXBEFo7CrVsl2aRHfvfunkZufOncybN4/p06dXLjLhqqcyGfC/72ash09TsGk/xYdOXbRdj7lnG8x92p8vAyg0CLqwICIXPYcjLRuVUY/tbCp5v27Df9L1SBVI9Hbs2FGmUkd4eDijRo2iTZs2ACQkJPDjjz8qumgUFRWx4Y/VdAj0xX4mzV1WUu3jRe5PGynctB/JZEBSSdiTM5FtJS3aKg+jeyCuNsQfVxVruWdmZrJ161bFOk9PT26++WZ69OjB4hnPod56jMLCQiwWC4XFRcR3C6bIoObP/TtpPbgpKo2aQU9MZUuwP9tePD8A1celJlLnQbJsx6JysdycQ38PM9P798Zb1uAoHWz8d+lDTbAvu/JOctDfE/nvuuL+/v5Vuj9BEAThvCp1I/kndrsdVR1WQxAaB0mSMLSJxNAmEmdBEfmrd+IqsqL2MOE1vEetzuQnVC9JktAGlwxmzV+1g3OPzSfnm9WEvjMDY9vm/3jsmjVrFMthYWE8+uijaLXn+1K3aNGC//znP8ydO5cDBw6412/atIkOmgh0kSElNbWB0tG4jsw8HEfPIDucSBo1mgAfxXXUPh6oA7yrXMt9/fr1ilZ0rVbLrFmzCA4uqQISq/UmQaPG29sLtVrNtuI0covy8DX4ciothaSsDJqFlvTfTvHVog/2Q5WWTUFBIQ67nSayin3WLDxcXjRv3hxrVDgFt/WmZUAYeX/uRC6yojIb8RzajY0nD3EgwUJJBe4S3bqJsQ+CIAjVpdLJ9j9N6GCz2di5c6doHRGqldrDiDbEH9lmR9JpRaLdiPjffQOG1pEkPvgexwfPIHD6aIJnjcfLy6vMvrm5uZw6dUqx7sYbb1Qk2qUkSeKWW25RJNtZRQXkywV4hfgjO5zYz6bhyM5DG1zyfqXyMOEqLHLXmnbZbLgKilB5mdFHN0OSpCrXct+zZ49iuW/fvu5EGyDUx5/TKjUulxOz2USKBPEHDtC0aVN8rS52nTpGsUpm8dy5rFixgqZpGbSzGdDptJj0Bro2bcaBbBmHRiItLY3MzEyys7O55ZZb6BbclCDPpiTnZrF89c9s27ZNEUtwcDAxMTFVuj9BEAThvAon29dcc41i+YsvvmDp0qVl9nO5XGRnZ2O1WkWdbUEQKszcqy2t1s4l/b1vSZ+3DL//uxZ9VGiZ/XJycsqs69ixo/v/joxcbIlp6MKC0AR4ExYWhp+fH1lZJbNrulQSxcE+eOW70IUFoTIZSgY9+nsjaTSoDDr3wEGQcaRmow0LRBsaiKRSIem16P+eLbOycnOV/cAvjl/Oyic0OISzyUlIkoSPlxdyXiFJSUmcySskOSudqBMHOSsVk5ycTCilyb+Eh8lEliTRLKQJCRkls/g6nU6OHDnCN998wxqtqWTWVZUKbTkVfUaOHFnvZvwUBEFoyCqcbF/4kackSciyXO6EERqNhpYtW9KrVy+mTZtWPVEKgnBVUOm1BM8aT8B9o1B7mXBZikl5dQFB/7ntsv3yHek5FO2Lx7L7GLLVjtrXA++R/dGFBZZJHuUOzWFjPFBSalLt64mk06Bt4o/awwguGZfdgTMjB60rUFH9xtQ1BpVRT1WU995ZynY6BUmrIczbjyK7jYyMdEKLVez4e7ukViOpVKRa8kjOy0SSIdxe8seBl5cXepUamwaC/QOw6lScO3e+hnZ8fDy60Ah8zB7lXvuGG24QXUgEQRCqWYWT7dWrV7v/Hxsby1133SUGPwqCUCNK628XHzlD9sI/yF78J03/ey8+tw/B21uZdHvn2znw/Af45ZdMUONIy0Z2uZBUKqzHkyj2NSKdSAbf8xPXeHZoie5Mvru0pCRJYHdiP5OGQ6NC0mhwFdtKtl2QaEsaFR4DO1X5/ry9vRWVVPbv3+8e2Ck7XeijQrFk5BIbG8vJkzpS96TRRK/B16XB26knSPYmPTkftU6HyaXCCzXePt5ERjYnQGdk4OhBpOpcbMk4zYoVKzh9+rQ7wT+TnIRPS2U3EY1Gw6233sqQIUOqfG+CIAiCUqX6bP/555/l9qUUBEGoLrIso24bQfSWD0l++mPOTptD9pI/CZ0znYiICE6fPk1YajFRiRZOn9uOT8dO5QzKlonfsIN2WQUkBhk4EWbE08uLFi1awMQQ0t/9Fmeesua27HAhO2xlA5LAd/ywcrteXKmOHTuSkpLiXl6/fj1DhgwhMDAQAENsBJYdR0oGCKs1tNR586jFRKpcTJbTiqlYQ1OrkWEOA74qPVYPHc06tCMwJBhkGe/IUHz1OrrefiPh4eF8//33JCcnk5qaSn5uPgUWCx4eHvj7+9O/f3/69u0r3tMFQRBqSKWS7dDQsv0oAc6ePcvmzZvR6/UMGzYMk6lqs8MJgnB1s1gs+AT6EP7Ro/jeNoTER+ZhjU9i4MCB/DHnY1omliTKBQUF7Nu3l8jISHfv5QJLIYkHksjOLumrHZZWjFMFrW+4AY1GA35eBM4YQ+YnK7CnZP1jHJJei9/4YRg7RFXLfQ0YMIDff//d3dpst9t5/fXXueWWW2iDBxqTHmfLJiRu2IXteCIeLkCjJQItLbRegIRDY3APEvZyafBIzcfl54dHn/aKbjM33HADGzduRK/XExERQVFyBr3bdWTMdTcSOKCL6J8tCIJQwyqVbH/00Ud89913fPvtt+6PdLdu3cqUKVMoLi4GYP78+SxZsqTMR76CIAiV4Tm0GzFbP0Kl19I5LYsze1JxGXWojCXdQ/Lz89l16AA5WkACjzwrRq1OcY7maXb6RrVxL2v8vQl6eBxFe45TsHE/tlMpiv3V3mbMfdph7tWuylPLXyggIIBu3bopJgfLy8vjiy++QM7Mx6zX48zK4/oEJwaXsn+3h8lMQWHBhZX6MBiMuCzFyFY7Kh8zxScS0YWWtJKrVCq6du3KqlWrSsotajTY7XbMRpNItAVBEGpBpZLt1atXExwcrEikX3/9dVwuFw888AAZGRksWrSIL7/8kgceeKDaghUE4eqm0peU97Ou30dLTBw+cw6njxlNgA9nQk2cbmLAmpFTUm3DX0eEZKLVWcvfealE69atUe1JgHat3OeUNGpM3WIxdYvFkZWHMzsf2elC7WFEE+Kn6LNdnf71r3+RnJxMYmKiYr3D6SC3wEa3NCfZXlp88+0YrCUzRJo9PDD7+pDmLAKri9JhmpJKhbZZEGpPIwV/7UYf1VTRWm80GhXXcLpcCIIgCLWjUr9Fzp49S8uWLd3LycnJHDx4kPHjxzNt2jSeffZZevfuze+//15tgQqCIADILhfF++JpMnIAHbt2Rp1XRMKpBI668nCpJNTeHqBSgSRxLsjA6SZG1Go17dq1xc/Pj6K9x3EVFpd7bo2fF/qoUAzRzdA2DaixRBvAYDAwc+ZMoqOjy2zzKnbhXewCCbI9tWT66NC3iSRkcHd0ESEUexnI8FCR4q8j21NLbrAZXVgQIGGNT0J2usB5PqE+evSo4vxmo+jiJwiCUFsq1bKdl5enGEyzc+dOJElSjGRv06YNX3/9ddUjFARBuIAzM69kUKOkwr9za3pHNUNz5ADHclI5asnBarUiyzIaGVp4Gmg34WbabTiDVl3ydic7XNjOpGJoHVHHdwJms5mHHnqIvXv3snbtWvfU8qG5JYmySqUmKDiI0OgoWr46DZwu8lbtwLlew9YDu7CF+mEudtLjaCZhVit6vR7ZaseelI46puT+4uPjOXbsmOK60eGRtXqfgiAIV7NKJdsBAQEkJSW5lzdu3IhOp1NMzGC1WkV/QEEQqp3LcmGrtExmcSH7eocSdUxF13QL0rksJJWEHORDfpbMxrXr8C32IcLT3/2e5Cqy1k3w5VCpVHTu3JnOnTuTnZ1Nwh+bkJduQltsxzu8KWq1Gq9re6DSlXSh0Qb70W1Qf1ae2ItGJVFg0pBpVrN//z5atWqFHnBm5eNyudi1axeLFi1SXM/TZKZzTJtyIhEEQRBqQqWS7fbt2/Pnn3+yZs0a9Ho9v/76Kz169ECnOz8YKTExkaCgoGoLVBAEAQBN6duWzPFjxymMT6SNWYNKAllW4ZDVODMKUBU68LO4kJKLyLGcobBpIK3btUWlUrmreNQ3vr6+6CJbkGHej6y2oVaXxKkLD1Hs5+flTZfW7diXUdLfO8+sxjeliH379qG12CnOTWTb2W1Yt/qVuUb/rj1KqrEIgiAItaJSHRLvu+8+nE4nU6dOZdKkSVitVu677z739oKCArZu3apo6RYEQagOGn8vUEkknEzAduwsHkVOPItKJrSRJNAG+aJrFoTscmE7nYI2NRcPixPVqVSOHT4MyGgCfer0Hi5HUivfmp25BWW2jb3uBneDhsF2vn92kc1GUl4WuZbCMueNjo5mWK9+NRGyIAiCcAmVSrbbtm3LN998w8SJE5k4cSKLFi1STPF75MgR+vTpw4033lhtgQqCIACoDDps4QEUHD6F/u8k09PiQONw4eHhSWRkJFFtYwnqEIvOzxtvW0nXEa1DxnUyhSytjCakbItvfaL29VQsF2477P6/LiIElacJv9ZRzJw5k2aBwQTk2JX7l9Nw37p1a+6//37Rqi0IglDLKv2uGxsbS2xsbLnbunXrpki+BUEQqtOB7HN4WZ3uZUmGVnjg37EjnkO6IGk1FGzYR1YBZKWlI8syst2BxuLg8JkEOtTz8ST62HDsienuZVtCMgXr9+LRvyOaAG80ASVlV32cTia36MHJiGKSk5MpLi5GliHVKMPf5bmbNWvGkCFD6NWrFyqVigKHE1eRtZzZNgVBEISaIJo4BEFoUBwOB2e27aWVTuVu2TZ7euDbrQ2SSkXBmj3ufb27xmLfaicvMxsAm93OuV83kvDJD0T+++Z6O4hb36IphaaDinU5S9dRtDceU882aPw8sZ1No3DjfhwZuYSGNCVIZaAwPpFiZKLyNKh0Wnw92hB27TAMrZpR+NduCrccpPjQKWSXC0mlonD9Xky92mLuHovKZKijuy0hyzLWI2ewJpyjaP9JkEAT4IOxXfM6j00QBKEqKpRsf/rpp/zf//0fBkPl3vD27dtHdnY2AwcOrNTxgiAIpdKSzuGbXkS2pwb/PDtau4xXy3DUnmVrR6sMenxatyB/4y6cBi05AXr8MyX2zJyDvHIb4R8/5m4lrk8ktRqPfh0o2nNcsd4an4Q1/nwlKFmWsZ/LwHrkDC5LEZJLxqTRYnZIJXW2Nxwkcd0BkGUMbSLR+Cvv1Z6SRe4P68n7ZQs+o/pj7tW2Vu7vQrLDScHG/RSu34sjMw8AR1q2+w8C65HTmLrE4HltdzR+Xpc5myAIQv1Toc8R4+LiuOaaa5g3bx5nz56t0IntdjurVq1i8uTJ3H777Zw4caJKgQqCIAAUpWSikmVklUSmt5ZiowZTs+BL7q8L9MHhaSDDR4us06Bt4o//jFtRmQ2ovc1ASdJa3xhaR+B1XY9/3Mcan0TRrmM48wuRnTJqbw/FRDyugiIcGTk4MnOxbD2EPTmj3PPIVjvZS1aT/+fOar2Hy3EVWcn4cDm5P6x3J9plYrM7Kdx6iLQ3v1b8oSEIgtBQVKhl+9dff+Wtt95i7ty5zJ07l9atW9OpUyfatGlDQEAAXl5eWK1WcnJyOH36NPv27WPnzp3k5eXRpEkT3njjDTFYUhCEaqGTzieTsiSR4anB+NCtaA8nUrQ3vqRyhyyj8jRhaBOJvkcsZ3Zvw1B4vmKHd7uWRP635D3JsvcEif95l9A37sfcvfxxKHXFa3hP1D6e5P64AZdFWRvcfi4D6+FTyE4XklqN2suMpNPg/LuGuMvuAOv5e3bZ7BTtOoa+dSQqk57y5K7YhCbYF2O7FjV3U3+THU4y/7cS64mKJdCuIisZH/9E4PRb0YUF1nB0giAI1adCyXZISAivv/4606ZN4+uvv2b58uUcOnSo3P6OsiyjUqno1q0b48aNY9iwYWi12moPXBCEq1NAaBNUKjUuV8kASbUss3n9Bm66azzeN/Qps/+GP/9CZ7Ep1gVHhLn/r9JqkFQS8dc9jP89NxLy1F2overPdObmnm0wdYnGsucElm2HsKdm4yq2UXz0DJJGg9pLD1oNkiSh9vNC7e+FZNZTvP8UOJ3Idsf5k6lUyE4XfneNwJVvwZlXSPGBBPdmi6WQlA+/pWB0DwxGI2FhYYSFhZUNqhoUrN9bbqKtDfFDE+iDM68Ae5KyJV622sle/AdBj9xRb/vbC4IgXOyKBkhGRkby+OOP89hjj3H06FF27dpFamoq2dnZGAwG/Pz8iI6Oplu3borp3AVBEKqLoUkAgc2aknr6fJe2E9/8xv4u7Wnfvr1i39OnT7P5w8WEXdBLxNvXl8C20efP1yaSln+8TebHP5Hy8pfkrdhExJdPY+oaU+P3UlGSVoO5e6y75T1/3V4K1+0Bw/mJxIxdYgh+ZBz5a/dgSziHXGBFHeBN8Z7jOPMtqD3NqEx6HOcycFmK0EWEYO7Rmtw/thP/+XLOnTtHfn4+ALszj5LrWdJIEhkZycCBA4mJqb7vh+xyUbBhn2KdysOI37+uRR/dDMv2I8g2Oy6bA9uJRIoPn3bvZz+XiS0+CX3LmvkjQBAEobpVqhqJJEn/WPpPEAShpkgqFZE3DiR13lfudSGpFn545k1+79eezl26oNFoOLB/P8lrdxCToJzcpemArmVariW1moApo/C6sQ8pL36OLrykD7jscNbL2SZzl61TLKt9PGj6yr1ofDwpWLfXXTZQ6++N1K01lk373V1HZKeTgnV78Rt/LUVFRXx2YANep05gvKCUYnCWzZ1snzp1ioSEBJo1a8bMmTMxm81Vjt965AzOrHzFOr9/XYshJlx5Xx5G/CfdQOprXyn6dBdsPCCSbUEQGgxRaFUQhAYnfOQgmoSGKta1TLTgt3Q7O9/8jM2zP0a3eD1tThagvmDwo5+fP7HjbrjkeXVhQYR/9CiaQB8cmbkc7XEvGZ/8hOx0XvKYumA7laxYNvfrgMbn/EQ4Lkux+/8abzP6WGUSa09Mx+6wExcXx+EjR0jz1Sm2XzgjZan4+Hjee+89bDZbmW1XynrynGJZ29QffXSzcveVNGrM/Too1tlOioGSgiA0HCLZFgShwdH4e9P5gf8jMFA5UM5gcxGWVkx4ajHmYmWC7O3tTZeJozG0qliLqKTV4DGoM+cenU/8iFkUHUq4/EG1xGVVJrz6C+9JXdIvG9X5Ps3aZkHnt0slfZ9/2biW+Ph4AOya8/tqNFoC/fzx9FTOYgmQkJDA8uXLqx5/kXKwpy6yyT/2wdZFhvzj8YIgCPWZSLYFoZFwOp2cO3eOE2dOcTo5iQJL4eUPasC8rulG9+n/onnz5v84CFulUhMWFkaPiWMIGDe0wudXe5kJe+sBon5+A2deIccHzSDz85+rI/Qqk3TK+7Vf0NKtaxqA2sOI+oKJYGzHE88fq9EgG3VsOn5+0hyffDtarZbY2Nb06tWLa268ntdff53JkyeXGX+zfv16iouLqYqLu+Y485SvVUmtUnx15VkuOl7MxyYIQsMh3rEEoYHLyspi3bp1bNiwgfz8fOxp2eAqKQfX5eAABg4cSNu2bRtd9QZJkvC+oQ8dmwUT8esWkvceJiMjA+vfrb46nRZfXz+atm2F77AemHpV7ntg7tWWVmvnkv7etxg7tgRKumnU5ayGuvBgHClZ7uX8tXsJmDYatacJY8eWmOKTKNpdMiGOs8CC9UQSah8PJI0aSaMmM8iEzV7SvcZscRCQ66Bd5854eHgAoI8OQ6VS0bVrV4KDg3nppZfc17JarWzZsoVBgwZVOn5NoI9i2Xrk9N+DOEv60usiQrAlpaMLLfnkwrLjyEXH17+JiARBEC5FJNuC0ICtW7eOJUuW4HA4ymyTZZl9+/axb98+YmNjmTx5crUMbqtvjB2iMLRvgf+ZVIr2nsCRUwAyqD2NGNo0Rx/TrMp/aKj0WoJnjQdKBk3G3/AohtYRNHnpnjKzMtYGn5H9sGw77F52ZuWR/Pz/CJo5Dl1oAH7jhpJ89AzO7Hwsu44hO504cwpQe5mQjHoOh2jhjIxfnp3o0xb8/Pzcibak12Lqcr7ySFhYGB07dmTbtm3udQcPHqxSsm3s2JLc5euRHSV9w2WHi5xv/8LvruuQ1Go0Ad7umT0te0+UTN9+AVP31pW+tiAIQm0TybYgNFCrVq3i22+/rdC+R44c4a233uKRRx7BaDTWcGS1T5IkdBEh6CJCLr9zVakk/CfdQPJzn5L3+3aa/vdefG4fUqufHHgM7IQmxE/Rul24cT9nj53F2KkVuvBgrCcSS6Zxt9mBkiokjux8tEY9hv1n6Xk2F+PfAyF9fHzc5zH3aouroIjiI6fRhQWhCfCmdevWimQ7L6/82R4rqqQFvhWWnUfd64r2nyR19iI8+ndAFxmCM7cQy/bDFO1TJtqSXoupm6iEJQhCwyH6bAtCA3T8+PFLJtoGXfmzAyYmJrJgwYKaDOuqIKlU+E0YTvSWD/Ec3Jmz0+Zw5p7ZtRuDVkPAfTeX6bvtSM8h/4/tZH66AntyVslAyQuP02jQR4XimV7oTrQB9wRBumZBeI3ohe10Cq6CImynUwDKVCBRq6teDtFreA8kfdn4c5auI+2tb8j8dGWZRBvA69oeqAy6MusFQRDqqyq1bKenp/P777+TkJBAUVERL7/8MlDShzQxMZHo6GgMhrrr1yg0LrIsY7PbsBUVYVR71HU4deqXX34ps65Pnz5ce+21eJ3NobigkB3HD/PH8b3uiUoAdu7cSWpqKsHBwbUZbqOkDfIl/OPH8L39Gnd1DHtOAXaHHafswuTrjboGB/J5XdcT+7kMsr78DfmC6iSyLCPLcsmMkr6eOHPyS+qFazUYO0Sh8ffGkGEgLy/XfUx6egZR/Xvg/+8bUem17iS99OvOnTsV1/bz86ty/JpAH/wn3UDmJz8h2ytWWtHcpx0egztX+dqCIAi1qdK/CRYuXMjs2bPdLR6SJLmT7czMTG6//XZeeOEFbrvttuqJVLhqlQ4A3LJlC2lHT7oH/8X06sqAAQPo2rXrP1ajaGzS09M5ePCgYt3111/PzTffDEDh2Rz0Oh39Onej660jePHFF7Faz5dKW7duHWPHjq3VmBszz6HdSD58gs2Pv0Ha4t+RC4vRBPuhMunRRobQ/JZr6DD6OrSG8j9xqCxJKunOogn2Je2Tn8hPSMKSX4jTeb7/vlarxejliUeAL/oWoaiNJTEEBgaQlpYKgMWg5rifi4AuTQjyKNvFaOvWrZw6dUqxrnv37tVyD4boZgROv5WshX/gSMu+5H6SToPXtT3wGNKl0Q30FQSh8atUsr169Wpeeukl2rVrx/3338+6dev4+uuv3dtbtWpFTEwMq1atEsm2UGkul4ulS5eyatUq5AsmJoGS1rv4+Hji4+P5/vvvufvuu2nTpk0dRVq79u7dq1g2mUyMGDGi3H0DAgIYOHAgv//+u3vd7t27RbJdTezFVn579HXyN5VMPa72NOOwFGM7k4ra1wPZ4eLYW19x/JOldH12Kq0G9ar2GLZo8vktMIcgBzQ/p8JcpEYCZAlyzSpOhrrIDXMy7s4BtPdtiv1cBp7FVlYvyuSco5BcswYkiS8XfkX8qQQGDRqEl8NBcmoKGw/sZnuysr64r68v7du3r7b4deHBBD/+f1iPnKFwywGsJ5NxWYqRtBo0gT6Yu8di6hZbp9VfBEEQqqJSyfann35K06ZN+fLLLzGZTGVa2QCio6PZsWNHlQMUrk4ul4tPPvmkzMfX5cnLyyMuLo57772XLl261EJ0dSs7W9kC2Lp1a3S6S/dh7dixoyLZzsnJcXczECrPXmxl+cTHsZ84X8NaZdCiDQ/BmZOPIyMXV0ERusgmkGdhx2NvY39uCm2uH1zmXLLLRfGBBAq3H6Zo93FcVhsqkxHbmRTMvdujCw0oe4ws8//s3WdgHNW58PH/zFZtkVa92bLcLVvuvWEbjGmmhh4IXCBAqIG0S256500HAgFCqCFUY4wxYAwuuPfe1azed6XtZeb9sPbKY8kFWc3W+X2xZ/bM7NkdrfTsmec85+2332b58uUgQ3G2heKsOHQKyIpKRCehHFvYJhTgXy+9xC233BKrIjLJHuHVV1/VnG/16tWsXr06Vj4SWcaQlqh53iuuuAJZ7tjpPpIkYc7rhzmvX4eeVxAEoSdoV7C9b98+rr76aiwWy0nbpKenU19f3+6OCb3bRx99dEaB9jGKovDSSy+RlpZGnz5ntkLg+eLEwEfSyai0LAhy4uMn3iUQ2mfp//5RE2gfI0mgT7Qj2yyoXj+SLKGqQCDEjl+/QPKgfqQPGRBr7916ENei1URc0YVdIo3NqIqC6g3gWbMbz5rdmAZm47hxjibwXblyZTTQPuHJIzqI6Nr+IvXWW2+Rnp5OXl4eU6dOpaysjC+++AIAUyBCRn0QuzcMriARSaXZrKM2IYLfGP0ZmjNnDjNmzDibt00QBKHXaVewraoq+tNM/GloaDjlaJsgnIzH49GMxEI0YJw5cyajLanEm+I4UlvN6srDFBa2VCsIh8N8/PHH3HfffV3d5S514op++/fvJxwOxz6TJy4IsmvXLk37hIQEMap9lmoOFdO0eqd2p07GMWcCw66Ziz09hcKvNlH07lKUyvrYSLc+1cHGZ97gyqd+BkDT55toWrL+tM8XKCin9m/vknL/1dEFbcJhFi9e3Krd5MmTmTFjBmlpaRw5coQVK1Zo7jyqqsqiRYvIy8tDkiRuuOEGEhQdh/71AUnOAMd+KhSfAiqkesMM9LloSDCScfPFXHfTTeJnRxAE4WtqV7Ddv3//U446hsNhNm3axJAhQ9rdMaH3WrNmTatFWh599FGGDRuGZ+M+1GCIpORkpt1+Ha+99hpr166Ntdu+fTtOp1NTN/h8M2rUKBYsWBDbbm5u5osvvuCSSy4B0CwI4nK5WLFiheb4jsy37a22v7oAaLlDoMoyU/76QwZMGx/bl9K/L+NvvYpF9/wfvh2HUYMhwtWN1L/9BbU3XYXFaD6jQPsYxReg7sWPSPveTWw9uE9TZQbgrrvuYvLkybFth8PBqFGjWLhwoaZ6TWFhIUeOHCEnJ4dgSRUjd9YzaMhoKiurqKqqIhRqqWxi0BvI6tuXSRmZyPubCBZVYh6Y/XXeqnNGXV0dq1atYu/evTQ3NyPLMklJSUyYMIEpU6acl/XpBUHoGu1KvLvyyivZu3cvzz77bKvHIpEITz75JKWlpVxzzTVn2z+hFzp+8QyASZMmMWxY60UsJEnixhtvxGRqqfKgKMp5P1cgMzOz1RfZDz74gHfffRen0wlE34etW7fy5JNP4vV6NW3PZuU/IaphrXaSquOCMZpA+xidXs+sXz2CpNdhSE/C2DcNIhFWzX+U+pc+atXemJOGbc444i+fimVSHvIJ1UEUt4/mTze2+owMGTJEE2gf78orr2z15XPjxo2Ea53Uv/ARii+AyWQmNzeXKVMmM3nyFMbm5TNheD4T80eTm9sfs9mE6gtS/6/FhI5bSOd80NzczPPPP89PfvITPvvsM0pLS3E6nTQ0NHD48GHeeustfvSjH/HRRx+hKMrpTygIgnCCdo1s33bbbXz55Zc8/fTTfPjhh7F0kUcffZTdu3dTXl7O9OnTuf766zu0s0LvUFdXp9k+VZmxuLg48vPzNXdaTjz+fHTppZdy8ODB2Laqqixbtoxly5aRkpKC2+3G7/e3Oi4/P5/s7PNzZPJsqapKqLyOSGMTqqKis5ox5KQjn7BwTCQcRm3SfoEZctVFJz1vUk42hgFZhArKkS0mjDkZ2FJTkY+W4Ys0NqNLtJNw9Qzss8fG7t5IQ3OIGz2I+pcWEzjUkhvu3XqARkO15jmO/4yE61wEy2piqz/qdDrGjx8fy82GaHlW58KvYvXBj5FMRhKnjCDsdBOucRIsrNC+R/4AroWrSLn/mlO8k+eOxsZG/vKXv1BTU3PKdoFAgMWLF1NRUcG3v/3tDp8gKgjC+a1dwbbBYOCll17iH//4B2+99RYuV3RxhM8++wybzca3v/1tHn74YZHbJ7TLiSkkVqs19v8TJ/+d+Hhbx5+PRowYwRVXXMHHH3/c6rGTfdlIS0vjzjvv7OSenXsUfxDPhr141uwiXOvUPCabjVgm5WGbMQp9qgOAyNHlz48Xl5hwyufQWeM4dpQkS1iNJkAiXNNI0yfriRsziIyffKvVcbLJQOKtc6n69augRNNW1FCE+PpmzW/v4z8DwZIqFF+AYElVLJ3oxM+I5PLgryrW7DMPyyHptkuQreZYwK/OGkNgfwn+fS1t/QdKCdU0tqpScq4JhUI888wzpw20j7d161beeecdbr755k7smSAI55t2L2pjNBp57LHH+O53v0thYSEulwubzcbAgQM7ZClfofey2Wya8nYHDx5k4MCBQOvJf6qqcuDAgVbH9wZXXnklBoOBDz/88LQVRnJycnjwwQex2+1d1LtzQ6iynrp/fUSkobnNxxV/EPeqHXjW7MJx/WysU0agN5tAr4Nwy6qHxas3kT1yaJvnCAeD+Au0VUuMkej10qc6sE7Lx7ejgAOT7yPrt9/GkJupaat32DEP64d/b3FsX2JYp/ntffDgQcaPj6axnLj6I9DqM5JW4wO1ZcReNhtJuv2SVrWsZbORpG9dSuWvXobjVqn0bthLwpXT23y954rVq1dTVqa9LiaTienTp5OXl0cgEGDLli1s27ZN02b58uXMmTNHrMIqCMIZa1ewXVFRQXx8PDabDUmSYoHQ8dxuN01NTWRlZZ11J4XeJS8vTzPpccWKFcyZMwez2ayZ/AfRBV6qq7W31NvK7z4fSZLEZZddxqhRo1i+fDkbNmyIreh6zIABA5g1axYTJ04UX4JPEKpqoPbp94+mUqi4XE3U1tbg9wdQVRWj0YDDkUhqaioy0Pj2l6CqWKfmYxrSl8BxwW/ZB8sJ3Xk9hrjWC69sfmUBeLQpPfHp0S+LSBKmwX3J+MVd1D//IaXf+TOpj96A/aLxmrs3+mRtBZqstHRocse2161bx6UzZqM/VIl77S5UXwDJYkYNhalJMnLgwAH8fj/V1dV4PB7GW/zsxYLNZiMjI53E6fknXTRGNhuxjB+K/4uWuRDB0jMfDe6JVFVl5cqVmn1paWl873vf0+S3T5w4kf379/PUU08RibR8uVq5cqVYsE0QhDPWrmD7oosu4qGHHuLBBx88aZs333yTv/71r+zbt6/dnRN6FzUSIdLkZUb+WDauWk1YHw02nE4nf//737n99ttjX94URWHTpk28+eabmnOkp6czdGjbI4znq+zsbG677Tauv/56jhw5gsfjwWAwkJaWRlpaWnd3r0dSFYX6V5ZEK3zU1VFSUoLXG61zHdTLRHQScc4INTU1FBYWkpmZSU5ODo3vrcCQk8Hg6y9h96+ej51PaWjiwzv/l+k/f5DM4YOB6KI3G19+lyOvaEv06fumkdAvK1ZXG0D1Bch58Uck3noxpoHZhBubiTR5UENhJIOeYFmt5hxDR+UjrSlEVVXMgQgDCutZedsTDBk0GIs/gnp0QZrag4Xs2r8Pi7eajaFa/JKCwWAgIgWo93qpr4++duxB5s0ZRXJycpvvl+HonaRYf/3BNtudK4qLi6msrNTsu/XWW9usYjRs2DAuvPBCPv/889i+devWcf3114vcbUEQzki762yLhTGEjhIsrcazZjfebQdRg2FMqFxWqFAVaqYi1URVspHCwkJ++ctfkpOTg8PhoLi4mKamplbnmjt3bq+dK2A2m0W5zTPk31NEuLqRkiMlHCkpAaDZoudwnzhctujy5eZAhH6VfjLrA5SWHsHlcpGfPwL3qu0Mv3EOe599C6XOFTtnqKCcFd/6MbrsVAzxFvzFVXDCBESAATdditEn49vZUiPevXoX1ukjsc+JroCqS7Cyb+QdGHPSSXvidoJF2sAwOX8QY71jKVi1gfzDbgwRFR9BduzYjlmVMRuMeAJ+PJEgDQ2N9FUVrpYT+MTiIjErCyUgA8dGalVKd+7j97//PQ8//DD9+vVrNTciXK1dtVQ6YdLouebEQDsxMVFzR+zESabTp0/XBNter5empqbzusSoIAgdp9O+lldVVbWalCMIx1OCIepf/ZSav7yDZ8Ne1OCxiY0SQ4cOJSEsM7jUy5RdLpKd0ZG0I0eOsHPnzjYD7TFjxojV7YQz4l69i4qK8lig7TXp2DbEjstuiC4BCfhNOg7kWilPjVYNaWpysXfvPrxbDyD5Q0z9zaPQRtAZKa/Fv6+kzUDbNmUEY2+8AuuUfM3+cE0jjW8uQwlEp1HqEmwM+OhJkODI7b/Gs2FP7PMhW83EjRzIjRddyqSyCIaIduDD6/fR0OTC4/XS0NCIqkZztx0Rmbt86VwSTsLhDpHgDhPnjyCpKhkNATyuJp5++mnq6uow9stAtlsw9stADYXxbtbeoTS0sXz8ueTEdKvk5GTNl/RgSRWK20ewpAqAlJTWr/fEcwiCIJzMGY9sP/PMM5rtjRs3ttoH0dv7VVVVLFmyhFGjRp19D4XzkhoKU/fPD1uN2B0TFxfHqFEj2b17DwQD5Be42dffSk2Sqc3248aN46677hK3dYXTUkNh3HsLKSoqiu07kmFG0UmkpaUxfvx4zGYz+/fvZ9++fRRnxpFZF0BWwelspLqikqRDpeRMGEnwD99l4//9Hcl3+sDLNjWfy//6f8iyjGlYDvpUh6b6iXfLAfx7iogbPQidw0awpArL+GHIcWa82w+hBsPYZo7GOnUEkl5H+JPNjBmez+7du/H5oqUII5JEtV2HV6/iLq8jVZUxqJAaMZAoGbHIJvTNRvRZGXCgHL/bj+IO4zXrGFHgZs9AeO+997j//vvRpySghiM0/ncZituneS2WScM75mJ0kxMXqCkvL9eswnriJNPi4uLTnkMQBOFk2hVsS5LExo2tF1Y4XlpaGt///vfPrnfCecv5/sqTBtrHWK02xo8fR1lZGVVVVQwr9uA163BbWn5s+/fvz4UXXsjEiRN7bfqI8PVEPD6qKis1C5TUJxi44YYbuOiii4jUNxEsq2HuhKkcaarnH//4B80WNwme6MhyRXkFQ5ujwe2gCyaR9J8/suHZ/9C4ejtSG7nM+v6ZDLrpUkZfd2nsy6AkSSTeMpe6Zxeghlv6cawMYYwkYR7RH2NuBmGfn5ojZex5oxT5tQXElzqJS0pgdP5Iqmqr2edvZGu6hLfBhdfrYRvV5MZZ+bYnDYfeiNVqxeFwIOt0WHL6EvBByNlEY6MTyRckr9hDYlOIssq1VA0dT5w3hHfTfk1uOYCxfybGc3xku3///pptn8/HunXrmDlzZpvtv/zyS812SkpKr6l6JAjC2TvjYPu1114Dovnad9xxB9deey3XXnttq3ayLONwOBgwYIAYZRTaFK534dm4V7NPMhmwzxmLZWIeOruFQGEF7uVb8R8oJTe3Pzk5/WhsbCQn007TBcOwWCwMGjSIvn37dtOrEM5ZqkpVVZVm1/ixY5k7dy6grVM9YPxQbrnlFrZu+nOsrdvdTG1dHcdCraScLC77ww8IeLzsWfwlriMVKMEQJoed3JkT6TMqr81umPpnknTn5TS8+glqKNJmG4CAq5manQfwOpuotekIVNTgCEro4yz4ymtw7ivCnJvJLf99kil11RR8sY4v168m6PJwWdBBxKbH2BQm0ZGIJEugqITrXBhzM4ns9pKYmEhNTQ26iEpGQxC9olL4zNvk5PRr3Rm9Hse1bQek55K0tDSGDRvG/v37Y/vee+89EhISGDlyZGxfJBLho48+YuvWrZrjL7jgAvHlXhCEM3bGwfakSZNi/3/ooYeYPHnyKVf2E4ST8azdDcelmUp6mdSHr9eMlpmH5mAa0hfnu8vxrNuDLMskJyeTHJbInDkbXbyYDyC0j18Gb8CvmbAyLTU39v8TUwhG5Q6iKCRz/FJJVW4n2rFRMFktjLtp/tfqS9yI/qQ+eiNNH6/Fv79E87kAaK6opnrLHjx6aI7XocoShuxUzBXNKN4AUjCMGmeipqKST+76CXOf+xn9Jk9jx7499FMasckGFBlMKUcDbUCXaI+eY3Af1FAY/4ESzOY4fD4vuohKvCdMc7O7VV8lg47k/7kMY9/zo770nDlzNMG23+/nH//4B3379qW/3o7f62V30WG8Fu2fSaPRyPTp53aNcUEQula7qpE89NBDHd0PoRfx7Tis2bZOyW/ztrQkSSTMn4Z38/6WkT9FxbezANsMMR9AaJ9AOER9gpFUZ0vKh2V3GZFmLzq7RdNWVVWal6zHZrXgPNo+LEt4UzsuhcCYnULKvVcRrnfh3byfcI0TNRymqaaew8tX40nQoR43iirpZPTWOGR9GMUXQPX6CTqMBKrqWHb/L5nzo/tQm72keBQ4mlZsSLAho8c0uA+o0UmWjm/MxnHdLGqefg/3p2vhaN53XEDBd8LkP2O/DExzx2DOy+2w193dRo8ezYQJE9i8ebNmf2lpKYU1jXC0fKLBol0p8+abbxYpJIIgfC3tXkHymMrKSmpqak46M1uMfgvHU1WVcKN2tb64MYNi/z+x5JZsMWMamoN/d8tktkhj26v9CcKZMBqNVKSaNMG2p7qOmr+9Q/ylU+BoadNwVT31LyzCv78Er7dlgmBVson+to6/s6JPTiD+ksnA0UVXrn2YgF4BWgLtiE5CHpaDrtyNUtmArNeBoqBXwBcM4yuqYMNr75PhDCEdd1zQH8A8egCSQU+4zgkpCUcnYA4l7fGbOLhzN7XBJiz+CIawik6SMeZmYMhOwTp5OIY+aTidzg5/zd1JkiTuvPNOwuEw27dvP6NjbrjhBjGqLQjC19buYPvLL7/k//2//xddEOEUxKI2QiuK9l65ZGopn3Z8vuyxlSIlg/bHVFVEjXeh/Ww2G0qfZFwVvtikx8rKKmw2O41vfo7iD6L6A0hmE7LZSENDI8FgtIxfRJIoSzfRp0+fTu1jyZotBMq0K6MypA/z/t/3SeuTTf1rn+LbdpDG6jrqNu/B4g/jCnsJNzZT+9l6MvIH0Xz0cyMp4HQ5ydLJ0fBbUdEl2WNpMmGzgb0hF4l6iSZb9Ji0UQNIe/SG2FOfr+sqGAwG7rvvPlasWMGyZcuor69vs93AgQOZP38+w4ef21VYBEHoHu0Ktjds2MBDDz1ESkoK3/zmN3njjTeYOHEiAwYMYOvWrRw6dIjZs2eTn59/+pMJvYokSci2OE0pscCBUox9oisdnpgvq0YiBAvKNefQ2UTJLaH9JEli+owZLKtbzLgDTZiD0XKlDocjujS72QhmIxCtUnH4cDTtSQX2DrCS1L8v/fq1MXmwA+19e4lmW7GZue6F3xB3dETdOmk4vm2HSExPRTcpn5qvtpFoseE0GgjXOjFsOoySZERns+Bwh/EbZQ4fPsTgwYOjFU6G5gAQCoV49dVXqTcoHJ8sMSAzu1NfX08iyzIXXnghs2fPZs+ePezZs4e6nQeRVZWkpCRm3HJtp3+5EgTh/NauYPuFF17AYrGwYMECUlJSeOONN5g8eTIPPfQQqqrywgsv8Nxzz/Hoo492dH+F84B5aA7eLQdi2+6vdmCdlo8c17qGtmfDXiJNXs0+07DODXSE89/MmTP59NNP2TY0nvwCN3ZvmP3791FRUUFqaio6vQ5no5Pa2hpUVSWkk9jX30pDgpFbZs3q9EoUzYeOaLZT506KBdoApqF90ackEK5zEZ+aQm28BVuTF5PegDczDZM3QmJNM+agDp0qEdJLVFdX43Q6sffLwlheRNW+Rja/+2+ampoYGGwpP+hwJGJP0uYp9wayLDNy5EhGjhyJZ8A+1GAIyWjAKgJtQRDOUrtq8+3evZu5c+dqVtU6dptRkiTuu+8+8vLy+Pvf/94xvRTOK9bpIzXbEZeH2n8sIFBUGfs5UoIhmr/YgmvBKk1bY27GOV/jV+h+SUlJXH755QSMMluG2dk9wEaj3UBTk4uCgsMcPHCAmppqvEaZw30sbMhPoCHBSG5ubpesUqqcsPpk1hht+oIkSTiuvSCWzm1MsANgCKsk+BQsZjN9c3LQI4MKZqcfVVHwhoJ8rFTz2meLWLZzM01NTUiKSnpDNH9dlnUMHDgAfVrvC7YFQRA6S7tGtn0+H+npLeWfjEYjbre2VNSYMWNYsGDB2fVOOC8ZczMw5mYQLG6pdRwqr6P2qfdQAkFkk4FwYzP6xPhWx9pmj+3Krgrnsfnz59PU1MSqVauoSzRSl2jEEFIwBxUkFYIGCb9Rji3fnpWVxYMPPhhbZbBTnfAc7vKaVk3Mw3NJvGEOje8uR/Frg/NInBFTXBwOWaKxtg7ZE8Bc4mPd+GR8CWb0mKMNVZXBpV6MYQVZ1jFixHAsFiuWiW3XBhcEQRC+vnaNbKekpNDQ0BDbTk9Pj+U1HuN0OolETr5Qg9B7SZJE0m3zkNvIvVZcHkJVDdDGIh/WGSOJGzWwK7oo9AKSJHHrrbdy8803Y7dHR4ZDBplmq54mmx6/SQeShE6nY/r06fzwhz8kPr71F8DOoM/QjixXLF3X5iRF69R8rN+4gIBTW6FHl2hHijNhNptJTk9Dl+rAL6n0WVtM4soDJDT4ya7xM3FvE1l1AeLj4xk9ejQORyLG/uLukSAIQkdq1xDNsGHDOHToUGx78uTJLFy4kI8//pg5c+awZcsWlixZIiZICielT04g9aHrqH/xI8L1Tadtb7tgNAlXzxCrtgkdSpIk5syZw8yZM9m2bRubNm2ioaGBSCSC3W4nLy+PGTNmxILxrpJz+QUUHvhPbDtQUsmmv7/GxEe/pfkMRAJB1v77HZoS9JhCMhZ/BH1EJWXsMEw6A4EDRzCnJ+GwxZHW1ETptj1kFpWhj/NhdNixJTrIyMiI1Y2W9DIJV3V+mowgCEJvIqntqOn03nvv8etf/5olS5aQnZ1NaWkp3/jGN2hubhld0el0vPzyy6LO9hlQVRWn04nD4eh1waTiD+JZswv32l1EGpoJ1zSiKgqSLKNPT8Q8oj+2maMxD+maZdl787XoaXrztQgGArx78d3I3pb0EFlRSUpMIm3YAOIS4nFV1VK7vwBXwHd8KW70+f254ZX/B4Bn3W4a312uWZkymqplBFR82w9jGtIX2WIGOXrHyTJ2SKv+9LZr4dl43ATJST0rpaa3XYueTFyLnqOnX4t2BdttOXLkCC+//DKlpaVkZWVxyy23kJfXs35J9VQ9/YekK6iKQrCoEvdXO1D8QWSbhYT5U9E7unZEUVyLnqO3XQvF48e7/VD0C2cozMH1Wyj/fD1hnYTdG47lkrc6TgKvWYfboids0jHznz+j3+iWCZW+PUU431tBxKmdV6O4vbg+XocajmCbNYbM39xD3NC2K/30tmshgm3hTIhr0XP09GvRYTN9cnJy+PnPf95RpztrO3fu5Omnn2b79u2EQiEGDRrEHXfcwZVXXtndXRPaIMkypoHZhOubYn/kujrQFoTuEK530bR0E75tB1GPm6uQjQnFmoBUXENEFy3f1xZZBZsvgimskvzbOzSBNkDciP6Y8/rh31uMZ/0eQuV1qIEQuiQ76f/3Lbyb9tO0aDXlTV76/PVhzMNzO/PlCoIg9DrtCrbz8vK4/PLL+fOf/9zR/ekQGzZs4O6778ZgMHDFFVdgt9tZunQp3//+9ykvL+f+++/v7i4KgiAQKCin/qWPW5X6g+hId5JsxOOwEXK60SkqAYOM2kbMrcQZyBiTR1qxC8UXaFWzXpJl4vIHEJc/oM1+eNbvoey7T9G8YpsItk9DVVXC4TCSJHVNZRpBEM557fpNYbPZyMzM7Oi+dIhwOMxPfvITJEniP//5T2x53QcffJCbb76Zp59+mksvvZTc3Nzu7aggCL1asLyOuhc/Qg2EWj2mqiqBwgpQVKyOBCJ2G/5mN6o/QJ1VJiyDUZWwGs04BvQhuU8WkiQRqmqg+fNNX3uSo3XKCAavfAZJFy1QVfPUu1jGDMZ2wZiOeKnnPFVVOXToECtWrGD37t0EAtEvR3a7nXHjxjF79myysrK6uZeCIPRU7Qq2R40axf79+zu6Lx1i/fr1HDlyhOuuuy4WaEP0C8IDDzzAY489xoIFC3j88ce7sZeCIJyLFI+fcGMzRCLI1jh0yfHtyg9UVZXG/37eKtCWdDKmYTmooTD+XQWx/Tqdjvj+fTANzGbE1TOwz52AJEkEy+toeGUJ4TpXrK1n/V7sl05GNhq+Vp9kU7S9Go7Q/MUWqn7xMom3zCXzV3ejS+qakoc9UV1dHS+++CLFxcWtHmtubmblypWsXLmSsWPHcscddxAX17qkqSAIvVu7gu2HH36Y2267jQ8++IBrr722o/t0VjZu3AjQ5ipv06dP17QRBEE4HVVR8O8rwbN6J/792mXUdUl2bNNGYpk8HF0bdeNPJlhYQai8TrPPnNePxJvnoou30PDfZcSNGkSkyUPgUCkgYRrSF0mW8azZhf3CcaDTYcxOIfmuK6j+45uxiiOKL4Bv2yGsk4e3fuIzIOl1DPjgdzT+53Mqf/YSTUs3kvmbbyPNG9eu853LqutrefadlzSVtk5m27Zt1NbW8r3vfQ+LxdIFvRME4VzRrmB79erVTJ48mR//+Me8/vrrjBo1SrN0+zGSJPHggw+edSe/jmOjD/36tZ5Vn5CQQGJiIiUlJSc9voOKs3wtx56zO567p1FRj74PqrgWvVxPuBaRJi8NrywhWFzZ9uMNTbgWr6Hp800k3jL3jBddcq/ZxfH1+HSJ8ST9z+VIeh2qqhIsqgBUdPEWTIP7EGnyIskSoBJxufHtKSJuZPS59BlJmAb3IXCwNHa+QHEllrOpoiFJJN42D9u8iVT+5EXcq3Zgnzeu13wuVFT8gQDPvfMfmgxn/ppLS0t54YUXeOSRRzqtIkJP+FwIUeJa9BzdeS3O5LPermD7mWeeif1/79697N2796Qd6Opg+9iy8SdbhMJms1FVVdXmYwAul6vbPjgul+v0jc5zgWZ3tBpJ0EDI6ey2fohr0XN017VQ3D6aX1hM5AwWXSIQpPKFhdhunINxVNuTEI/XtK8IJRCMbVvG9Mflbhk99TmbWx43GZD6phDwR7fVQJDaJWuxWgzokqPpHcEkG4Hjzqc2OJE64vNjlIj/f/eihqNVUmre+BS5wU3qg9ehyBIej+e8XCk40Oxm5Ya1VNXWoEtJiO13OBzMnj2boUOHEg6H2blzJ6tWrYrlcANs376dzZs3M3jw4E7to/gd1XOIa9FzdMe1SExMPG2bdgXbr732WnsOOyckJCScvlEHU1UVl8tFQkJCj6wP2ZU8dhtqIIRkMmB1OLr8+cW16Dm681qoqkr9WyvQu/3oTcbWDWQZFKXV7tBH60kckoshI+mU5/cqoB533oS8AewvKmLdunVUFh0hb3UJNtlAQnIiGRmZOPqmE65pBCDc5MUQiBDn9GEZmAOAEoxozmdJiMfRgZ8fVVVpamqCaidVT76J870V9PnbI9jHDz3jc5SWlrJq1SoKCwvx+XwYDAYyMzOZOnUqI0eORJblDuvv2XLbrGw5sBeDwYDeGH1f+/Tpw/e//31NTnZ+fj7z5s3jd7/7HR6PJ7Z/69atnbagm/gd1XOIa9Fz9PRr0a5ge9KkSR3djw5zbNnhk+XYud3uUy693J0XSZKkHvlD0pUkJJAkJLr3vRDXoufojmsRLKkicLCM45dm1CVYib90MnHjhiAZ9ARLqmhethn/nuKWAyMK7hXbSLpl7inPLxkNqMEwALW1tbz5hz9SoI+OjoZrnaSG/eDz4Q36qaysJHXXPvqNGUFcnAVUkPU6UFQkSULx+PHvLtL01ZCe1OHvmcFgIOH7txA/bxLljz3F4Uu+R/I988n8xV2tSg0er7KykjfeeIPDhw8DoA8r6CIqiixRXVXF9u3bSUpK4oYbbmDcuJ6RF15aWUmdswFkOfY+3nzzzW3mYqempjJ//nzeeeed2L4dO3YQDAYxmU7+vpwt8Tuq5xDXoufoqdei5wwldJBjJf3ayst2uVw0Nja2mc8tCIJwjGfNLs22bDWT9tiNWKeMQDYakCQJU24myXfPb5Ub7dt2EMXrP+X59anRO2ilpaXs378PS1HLZElVVamM13Esp1tWVHRVTg6u2RwbRNA5ooMKajhC4ztfxAL36AESlglnPuJ8poLBaJqKZfQgBi39K5m/vgf/vhIk48nHbAoLC3nyyScp3n+QPtV+Ju1xMWOHk6m7XUzf6WT6DicDS734Kmp5/vnnWbZsWYf3uz3qnA2abYfDoUkLCde5oqt9Hq0CM2XKFE17RVFoaNCeQxCE3uu8C7aP3bpbvXp1q8fWrFkD9OyReUEQupeqqvh2FWr22WePRZdga9VWkiQSrpgWq08NoIYi+PcWn/I5rBPzqKmppri4CIDkphDp9S15v7U2iYBOAhUS3GEkFaxNASpWbcZX14hkMePdvJ+q37+Ob6e2r3EjB7TZ144k6XWkPnAtAz78PZJOh3fzfkru+C2hipYvDfX19TzzzDPYy51M2eViUJkXi1+b322IqPSt8TN5j4tBR7y8+847bN68uVP7fibCJ+Sh22w2zWhZsKQKxe0jWBKd/9PWiHc4HG61TxCE3um8C7anTp1K3759Wbx4Mfv27Yvtd7vdPPvss+j1+h5XrlAQhJ5D9QVa1b82H1dl5MRRTV28BWO/DE37iMvDqehHDuBgSbFmX16xh1kNRm4dMZVvz7qC7OGDyHBFMAdacsN1gTD15ZU0L92IZ80uIg3adDnJZCD+Mu0oa2c6FoBGXB48G/ZyYMp91L20GFVRWLRoEfHF9Qwv8qBXoqP0BoORvn1zGD58BAMHDoyl/QH0qfUzotDDO2+/3e2TLq1mbRnHioqK2OR7ADWiaP49dOhQq3Mc/9oEQejdzru1ZvV6Pb/5zW+45557uPXWW5k/fz42m42lS5dSVlbGd7/7Xfr379/d3RQEoadqoxjR8SPXwZIqFF+AYEkV+mOVKvQ6FLeXcJ0LxR8ECUIVdZgGZRM3bmhswZhjtu/ZxcFUHYNbqvXRv/8A+vTpQ7ioEbXARYYugfCYPGp3HohVGlElqFD8pEfCGGTtxE3JqCf5riswpJ96cmZnsF80niHr/0nVL1+h4gfPUv6fT9nvcDH6SEs6jcORyPDhw9HpdLF9WVnZlJYeiZVsTXUG8e6rZseOHd2av92/T1/0Oj1hNRpMK4rCsmXLuOaaa1q1VVWVzz77TLMvLS2tQyeoCmfG6XSyfv16SktL8fv9mM1m+vXrx5QpU4iP770LMwnd77wLtiGaP/fmm2/y1FNP8cknnxAKhRg0aBCPPvooV111VXd3TxCEHkyKMyLpZdRwy4iyf18JthmjgNajmt6dBbgWrtKMZoeqG/FuPYh360GcH67GOmUE8ZdNiQXda9eupTzVhDmg0LfGT0JCAn369GnVF3PfDJJ1Oso27kBSVRriDYQiIeqcTjJT02LtDNkpJN50Ica+6R3/hpwhvcNOn78+TOKNc/jg8d+QE1KRAFUFWZYZOnQo1lEDsV0wBmNOOpHGZjwb9pKzWqa+vj6Wj96n2s+65au6Ndi2xlkYMzSPzfv3xPZ9+umnmEwmLrrootg+t9fDgjfeYPfu3ZrjZ82a1SMnaZ2v6urqWLBgAdu2bUM5oUrQ5s2bWbhwIePGjeO6664jKanrv4wKwnkZbEN0Sfl//etf3d0NQRDOMZIsY87L1eRtNy/fimXCMGSzdjTZvWYXNX95q1XayLEJjABqIIR75XYCBeWk3HsVOruF8vJykCQK+sThN8lckdA60D7GkpWKZ3QOu8NO4r0RTPVh3JEgOocNy/ihWKflY+yf2WOCO+vUfPS3X0TSv5eihiOEyutIH5RL8qVTSLgyuopvuM5FqLoB24xRmIfnkv7z8pbJn6pKcHvrtIyuNnv8ZE2wraoqCxcuZOnSpeQY7AT9fgoqypCStdWt4uLimDp1ald3t9cqLCzkmWee0ZRePFEkEmHTpk3s37+fRx99lL59+3ZhDwXhPMzZFgRBOFvW6SM125GGZmqffg//wdLYole+HYeo/uObrZZd1yXFIxu1aSMAobJa6v/1EWooHKvsgSRRnmYm4Uc347hhNsbcDCSLCUmnQ7bHETd6ICn3X4335ukUZ1vYOdjO2gEmCqfkkHTHZSTdNg/TgKweE2gfYyisBkBVVJAlQntLcC1ZR7ghukDQ8RMMzUP6Yhk9SHN8QpW71Tm7Wk5GFpfPnNNqv9frZdeh/RwoKSQc0U6ClCSJO+64A6vV2lXd7NWqq6t5+umnTxloH6+5uZm///3v1NfXd3LPBEHrrEa2P//8cxYvXkxhYSF+v5/PP/8cgIKCAr788kuuuuoq0tO777amIAhCe5iG9MWQnaIJpEMV9dQ9t5CI24skSXg3H2hV9k4yGnBcewGmAVkECivw7yvW5IAHj9TgXr2TuLg4zaqDpVWVDJozB9u0kYTrXATLazFmp8Zywo8selvzPHGdWL+5I8SFIAjIRj2GPmk02E00f7qRA8s2k/Pc95Hjo8GoevRLQnWi9o6BNdIzvjxcOn0WxkHZfPzxx6dtq9frufPOOxk7dmwX9EwAePvtt/F6vZp9RqORcePGkZmZSUVFBVu3biUUapnw3NzczLvvvsv999/f1d0VerF2BduKovD444/HJoWYzWb8/paJMAkJCfztb39DURTuu+++jumpIAhCF5EkieQ7L6fm7++iuH2ax1RvgFC9CzUSQTruV6ghO4XUh76BfU4019h+0XiC5XXUv/QRkcaWkVrPml30z81l2/btsX0rVqxg1qxZyLKMPiWhZeIl0VrcxxaEOaZfZnZHvtwOl5qcwrFFkyUJaqwStg9/gfSPj9FnJqP6g2A1Yxk1KHqLf/tWco473mHvGZPZJEniqquuYsiQISxdupQ9e/a0aqPX6xk/fjyXXHIJ2dk9+7qcT6qrq1tdj7y8PO655x5NJZjrr7+eF198kYMHD8b2bd++ncbGxjNaZlsQOkK70kheeeUVPv30U2666SY2bdrEXXfdpXk8JSWF8ePHs2LFio7ooyAIQpfTpySQ+vA30Ke0DvwiTm3JPV2CldRHbogF2scYs1NIvOVizb5wfRMzcrSLzlRVVfHKK69oRrshuvriCy+8oNlns1gYPXjY1349Xan/8KHo9S1fRBxNIV5+/21Mv/oWcSP6Y8hKoeJ7z1D61//y73/9C47Uao7vM2TgiafsVsOGDeORRx7hN7/5DbfccguXzZjNZdNmcevlV/OHP/yBu+66SwTaXezEtTQsFgv33Xdfq5KL8fHx3HfffZrVPFVVja27IQhdoV0j2x988AH5+fn84he/ANpe4rxfv34i2BYE4ZxmSEsk7fu34t24F/eaXYSrG1EBxRst74cso09NIPXRG7DPGtPmOUyDstGnJxKuboztyzHaSU9Pp7q6OrZvw4YN7Nq1i7Fjx5KYmEhRURF79+6N5YgfM23MeE0g2xPZRgwgPT2D8vKy6LYvQnD/EX7+85+Tn59PTmY2hTY3m376E3QJVi5KHQimaCqJxWIla1rPTMVITU1l9uzZeCzpqMEQktGA1W4//YFChztWLvKYKVOmEBcX12Zbm83GxIkTNQH6iccLQmdq12/skpISvvnNb56yjcPhwOl0tuf0giAIPYZsMmCbORrrjFGEyutoXr6VSGMTksGAsV86kk6HZaR20ZtgWQ3GPmnoUxKQJAlDVoom2FYDIb71rW/x17/+VbPSoNfrPeWIW3Z2NhdPmdk5L7QDmYbl0H/MCBobG2I5tXlFHgrCKrt37GTXrl2QoSdjzgQGbKpAKa4mnByPMS2RwYMHYzthgmpXUBUF/+4i/AeO4NtdCIqKLtGOITOpW0sqCm07PnUV0FQYOfEzeOLjAD6fNj1MEDpTu4Jts9msWU2rLRUVFaKIvCAI5w1JkjD2ScU0pC86hx1JkpCOLtASrnWiT3UAbS96E65p1J7LZGDQoEHce++9vPjii5oJXCeTlZXFI488guFgJWrw9O27kyRJJM6dSH5tI7t27cLn86FXVIaWeBhQ5sUTp8MUVIgLgpqTRaSxGZ3RQF7ecFInjMCQ1nW5tKqi4F6xHfeq7bESjuGaRlRFQZJlQqU1GHPSiL9kMubhuV3WL+HUTCdMEq6pqYn9v63P4PGPt3W8IHSmduVs5+XlsXr16pbyVSdwOp189dVXjB49+qw6JwiC0NNIkoQ+STuQ4NlwXD3mExa9CZZWtyoPaMhMBmD06NH86Ec/Ij8//6Tl+8xmM3PnzuWHP/zhObUqoXX6SBwThzNmzFiysrKR5egXE0NExeEOExeMvj+SJJE2KJfxF0wnISeTrYs/54PL7mPjZ19QVlbWKo2mI6mhMPUvfYzrozWtaqUfL3ikhroXP6L5iy2d1hfh68nKytJsr1+/PnaX6MTPYCgUYuPGjZr2Isde6ErtGtm+/fbbeeihh3jkkUf45S9/qXnsyJEj/PjHP6a5uZnbb7+9QzopCILQk5jz+uFZ27JqoG9nIe61u7BNO6E+t8tN45vLNPtkuwVzXr/Ydt++fXn44Yepra1lw4YNVFVVEQqFsFgsDBw4kIkTJ56To3CSLJN02yUg6xio15Ob24+a2lqam5oIhcLodDJxFgvpaekEg0GKqyrYX7wbQ6UTyuoou2ErwZxk9HPGMO76y5k6fVqH5qqrqkrDf5bi31t8xse4Fq89usJoz86Z7w2mT5/OypUrY9uNjY28+eab3HbbbZp24XCY119/PbZo0jHTpk3rkn4KArQz2J47dy733nsvL7zwArNnz45NSpg6dSpOpxNVVXnggQfEKlqCIJyXTMNy8G7ar9nnfHcF3g17kSxmJIOecE0jzvdXoAa1C5/YpuXH0k+Ol5qayvz58zu1311NMuhJ+tYl+McOxr1qB5k6PZkZmce1UDlcXkp5YTE6VSVNksAUh5qbTbjWSaTEifzOOg5vLmL7uI+57Tf/22Hl2vy7CvHtKGi135iThrFfeiwN4USuhV8Rf/lUJH3rayh0nX79+pGbm6uZ6LhmzRr279/PhNQc0hMSqXQ2sHnBqzQ2atO4hgwZQmZmJoLQVdr99fzxxx9n8uTJvPHGG+zcuZNgMIiiKMycOZPbb7+dmTN7/iQeQRCE9pBNRqzTR7YaFQ0eqdHk++pPyD3WpyRgm90zK210FkmSiBs1kLhRAwnVNBIsjubTSgYdy5Z9QdPaYgy0LHADIOlkDBlJ6OKtKMEQxpCCaV0Bbzzwf9zx/B86ZD6Qe9UObT9NBpLvvBzzsBw8G/dF8+LnjENp9tK0ZH2snRqK4N9bTNyonlWesDe66aab+POf/6yZZFxfX8/ifYdBUUCWW+X/GwwGbrjhhq7uqtDLndW9sOnTpzN9+vSO6osgCMI5I270IAzZKTR/vvmM2uuS7KTcfzWy2Xj6xucpQ1piLPjZvHI1riXrMEa0bSRJIi7OQjAYJGwB2RJNoYk0NmNfWsXb9/8f337z6bPqR6imkUBBuWaf45qZmIflaPZJskz8xRMJVdTj234ott+3qxDzyAH0jHUue68BAwZw9913869//YtIJHLa9gaDgXvvvZecnJzTthWEjiQSzwRBENop4fKp6FMTaVqyjojzJBWaJIgbNQjHdbPQxVvO6vlCoRDV9bUEvD4sdjsWVT3pxMqebve/3sMUVo7bI5EzZCCDr70Y+9B+hJ3NFH28ioI1m/H7fcj2OBSvH/WjDWz61k8Z+7cftJqoeqZCR6o123KcCcuEky8UZLtgtCbYVpo8qL5grDa40H3GjRvH448/zn//+1/KyspO2i4nJ4dbb72V/v37d2HvBCGqXcH28uXLef/99/npT39Kenrr+qPV1dX8+te/5oYbbmDWrFln3UlBEISeyjpxGJbxQ/DvKcK75QC+7YdRgiFkaxz2OWOxTs1Hn3h2C5+UlJSwcuVKNm7ciLe8JnaLPPnzD5gxYwYXXHDBObX0dNGBQ+gPVGj2DZg5kYm/fRjZYo7tG3XBGNKXrGHVr54hDBj6pKFr8rBtyXIs6w4xePnTGPukoqoqwZIqPGt3EzhchuINRNN4UhKIGzcE66Q8zXkVv7aSlj4j6ZQ52MY+qa329fTyi73JoEGD+MlPfkJBQQFr1qzh8NotBPx+zHFxDJo2npkzZ5Kbm3vOfjEVzn3tCrb/85//UFNT02agDZCenk5ZWRlvvvmmCLYFQTjvSbJM3MiBxI0cGMv3lYwGrJPyzuq84XCY//znP6xdu7bNx5uamliyZAlLly7l+uuvZ86cOWf1fF3l0Mcr0CktJf2MJhNjf3yPJiA+Jv3y6aR89AVVm3YhSaBLsGLMTSXtqqswZKcQrnVS+/yHROqbNMepQLC0hmBpDU1L1mG/cDz2SyZF66MbtH/6Ig1NqMfdJZB0MurRfyG6SEorYoJkjyJJEoMGDWLQoEF48iZ12GdQEDpCu+ps79+//7Q1tEeNGsW+ffva1SlBEITeLhKJ8Oyzz5400D5eOBzmrbfeYsmSJV3Qs7MXrNDWHY8b1g9j6slH5jPnaStbGTxBUh/+BqHyOsoee4rav7+Lb1dBdMS/DWooQtNnG2l4/TNURYnVOT8m4vIQ2H8ktm3sl4Fst2DslwGAZ/0eTXvJbES2tv5iIAiC0JZ2Bdsul4ukpKRTtklMTGxVbkcQBEE4MwsXLmTPnj1tPnay2+EffvghO3fu7MxudQhZ0S5UE7QYTtk+Eh+n2dYpEGn2Uv/iInSJdsxDc/BtPYhr8VrCdc6Tnse37RBNn6zH0DcNQ4b2b5jz/RWEG6Kj4/qUBCyjB6FPScC/rwT3au17as4TKQmCIJy5dqWRJCUlUVRUdMo2RUVFJCQktKtTgiAIvZnH42H58uWafUajkUsuuYSxcanEG81UOhtY13Ck1cj3xx9/zKhRo7qyu1+bxRHP8YkZDfuLCIVCGAxtB90HV2tX/9NbzbhXbCPS5EXS67FMzMM4IAvvhr00fbyO7L89jGXcULxbDmomNgI0f7kV24xRWKePxPl+y6Io4fomqv/wBpaJeZiG9EUNhPDtONzmojfmUQPa/doFQeh92jWyPXHiRJYvX87+/fvbfHz//v18+eWXTJo06aw6JwiC0ButW7eOUKhlAp4kSTz22GPMnz8fhz0eSZLITs/gjjvu4LrrrtMcW1xcTElJSVd3+WsZPFP7tyGu0ctnr77VZtuysjIavtSWV0zOG9gqtcMyYShDt/6b7L88TOKNFxGXPwDbzFGk3HsVmhp9iopn/R6sU0ZgyE7RnEMNRfCs3U3DK5/Q+N9lbQbatllj0DvObsKrIAi9S7uC7W9/+9tIksStt97KM888w7Zt26ioqGDbtm0888wz3HrrrciyzL333tvR/RUEQTjvbdmyRbM9YcIEBgxoezT14osvblWJ5MTje5qsmeOxp2kD3eqXP+bVPz9F0bZdBEqqcB4+wmcfLOKD+3+KxXN85Q+JwZPHo3gDmuMTb7oIndVM8p2XIZuNBMtqODjtfqp+/zqmwX01bT0b9yHpdaR8+0r0qY4z7nfcmMEkXCXWlhAE4etpVxrJ0KFD+fOf/8wPf/hD/vGPf/CPf/wj9piqqlgsFv7yl78wbNjJ65YKgiAIbTtxvsvYsSdfdVKWZUaPHs2KFSti+5xOZyf1rGNIeh2DvnEx2557C1CRIyrpDQHinvmCg//8kt0GGV1ExRyMMNgg4zHrCBokkCRSBuZgT0ui+bjzGXPSMKS35GArwRCG7FT6Pvd9Kp54nuYvtxA3ciDmoTkgSUQamlEjEXQJNtIevYHG91dE003UVl2N9tdkIG7sYCRZpuq3rxE4XA6qii7BSrjehXXqCDHaLQjCSbV7UZuLL76YL774ggULFrBr1y6am5ux2+2MGjWKa6+99rQTKAVBEIS2qao26tPrW35Vn1iW7sTHAZSTVOXoSYbcdiWNm/dRs2oLCZ5wLNDVBVVMwZb+mwMK5oCC3ygT7pPM1J8/SKREuyiNzmHTbPt3FSJb40iYPw3bnLFU/O/zON/5EsXjxzJ+KBBNGZF0OmSrmeRvXUr4qul41u0hsL+EiNuHJMtHJ1/2xb//CN71e1ueIBxBVRQiDc00L91E8+ebsE4ZgePaC1qVFRQEQWjXb4WFCxeSnJzMzJkzueeeezq6T4IgCL2a3W7XjE7v3bs3Vm7V2C+DYHktxuzoQiuqqrJ3717N8fHx7VtZsSvJJgPD58/BvKWAJk896smGlY9K0BnJHj8Wy6A+eGqcmseCR2pQFQVJjn4BUSMK4TonEY8P6/ihpNx7FUqTB9kWrWoScblRT/hConfYSbhsClw2JbYv3NhM7TPvE2lo5pRU8KzbQ6iqgZT7rkY2nbq6iiAIvUu7gu3/+7//47bbbmPmzJkd3R9BEIReLz8/n9LS0tj2mjVrmDdvHsnJyehTEtCntFR62rp1KxUVFa2O7+kCh8toXraFlMmjsBZX0FhYSrPTRTgcRkFFRkKSJawWK47sDOxD+yFHVFwLVmGdpn19EaebqlVb2OAs58CBAzQeLEEHpCSnMFO5kj6rDqM/lmaiKrhXbufQBQ/R5y8PYbtgTJv9U0Nh6l9YdPpA+zjBokoa//s5SXdcJkoDCoIQ065gOzU1VTNTXhAEQeg4M2fO5NNPP42lk4RCIf74xz9y0003MXr0aGRZxu/389VXX/Hhhx9qjk1LSyMvr+evmtf0ebTCSCAcotDvotEUxtfXRrNOJSQpSJKEXZGx+VVqIs3093tItVnwbNyL/ZKJGLJTCJXXEQwGKSg4TNXa1ezLtVCfYCDU4ARFoba2Fn5SSN8mldzcfmRkZIIkk/WnB2n410cUXvNjEm+ZS+av70GfpL0b4Nm4j1BVg2afHGfCOmMkajCM4gsQPFJNpNaJGmkZJfftKCBYUoUpN7PT30NBEM4N7Qq2586dy1dffUUwGMRoNHZ0nwRBEHq15ORkJk6cyMaNLfWlGxsb+ec//4nVaiUxMZHq6uo2Bz3mzZvX40dVQzWNBA6W4vG42bVrF6FQiOLsOIqz4lq1tfgiTNjXxP59+/D399O3T1886/Zgu2AMlS8vZufOnQQCfvTAyAI3HrOOeiWEIayS4lUxmCEEHDp0CK/Xx6Ax+TiunI7j6hk0vLGUqp//m0BRJYOW/DH2nKqq4jlhIRt9SgKpj1yPzm7Bs3EfajCEaWA2huxUap9+DzXQci08a3aJYFsQhJh2lf579NFHsVqtPPjggxw6dOj0BwiCIAhfyy233EJWVlar/R6Ph7KysjYD7cmTJzNjxoyu6N5Z8e8sIBgMsnv3HkKhECGdxJGMtpc/98bpqEyJDuoUFxVRU1ONb0cB8shcVlcVEAj4Ne2t/gh9XBHS3Qq6EyaalpWXcaC/DUmvQ5Jlkr91KUPW/5PsPz4AQKCwgkBRJaHyulaj2o7rZqGzW1r1z5idQvzcCZp9vu2HUILi7q8gCFHtGtm+5pprCAaD7Nu3j9WrV2MymUhKSmo1miJJEsuWLeuQjgqCIPQmFouFxx9/nH/84x+nXbEXYMaMGdx66609flQbIOxyc+TIEYLBaK3shgQDiixhsViYNm0afRNTqS8oYUvxIcobaqlzGMmujbYtKCgkNSuTL7/8kg0pCiOaDCS7ooGtLOtIT0/DqsiEgyFqXY14lOhjiiSxt7+VtZu/YtIN87FarQAY0pNiZQOrfvc6TUvWkXT7JaAocHTCpWyLwzQs56SvxzJpOK6P18W21bBCxOlGTks86TGCIPQe7Qq2VVXFYDCQmZnZav+ptgVBEM5XlZWVbNy4kbKNOwkHAtjsdvLVJsaNG3fSZchPx26384Mf/IANGzawYsWKVitDSpLEqFGjuPDCC8+pdQ1CgSDV1S3l+xRJYuDAgTz00ENYLBa8Ww6gjEhi9vjJrK4v4YtX3461DYdDVFdXs2rVERRZYtdAG1m1AfJ8BiYMzMNoNBKuaURVFDLT0qknyJrqIoozzXgsegiFYhNOT9Tnb49QnZFE3XML0TlsWKflo09xoIu3aL7EnFh+Uba3Tn9Rg+EOfMeif08LCwvZsmULFRUVmM1mEhISyM/PZ8SIEchyu25UC4LQBdoVbH/55Zcd3Q9BEIRzUkFBAQsXLuTgwYNANB/52KjoxopC3nnnHWbNmsVll13WrqBbp9Mxbdo0pk2bRkVFBVVVVQQCASwWC/369cPhcHTwK+p8RTWVKEoktp3UHOaKO+/EYommacQmHCoql1xyCdXvfQnHLWNzoLQYZ9zRAFeSqEgzc8cTT5ARkAkcLsO3szC66ExSPH1vuYit7/wXz+aWJd/Xrl3bZrCts8WR9ZtvEzd2MBU/+ifNn2/Ccf0cwjWNKF4/siWa6nJi+cXQkepW55ItprN6j463bds2Fi9eTFlZGaqqxuZLSZLEihUrSE5O5uKLL2b27NnnxJ0NQehtRPV9QRCEdlq3bh2vvfbaKReRcbvdfPzxx+zbt4+HH344FlC2R1ZWVpt53OeaCrP2/Uq3xBN3uBrS0lq1jbjc5IctHDhu34GgC2gZTe7Tpw+5ubkAmIfmoE9NRA2GkIwGdAk2ZsyYwebjgu3KykoURTnpaHD8xZPwrN5FuKEJyaBH8Qaoefo9Mn50G0Cr8ovNy7dpjtcl2tAlnv2KkqqqsmjRIpYsWXLKdvX19bz11lscPnyYu+66C51Od9bPLQhCxznr+07hcJjDhw+zbds2Dh06RDjcsbfOBEEQeqLdhw7w6quvnvFqjYWFhTz77LPidyTgtRtpsrSM9cTFxeF8fyVNn25A8fijaRqKQrC4ktqn3ydOp70jcCBOO/kw7YQg/Vh6x7F/T3wcIBAInLR/ungLcaMHxsoBBgorqHnyTQ5f8UOC5bWxdkowhOujNfh2HNYcb52a3yEjzJ9//vlpA+3jbd68mTfeeOOsn1cQhI7V7pFtl8vFn/70JxYvXozf3zIb3Gw2M3/+fB5//HESE8XkEEEQzj+hcIg3l3yIatOWPrXb7QzPHojVaKawsoxiv0vz+KFDh1i1ahUXXnhhV3a3xzGbzezNMJNf6AbA43GDotL02UaaPt+EbI0jVFUfXU7dbMTtcceOrUswEHFo7w4cS684FuCemOZx/AJBEM11N5lOneZhu2AMvh0F0f4Oy0E2G/Fs2Mv+8XfjuHYW1inDCRwoRfFpg3bJqMc6eUQ73hWt+vp6Pvjgg1b7U1JSGDx4MAkJCezdu7fVa1u7di2TJk06J2qtC0Jv0a5g2+VycdNNN1FcXIzD4WD8+PGkpqZSV1fH7t27effdd9m4cSNvv/32OZlPKAiCcCrbDuyj2evBcFywfeGFF3LdddcR3HY4lsJQmxbHs88+i8vVEnQvX76cOXPm9Orc2tzcXJY6DJSlmelT46epqQm3243NZgNFRWn2orMeSxNRqTy6QqbXpONAPyvD+wzSTLCsqalh7969jBgRDXKPT/NQVZXly5drnj8nJ+e0EwpNA7KwzRqDe+V2QMKYm4k+Kxnf5gM43/4Cxe1Fn+JodZzj+jno4tufKnTMqlWrWt01ufHGG5kzZw4ulwuHw8G1117Ljh07+Ne//qUpBbl8+XIRbAtCD9KuNJJnn32W4uJi7rvvPpYvX86//vUvfv/73/Piiy+yfPly7r//fkpKSnjuuec6ur+CIAjdbu2OrZrtQYMGceONN7aaAJmbm8sdd9yh2VdTUxObTNlbjR49Gnt8PIf7xHEkPTrpcP/+ffh8Xk07RVE4dOgwHo+H5jgd24fYCRlkrrvuOtLT0zVtX3vtNY4cOdLq+A8//JD9+/dr9s+cOfOM+plw9QysM0bGtiWdDnNeLrZZY0BViTjd+PeVoEYiIIHjG7OwTjz7qjCKorBmzRrNvhnTpzNz0AiaPlqL++3lNLz2Ka4PVjHMlMg1V1+tabtz506cTudZ90MQhI7RrpHtZcuWMXnyZB577LFWj5nNZr773e+yfft2li1bxhNPPHHWnRQEQegpVFWlpLJcs+9UI9XDhw8nLS2Nmpqa2L6ioiKGDh3aqf3syfR6PTNnzmTJkiUU9rFQm2ikT40fz5YtpCQmER9vJxAIUldXS4NBpbyfleokI6oskZyczKhRo2hsbOStt96KndPpdPLb3/6WvLw8hgwZgsfjYfPmza2CTovFwqRJk86on5IkRRezcdhpfGMp/gNHopVmjlL8QUJHqvHvKyLzV/dgmzGqQ96furo6mptbqq8kO4NMLQxQs+1dQCUYCCKZjICE+6udDEuwkNMQ5kiiDiQp+jNaUiLuLAtCD9GuYLumpob58+efss3o0aPZsmVLuzolCILQU4UjYSJKJLbgCUTTEk5GkiRycnI0wbbP5+vUPp4LLrnkErZv305FRQXNVj37+ts41Fch3hNEH6lFsUh4B1vwmmU4+kVGlmVuv/12ZFlm5syZbNq0iYKCAs159+3bx759+076vN/85jdPm699PO+GvTQtWYfOYcM8IpdIoxs1FAYJJKMB8/BcfFsPUv7Y0zQv20yfvz8am1jZXrGfD1Ult9JPbqUfc1bL3Cg1ECTc7EO2WZDNRnB5GVkTwerysz/XiipJ4mdMEHqQdqWR2O12ysvLT9mmvLwcu/3sSx8JgiD0JHqdvtUodl1dXez/J1bCOPFx4GsFe+crs9nMI488olkcLayXaUgwUJNkos5hxBuniwXaer2eu+++O5aLrNfrefDBB+nfv/8ZPZ8kSdxyyy1MmDDh9I2P8mzYS+PbX4ISXaBNZ7Ng7JuGaUAWpv5ZGLNTMaQnEX/pZCxT82n+fDP1//74jM9/MkZjdC5An5oAuZU+QI2ttgmguP2o4QiKO5p2o6oKgUCA9IYgQ0q8mnMIgtD92hVsT5o0iU8//ZS1a9e2+fi6dev49NNPz/hWnSAIwrlCkiQyklM1+1avXh37v7FfBrLdgrFfBhAdeCguLta0P3H13d4qMTGRH/7wh8yZM+eUX0CGDBnC97///VaBstVq5fHHH+fSSy89Zf3y/v378+ijjzJ79uwz7luophHnu8tbPyCBISNJU2cbScI8pC8J184k0uRBCYSoe2kxgeLKM36+46WkpGBTZAaUt+SwV1ZWAaBLjMc4Ipe4MYPRHR1Br6urj5WUzKwP4GgKnRf12AXhfNGuNJKHHnqIlStXcvfddzNr1iwmTpxIcnIy9fX1bNy4kVWrVmE2m3nwwQc7ur+CIAjdbnL+aBau+iK2vWXLFtavX8+UKVM0lTDcbjevvPKK5li73c7IkSMRoiwWCzfffDPXXHMNGzdu5PDh6IRIo9FIWloaU6ZMOeWXE6PRyLXXXssVV1zB5s2bOXDgAG63G4PBQHJyMpMnTz5lms/JuL/a0bKS5VHWqSOwz5uI3hG9axuqqMO1aDX+A9Hye7LZhNLsw71mF3XPLKDyZy+R/sNbSX3gWiTDmf+5NRgMXJDQF6/ackekrKyU5G/MZsjNl1GzYgtWownJaMDldXP4p09pjh+j2snIyPjar1kQhM7RrmB70KBBvPTSSzzxxBOsWLGCFStWIB2dlAHR/MXf//73DB48uEM7KwiC0BNMzh/Nx2tXafa9/PLLrFmzhkmTJhEfH8/BgwdZs2ZNq9zZGTNmoNeLxXtPZDabueCCC6KVQsIR0Ou+VnlEo9EYW9b+bCn+IN5N2gom1inDSbxRWx/dkJVC8r1XUfv0+wSLq2L7fVsPMPirf1D9hzeo+vWrON9bQZ+/PYJl/JlNilUVhWFhM8fXvClPNPDlqo8Y21xGTtiIzRzHgbIStteWkpGiY1BZS9uh+ngiLje6BNvXfu2CIHS8dv/GHzduHJ9++ilbtmxh3759sRqpeXl5jB8/vlfXkBUE4fxmjbMw/4ILWbx7o2b/wYMHT1nWLzk5mYsvvrizu3fOUSMRfLuL8KzdTbCoAjUULaWnT3FgmTgM6+QRHVK7+kwFiypRA8etUimBfV7baZGSLGO/eAL1Ly6O7QuV14GikvWbb+O4fjbljz1Nw3+WnnGwHalvwioZSE/PoLo6GsSXHi2RuHXrVtZU1GKQdaCTMaQlUplion+5D52qEh8fT2pKKsHSGuJEsC0IPcJZDa9IksSECRO+1oQTQRCE88GcSVPxpdv54osvTt8YcDgcPProo1it1k7uWc+kqirBgnICRZWo/iCSQY8+PRE5zkTjO18SaXSfcACEa500LVlP82cbsV00nvhLJ3fJQE7Erb0boU9LRJ/YMuE/XOciWFaDsU8a+pQEzMP6tT5HsxddvAXLmMEM+vyvseC98d3lyLY4Ei6bctLnV/zRyZCDBg0iFApR31AfnSx6sv7qJHxmmXTZzIgRI5AkCcUX/FqvWRCEztOuYPsnP/kJ11xzjQiyBUHotSRJ4oYbbiA9PZ1FixbhdrtP2jY/P5/bbruNxMTELuxhz6BGInjW7cG9agfhWqfmsXBjE8GCCvQpCRiyU5EMOoLBIOFwGFnWYTQakWUZNaLQvHQTkfomEr95cacH3K1OH45oNoMlVSi+AMGSKvQpCdGR+BPPIbecRNLrkPTRYLl56Uac768kfv40sp/8DobM5NbHHl0cSZZlhg8fTklJMTYpgFsNazp47H2QJYn+yRkMzumHThf9sy4ZRaqSIPQU7fo0vvfee7z//vtkZmZy5ZVXctVVVzFw4MCO7psgCEKPJkkSs2bNYvr06WzZsoUNGzZQW1tLOBzGarUydOhQLrjgglarHfYWii9A/ctLCBwqa/2Y10/gYCkoKoHyWhqKy6gwhvFEWtI3ZFkmNTWVrKwsbDY73i0H0KcmEH/J5E7tty5RW7Y2XN9EsKwWY59oFZpjEyeP/evbfkh7Agl0CW3fwej7wg+Jv3wqFU88z4Ep95HxsztJ/p/LkY6r265Pjkcy6FBDESRJIje3P/87Zwy77WE2b95Mpd6ELhAiMSuDUZMnMCkhi+AC7YqThvSks3oPBEHoOO0Ktt98800+/PBDPvvsM55//nleeOEFRowYwdVXX80VV1xBUpL4kAuC0Hvo9XomT57M5MmdGwSeS9RwhPqXPiZQ0PaaDMGyWlBUfD4fLpcLVVUxGmV25cVTm2jEFFLIqA8Sqa6murqa1NQ0hgwZQvMXW7DNHI1sMXda3425GegSrERcntg+16LVpNx3FZJOm86hePw0LdXm7puH5py0f5Ik4bj2AmxzxlL1i5dxLVhJ8v9crm1j0GMZNxTPhr2xfcHVu5j2nWuZPXs2TqcTh8OBJEmE61zUPvN+q/4bMsTfYUHoKST1WAmRdgiHw6xYsYJFixaxcuVKAoEAer2e6dOnc/XVV3PRRReJxRvOgKqqml+evZln4z7UYAjJaMA6Ka/Ln19ci56jp16L7v4Z7Q7tuRbNyzbj+nhdq/36lAT0qQ4a31uOu6oOl8sFgM8k47QbcNr1bB/asgJjkivIqMPRFJ2EhATy80eSeO0F2GeP7YBXdnJNn22g6VNtEG3sm4Z93kQizd6jaSTVhMpqiDQ0a9ol330FcfkDzuh5lEAI2WTAs243zV9uIe17tyCbjQRLq6n5yzut2seNGUQoN5V4h4PAgSN4N+1DDWtLFCbeejHWicO+5is+f3TVZ7Sn/o7qjXr6tTirpC69Xs/cuXOZO3cubrebTz75hEWLFrFq1SpWrVqF1Wpl8+bNHdVXQRAE4RygRiK4V+/U7JNtcSTdMhdTXj88X+0g1DeFQzWlOAwShrCKy6bHFFLoWx0gLDfhi9PjNemoTTRQk2gkrTGIy+WisLCAvC3pnR5sW6eNxP3VThRPyzLpwdIa6l/6mHBNI6qiIMky+jRtHr6hTyrm4bln/DyyKZqf7T9whNqn38e58Cv6/OVhbDNHY5mUh3ejdul53/ZDBDbsIWwyAq2DCmNuBpbxQ878hQqC0OnatYJkW2w2GzfccAMvvPAC3/3ud9HpdHg8ntMfKAiCIJxX/HuLNSkYAMl3XIp5eG4s9eHIkSNE9BINdj0RWSLVGSIroKNfXAKXmbK52t6fi0MOZuxxE+ePoItEb8JWVlbhLa/p9Negs1tIvnv+15poqHPYSL77Ck3+9ZlKvvNyBq98BkNaIoVXP0Hpg38hft5EzHmtK52cjCEzmeS72vf8giB0ng6ZrqyqKmvWrGHRokUsW7YstoiDyF8UBEHofQKHtXnaxpw0TIP6xLabGp00NjYiKSpJzRFkRcVusRIfH00fCde7MDlsZDuSSc5IZ8+mLSQ5gzQkGAgaZCrKyujfBa/D1D+T1Aevo/7lJUScJ682A9EUk6S7Lo+tLtke5qE5DPjoSRpeX0rd8x8iGfQk330FTUvWR1e0bKPqCQCyhGXcEBzXzUKOE6mbgtDTnFWwvXv3bhYtWsSSJUuor69HVVUGDRrEVVddxVVXXSWWixUEQeiFjk+9ADD2z9JsHy4oQPH5SfGBMRItk2e3HRekHiu1p6jYbDbSrQmEG2tJcoWocxioaKzv7JfQ0vecdDJ+fDverQfxrN1F8Mhxo+qShDmvH9bpIzHn9euQEWVJlkm+41KSbp+HJMsEy+tofHc56U/cRrjGiW/7IUI19egMRnTxVkx5/bBOHXFWQb4gCJ2rXcH2c889x0cffURRURGqqpKSksIdd9zB1VdfTV5e75gwJAiCILTtWE3pYxSPdpGYmoAHm1/BGAR0MnGyATUUQjIZkeNMSAk2jP3SCZXXoSoK8SGJBkBSIbE5zP6scNe9GKLVQayTh2OdPJyI24f7q52o4TC6RDv2GaM65zmPBu7hqnp82w9xeO5jpP/oVlIfuJYkCXS6r7ecvSAI3addwfbf//534uLimD9/PldddRXTp09HFjligiAIAqBLjtds+3YVoviDyGZjdDveSEK4pRCWHFJQmn2Y+mdhyElHNhtJmD+NcEMTzneWIx23qIw+rNJ0itUUO5vOFoc+OT5W7aKzWcYPZcjaf1L9hzeo+tWrON9bSd/nvofua0zCFAShe7Ur2P7DH/7AvHnzsFgsHd0fQRAE4RxnGT+Upk/Ww9F4Wg2EcC38CsdNFyJJEklelYBBwhxR0UVU1HAQOdlBqKKOcL0L6+ThuD5eh+Jyo0uOx6+0jGSH9DJpkd61OqLOFkfWb76N4/rZVPzwueiKlGJUWxDOGe36jXXNNdd0cDcEQRCE84U+KR7z8Fz8e4pj++pWbGHb0hUcsiv4txzE6m7GppiwoCciy/gjISwYUMMRFH8QSadDMhkJhYLURPxYAUUCp11Pf0PX5yd7vV7Wrl3L7t27qd9XiKQoOByJTFOuYPz48RgMXTDKPWYwAz/7M5IkoQRCFN/8c5LvvYqEy6Z0+nMLgtB+vWt4QBAEQegS8ZdOIXDgCD63l8OHD9PY2BDdD2Q3+NBHDATVCH4AVcLb2IiiKDjy+qOGIkQam2mKBCksPUJYVoiTJRriDYT1En1S07vsdQSDQRYsWMDq1asJhaJLyYdqGkFRKKur4cDLNbzzzjtccsklzJs3r0tGnFVVRWn2Ihn0lHzzVyRcOZ2sP9yPITO5059bEISv74yC7WHDhiHLMh9//DH9+/dn2LBhZ/QLRZIk9u7de9p2giAIwvnF2CeV4MVj2PbzfxA+GqQeowJ6nZ5gOIRHUoigEg6EcXkUDheHMJfoCQYCBMNhFJsJj8NIRCehyBIORyJ2h6NLXoPX6+Wpp56iqKjolO08Hg8LFiygrKyM//mf/+n0OUxNTU3EJ8eT+/YvcX2wioonnufAlPvI/uMDJN54Yac+tyAIX98ZBdsTJ04EIC4uTrMtCIIgCG1xOp08+/lCdLlmhhVHMIValhSPyBI6nQ6dqhBRFCQkPrA0UqoPMck2kPhwGMWo4jXpcfZ3MLzIjSJLmEwmhg4dgj41odP7rygKzz///GkD7eNt3LgRu93OjTfe2Ik9i/YNogNajutmYbtwHFW/eBnZagaiI98ip1sQeo4zCrZff/31U24LgiAIwvEWLVpEU1MTxBtYn59AijNEP5fCEGsycckhpKJq3KEAVYqf6pAHh6pjs87LZ41FjM0djKSqIMtkNYVIcYWwWCyMGJGP0WjCMrHzS8xu2bKF/fv3a/bJssy4ceMYIFkJ+fzsLDxEgbdB0+aLL75g5syZZGZmdnofj9E77PT52yNANNA+cufvMA3pS9r3bo5VgBEEofuInG1BEAShQ3m9XjZu3BjbVmUJx+QRfPOBB7BYLLjX7cb1yXqCBRXovU4ChwsY5vWQ5NGzO+RDqXORbrKR6Y4wwKSQOXAgGRmZyLKMZDJgmTCs01/D8uXLNdt2u53HHnuM7OxsPBv3oQZDzJw8lcK4MM899xyRSEt5wpUrV3LzzTd3eh/bpCiYh+dS89e3cS5cRZ+/PIxt5uju6YsgCACI4tiCIAhCh9q4cWNsMiFEF2C5++67Y+ViJZ0O26ThyEYD/XNzSUpKIjExkUEpGVwR14fLm2xcb+jD3KwhjB8/nqys7FgedPy8SZ0+WltdXU1BQYFm34033kh2dnartiNHjuSiiy7S7Fu3bp0m+O5Kkk5H+o++yeCVz2BIS6Tw6ico+94z3dIXQRCizmhk+4knnmjXySVJ4ne/+127jhUEQRDOTWVlZZrt/Px8EhMTNft0Dhvx86fi3bCXzMxMDh8+FM3j1unQhVVSE5OOrqLYkntsnZaPbc7YLu+/xWJh/PjxJ20/a9Ysli5dGtv2+/3U19eTlpbWaX08HfPQHAZ89CQNry9FcXsBUMMR0Mkin1sQutgZBdsffPBBm/slSUJV1ZPuF8G2IAhC7xMMBjXb6enaUn2STkYFTLmZWCfm4Xz6LTh8KPZ4RFG07Y164i+ZjG3O2C4JFAOBgGY7OTkZna5l1cpj/Zd0cuzxE/8enniO7iDJMsl3XBrbrn7yP3i3HiT7zw9iyu26nHJB6O3OKNj+4osvNNuKovDb3/6WHTt28K1vfYsJEyaQnJxMfX09mzZt4vXXX2fMmDH8+Mc/7pROC4IgCD2XyWTSbJeXl2u2jf0yCJbXYsxORZ+SQNUlI9hRtoOs2gAJ7jAWJRpg65MTcFx7AZYJw5DjtOfsTGazWbNdU1NDKBSKLVxzfP8BqqqqWg08nXiOnsAyKY/Gt7/g4PQHSP/RraR+51okg5i6JQid7Yw+ZSfmqb3wwgvs3LmTDz/8UHObbMCAAUycOJFvfOMbXHPNNXz66ad8+9vf7tgeC4IgCD1abm4uq1atim3v3buXmpqa2N8LfUoC+pRo+T5FUVi5ahWN8QbKdEFcLi/Z5nhMY1JJT0snY+oIZH3XBoT9+vXTbAcCAdavX8/MmTNb9R+0kykNIQWHwUx8EBSPP1aOryeIv3gi1rX/pPoPb1D1q1dxvreSgYufRBdv7e6uCcJ5rV2/wd577z0uu+yyk+ajpaenc9lll/Huu++KYFsQBKGXmTBhAu+88w5+vx+IlqN74YUXeOCBB0hKSoq1C4VCvPnmm+zevZvy8vJoqUDAkNWPhSs+B1kmadtqZs6cydy5c7FauyYoTE5OJi8vj3379sX2vffee6SlpTF06NDYPlVVWbt2LatXrCS9IUB2TYB4b5g+ffpQ+6e3ADANzMY6YyRxIwcgHZeK0l10tjiyfvNtHNfPpmnxWnTxVlRVRfUFkC0954uBIJxP2hVsV1VVYTSeeja4yWSiqqqqXZ0SBEEQzl0mk4mpU6dqRnxLS0v56U9/ypgxY+jfvz/19fVs2LCBzZs3U1tbG2tnsVhIsNvhaFpGc3MzS5YsYe3atTzyyCNtVgTpDHPmzNEE236/n7/85S8MGTKE4cOHEw6H2bp1K02HjzCxwI05eCzPXNLU2A4UlBMoKMeQkUTyXVegT3V0Sf9PxzJmMJYxgwFwfbiayp+8SPafHiT+0snd3DNBOP+0q/RfRkYGy5YtO+kEEJ/Px+eff05GRsZZdU4QBEE4N1155ZWkpKRo9oXDYTZv3sy7777LF198waZNmzSBtizLDBo0qM1JkE6nk7/85S/U1NR0Wp/Djc141u+h+Yst9K+PMDN9ALqINhf74MGDLFy4kMWLF9N86AhjDzQfF2hHU1DM5rhW5w5VNVDz1HuEa52d1v/2sowbgnl4LsW3/pKSO35LqLK+u7skCOeVdgXb119/PaWlpdxyyy0sW7aMxsZGABobG1m2bBm33nor5eXl3HDDDR3aWUEQBOHcYLVaefTRR0lOTm7z8aqqKurq6mLbsiwzbNgwcnJyyB80lD5prQdr3G43r7zySptVsM5GoKCcupcWU/XrV2h8+0tci9fS9NEaLnCZmV+uY/ARD6aAtm62PqyQX+BGp7T0JSs7m5ycvid9HsXto+5fi6Ml+HoQY046uW//kpx//QjP+j0cmHIf3u2HTn9gD6KGI3i3HKD22Q+oe/7Dln+fW4h328Ee954LvUu70kjuueceiouLWbBgAQ8//DAQ/UWpHC3XpKoq1113Hffcc0/H9VQQBKEbqapKVVUVpQWHCPv92OLjyRs7KFahQmgtLS2NJ554ggULFrBx40bC4TAQfS+Pr1DicDgYNmwY9913H5MmTcK3+QBqMESls4H3d6+nqKgo1ragoICSkhJyc3PPun+qqtL82UaaPouudqkoCm63m1AohCSByWQmf8gwHGVl9D1cyfY+RhoSotc7sy6IKRT9m2c2x5HTL4fs0cPxjOqLO82KpIK9yo15ezGROlfsOcM1jfh2HMYyfmjrDnUjSZJwXDcL25xx1D37AebhuQCEG5rQJ8V3b+dOw7vjMM73VqC4fQCo/iCoKqo/SOBgKYGDpejiLThumENc/oBu7q3QG0nqWQwRbNy4kQ8++IADBw7gdrux2WwMGzaMa665hkmTJnVkP89rqqridDpxOBy9frGBY8sgS0YD1kl5Xf784lr0HD3lWoRCIdavX8/KlSspLS0lVNMIigKyTHy/LKZNm8bs2bO7dQGTztYR18LtdrNu3ToKCwspLi7mq6++Ii4ujvT0dKxWK/fffz9jx0YXrDn+94BuVH9+9rOf4XK1BKxTp07lzjvvPOvX1fTZBpo+3Yjf76eyspKqqirC4ZCmjcViITMzk7S0NBpdLvaOSKLWqDBwRQG2iERqaioWi5XSiIcltmaczU2a49McSVzWYCbLHI/+aFUVY/8M0h5p353frvxc+PeVcOji75L6nWtJ+97Nnb5yZ3u4v9qBc8Eqzb5wTSOqoiDJMvq04xZTkiDxxguxThnRIc/dU35HCT3/WpxVPaVJkyaJoFoQhPNWbW0tzzzzzEkne/t8Pr744gtWrFjBLbfcEisNJ7Rms9m4+OKLAfjwww9paGiIPZaens6YMWPaPM5sNjNnzhwWLlwY27d///6z7k+guJKmTzdSU1PDoUMHY3dmI7KEy6pHp6jEe8J4vV4KCgooKysnP38Eczw2kq6/lLojCwBoaGhg8+ZNbBpkpUlt/Se1xtnAx64gY3cHGD58BPHx8QSLqoi43OgSbGf9OjqTcUAWqQ99g9q/vYNz4Sr6/OVhbDNHd3e3Ynx7i1oF2qekQuM7X6JLisc85OTpPoLQ0dqVsy0IgnC+q6+v549//OMZVVWKRCK88cYbrFixovM7dh5wu92a7SFDhpxyNGrIkCGnPL5dfVi5g+qaag4c2I+iKKhAUVYca0Y52DnEzrZh8awfmUCtIzqaGwj42bFjB+7qOrzr9wDRQHvPnj34JJUma0tZP8UfJFzvQvFHV9KsdxgIhkLs2rWL5qMj3xGX56xfQ2eTTQYy/vc2Bq98BkNaIoVXP0H9K0u6u1tAdCTTtWhNq/3G/pnYL5mE44Y52C+egDHnhDtOKrg+WtPhef+CcCoi2BYEQTjBsbrQx6cuHBNnMpNoT2jjKHjrrbcoKSnp7O6d8/QnLFLj9Xo128eWQT/2r8ejDUxPPP7rijR5aVi/i0MHD8b2lWTGUZIZh6KTSExMxGKxEDDq2DPAissafb5wOMzevXvxbDtEMBhk//59gIoiA8d9WbCpOqwGE0pz9HWpgCpJKEqEvXv3EolEUE9Ykr4nMw/NYcBHT5L9t0eIv3QKAMGy2m4NWAOHywlXN2r2xV8yidSHv4F5WD8MaYmYh/cn9bs3Yp8zVtMuVFZLqLTzqtoIwonEOq2CIAgnOHDgAMXFxZp9mZmZXH/99eR6ZAiFqfe6+aqmkK+++irWRlVVli5dKhbzOo0TK5Ts3r0bn89HXFy0ZN6Jy6Fv3rz5lMd/XYGCMsrKSmPBoiJJlKWZmDRpEldccQUZGRmoqsr+/ft5//33OeIqYGRBdDTd5/NSX3gETyRIJBKtcGEOKlj8EQZNGstVV11FUqUbJRCkuLaKzwp3UbN1L/LR5woGg9TU1JBtt5zVa+hqkiyT/K1LgejKmIfnfhfziP5k//lBTLmZpzm643k3a1OJ9KkO7JdManWHRJIk4udPw7v9EJHGljsink37MOakd0lfBUGMbAuCIJxg5cqVmu3ExER++MMfkp+fH/tjnuJI5LbbbovlIR+zdevW2EqIQtvGjx+PLLf8+QkEArzzzjux4FefkoBl9CD0KQns37+fDRs2aI6fPPnsFl7xNbioqW4Z2Wy26Jg8ayZ33303GRkZhOtc+HYcZnBqFj/4wQ8wDtIupFPhrKOiVjsyOkOXwne+8x369o3mAkuSxIA+OXz30UcZH9AG1kWuWuRE+1m9hu4kW830efq7BA6VcnD6A9Q89S5qKNylfQjXake1LROHnTQVSZJlLOO01V/CNc7O6pogtCKCbUEQhOMoisKuXbs0++bNm4fF0vZI5OWXX64p/6coCrt37+7UPp7rEhMTGT1aO9Fu7dq1/PGPf2Tr1q04nU6Ki4v573//y9///ndNO71ez7Rp087q+csqylGUlrrLRgWuuuqq2HawpArF7SNYUoXJZOLS2Rdpjq+tq6fEqk2hyNcn4HxzGeH648r81btwvvIpw+3avOEDpmBsfYpzVfzFExmy9p8k33kZVb96ldIH/tylz6+GtHWzdcfdKTgxDQlAl2DVnkDU3Ra6kEgjEQRBOI7P5yMU0pZ/Gzly5EnbWywWBg4cqKmQIUa2WwtV1OFZtycayPr8XORVCRd7KU/U0xBvAEmioKCAgoKCU55n7ty52GxnV8WjWdbmS6fq4rB4wuCIbqsRRfPvwJCJouPah9UIh5NkMpwSOlXFaDRhtdrwbjmAd8sB1HAYNRRBafaiT0skMdEBSIBKSC9RlWzE5XKddTpMd9PZ4sj67b04bpgT2xc8Uo0u0a4JfjuDbDFrtoMlVbGSfiemIQEEiio17SWLqVP7JwjHO++C7U2bNvHll1+ye/du9u7di9vt5tprr+UPf/hDd3dNEIRzQFu3oo+fCCbpZFS0o2bKCZPdemKd1+4SqmnE+e5yAofLNfvjgOlp/dm/bz8+o8ThvhbqHaeu4zx27Fiuvvrqs+6TkpVEUC9jDLcsxOZasJKU+69GMug11zhc58KzfKvm+Aq7jM+sY39/K8ML3USnQLaION2o4QiSXnf0/EefV4I9A2yE9fJ59TNiGTM49v/Sh/9KsKCC7D89SPylZ5fucyqmAZkEDpbGtr1bDxJ/2RR08Vb0KQnoU1omMYcbmvDv0n6JM/XP6rS+CcKJzrs0kvfff59///vf7Nq167xeZEIQhM4RFxeHyaQd9dq+fXvs/8Z+Gch2C8Z+0eXEm5ubKSws1LRPSGi7WklvEzxSTe3f3m0VaB+TmpJKfv4I4lU9IwvcZNf422wnSRJz587l3nvv1eR6t5cjOYmK1JZr7PF4cO0tpPpPb+FZvwedw4YSDBEorKDmz29RW1ahOb4qLQ6DwUBtopG9/W34QiHc7ubY47LNgmTQI9uio7uNjQ2EZZXizDhSnCGGF7rRf7oV5werCBwuO6/K0PV9+jHMef0ovvWXlNz5O0JVDac/qB0sk4eD3PKFRQ2GqXthUavnC5bXUf/iR6jhli/Ekl7GMnFYp/RLENpy3o1sf/Ob3+Tuu+9mwIAB7Nq1i5tuuqm7uyQIwjlEkiRGjx7Nxo0bY/uWLl3KlClTiI+P14yaqarKokWLYsuQQzSnOD8/v8v73dOEG5qoe2ERii9wynaJiUlMmjSJ2rpa7BWVBI0hah3RHHiHw8HUqVOZOXNmh6ZcDB06lFf7JpBVGzg6uq1SVFREntlE49tfal9HOEzpkZYR1Pp4A0NmT6KyqorGxkZqk4w0W3VIqovZ5iRUfwjZbIyttqjGGdnTWEVYJzOgIrqcuM1mRzpYgftgBe5VO9CnJxI/dwJx44ee8yPexpx0ct/5Fa4Fq6j48fMcvvR7DNv8r9gof0fRO+zEjRqEb/uh2L5QeR3VT/4H08Bs9OmJhCrrCBa1rpMfN27o105zOTYX46uvvqKoqAifz4fBYCAxMZELL7yQSZMmtfqSLgjHnHfB9qlyKwVBEM7E7NmzNcF2c3Mzv//977nmmmsYP348er2e0tJSlixZwtat2hSDCRMmnHVO8fmg6dMNKB7tSLVsNWOdPBxDTjqRxma8G/cRqqxHlmXS09JJT0tnbLyFhO/dgNFsxmAwdErwaTKZmDRrBpualjL6YDN6RaWurpbduyP065eD3W5HVVXq6uspLiomEIi+Dnecjn39rXxn7lyOHDnChx9+CIDfpGMVTqocTVw+Zgo5iamoEhRWV7DlzUWYK+o5PsM4K0tbKi9c3UjDfz7HVlJNwnUXnPMBtyRJOL4xC9uF4/DvK0bS6wg3NhOuasCc16/Dnsdx7UyCxZVEnNpFjgIF5QQK2r6bok+JJ2H+15tge+jQIV599VVqa2s1+0OhEE6nk9dff50FCxZw3XXXiVVkhTadd8G2IAjC2RowYABDhgzh4HGLnjQ0NPDvf/+bl19+GaPRSCDQesRWp9Mxb968ruxqj6R4/Pi2HdTsMw3uQ/JdV8RGfAFss8bQvHQjTZ+2fLFRm7zoimsxjhrYqX286KKL+Oqrr9g2FEYUerAEIjQ2NtDY2IAs647m4bekd9QlGNjX30pWbj+GDx9Obm4uy5Yt0yy4c7CwgIOFBRgMBhRFoV9JMznV2i8cZrOZ1NS2Uxzdq3cimQ0kXHF21VZ6Cn2iHdu06ABY7TPvU/fMAlIfuZ60792s+TloL128lZTvXEP9C4sI159+UrI+1UHKfVd9rVHtHTt28Pzzz8dqqp+M1+vljTfeoLGxUVPZRhBABNutdEfu3LHnPJ/y9tpLRT36PqjiWvRy3X0t7rnnHp588knq6uo0+1VVxe9vO7f49ttvJysr67z7+fm618KzZT/q8aXVdDoSv3kxksnQ6hy2iyfi21NMqLQ6ts+9bjfmkQPOvuOnkJyczN13380///lPNgy3k+wKkV0bILE5jHo0sIroJGoSDZSnmnBb9CQkJHD//fcjSRJWq5X777+fv/3tb5o0IoguXGPzhulb5ddMndTrdYyYOYX4ydEA1L+3mHCtU3Ns87LNxI0ejCE7pc1+d/fnor3SfnArkkFP7V/fwblwFdl/eRjbjFFnfV59qoPU795I8xeb8WzYi9pG2pJsjcMyeTj2C8chW8xn/N6VlZXxwgsvtLq+bTl2zsWLF5OcnHzW5SmFr6c7PxdncidKUs+1T+zXsH37dm666aavVY3E6XSec7/EzieBrYdQgyEkowHTuMGnP0AQOpHL5eKll16itLT0lO2MRiM333wzY8eOPWW73sKzcDWBTQdi28YR/bDdOje2HalvIlJRjy4rGV1yPIFN+/EsXBN7XE6w4vjhzV3S1z179vD666/H7lRIqoo+oqIiEdYRW4Y9IyODe+65p1XueGFhIS+//DJutzaVIa/UR3ZDSwlJo9nM8Ee/Sda8qbE/zqqqEtxyEM+Ha0Bp+btjmjgU6zUzOuPldrvQ4XIaf/ISgS0HyfzyL+j7pqHT6dDpdASDwbM6txoKE9xbQqSyHjUQQjIZ0GelYMjLQTJ8/bHFF198kb1792r2ZWRkMGPGDPr27Ut9fT0bN27UlP0EsNvt/OxnP0OvF+OZvUFiYuJp2/TIn4TJkyfjdDrPuP1rr7121iuKHdMdVQRUVcXlcpGQkHDO5+q1x7FlkdevX0/5tj2EA0EsViv5/plMmzYNh8PRpX3pzdeiJ+kJ18LhcPCLX/yC7du3s2LFCg4cONDq8ZkzZzJz5szzugLJ170WisEIpuPSRfpkknDc59hbUI0i6ZCdPiwDc/D3yyZ8XHtJ1nXZ53769OmMHj2aNWvWsHLlSurr66N9AIzAwIEDmT17NuPGjWszeBo3bhx5eXmsW7eOFStWUF1djS6ikt3kQZZ12GxWMrOy6PuNuRzOMLLyv//F5YoufJOQkMCYMWMYdtEEfKt2xM4p7Ssl/hYrssnQ6vl6wufirExwkLLkT3g378c6cghqJELz55uxXDr5pAtHfS2z2r4j8HXV1dVRUFCA0djyczl14iRuGDudUGkt6p4a+hr05I2eyf7RY/nvB+/H2gUCAYqLi5kwYUKH9EU4vZ7+ueiRwfb8+fM1eXCnk5LSMR8u6N76uJIk9cgfks60fft2FixYQHV19BZyqKYRFAVkmcJFjSxevJgJEyZw4403Yrd33fLGvfFa9FTdfS10Oh3jx49n/PjxuFwu6uvriUQi2Gw20tPTO6QU3bniTK9FNB+3pV2ook57nKJGt4/+G66o07TXxZm69Jrb7XYuvfRSLrnkEqqrq2lubkan05GYmHhGo1YWi4WLLrqICy+8kNraWhr3FBB540uMRiMmk5EjpaX8ZflCXOHWKQ47d+7EoTdxdZWRvn1zkCQJNRQhUt2A7mh5ybZ09+fibEg6HbbJ0QVomr/cSsk3f4Vtzjiy//wgptzM0xzdNTZt2gRE32ddRGVQg8LcwjDOvcuOa6USCAQZbIljls/GBl0TAVO06sr69euZOHFiN/S8d+upn4seGWz/9Kc/7e4uCF1g6dKlvP/++6dsoygKGzdupLCwkMcee6xDv1gJwteVkJBwXo9gdxRj33Q8tCxZHzhUSqiqAUNGUqu2qqLgWatd3t7QN73T+9gWSZLIyMggI+PkQe7pjk9LSyO+zktdfDyKorB3714qm524Uhyxdoo/iOLxIVvjkM1GnOEAh8qraW52k5eXhyzLKN5Tl0w8X8TPm0TuW7+g/Pv/4OD0B0j/0TdJ/c417Ur76EjHBoCMQYVRh5sZGJ+C5G9JC1L8QRS3F9WoA5ORIWEzkYNl7Bpkp8mmp6ampru6LvRAvWdIRuhR1q9ff9pA+3h1dXU89dRT+Hy+TuyVIAgdIW7MYG21CRUaXv2k1WRANRim8c1lhOtcmv3WqSO6oJedRzJGA8VDhw7S0NCAMaQgR1pyspVmL2oojNLsBUAXUTGEFRoa6jl0KFo3WmojheR8FT9vEkPW/pPkOy+j6lev4Fq8tru7RDAYRBdRGX2oGZsvokknAaKBdjiC4o5OljYZTRgiKqMON2PxRc46/1w4v/TIkW3h/BYMBnn77bdb7c/MzGR03jhsRjNF1RXsrC8nFGoZSaiurmbp0qUdslyzIAidRzYZsEwejnvl9ti+UFUDVX94A/PwXBRfkEhjM8HiSnTxVs2x+vRETIP7dHGPO5Y+LQlXkys2uikB6Q0BKlPNjBgxgsGGBNRQiN3FhRR46kmvD8SSaGpqqsnMzCQz1dFd3e8WOlscWb+9l6TbLsE0LAeAxveWE3/J5K+9AE1HsFqt9Kv0YfVHK9M0N7esEGoakIUhO5Vwg4twUXR10aamaOlBfURlaImH6oF9u7zPQs913gXbmzdv5r333gOidXEBtmzZwv/+7/8C0fq59957b7f1T4jmwnm9Xs2+a665hksvvRTvpv2owRDTjJO4YXAGTz31FBUVLUslf/XVV1xxxRVilrcg9HDx8ya2Lm2nqPh3FxGuaURVFCRZhuOCbUkvk3jTRT0y5/Lr0MVbOBzRVicZXBXklscfZOiMSXg27kMNhpg1ZTpH/C62/u/fNW0Pq26Gd0OA2RMcW/QmVFlP+WNPU5XwMtl/epD4SzumCMKZGtQvF7WuJZXH6XTiNUrkPnwTxj6peDbuQwkEkRpdUFJN1fr1sbYJnjBJSe1LRRLOT+ddGsmRI0f44IMP+OCDD1i5cmWrfV999VU391BYvXq1ZjsvL4/LLrus1R/YxMRE7rrrLs2+5uZmdu3a1el9FATh7MgWMyn3Xx1b2v50JIOOpDsvx9S/Z0yQOxsej4eNAe1qgwOz+2L9YCMN/1lK4FApgUNlNH22AfuHmxmQrR0FXe+vaTUg0dsYMpMZsuY5zHn9KL71l5Tc+TtCVQ1d9vx5unjMUsugjgq87SumLNisaecMB/ivpwiPql30Zpy+9fwEofc674YHr7vuOq677rru7oZwCifWLL7gggtO2rZv377079+foqIizfGinrEg9Hz6pHjSvnsjrk/X4924DzXY9uIg5mE5xF8xDWOf1C7uYeeoqKigzq6jPsFAsisESGRkZIKi4t18QDOyr09LJDMjg+Kjv+PqEgzU23RUVlYycGDnrqLZ0xlz0sl951e4Fqyi4sfPU/vsB2T96u4ueW6ltJaMzAzKjv69arQbKAs08+STT5Kbm0t6SEddfT17Cg9jykwmmGoitzI6pyg+PgF7k8jZFlqcd8G20LMpiqLJwwY0M/8lnYx69N9jMjMzNcF2W8tkC4LQM8lWM4nfmE3C5VPxbjlAsLgK//4SILr6X9I3553x6Pe5IhAIgCSxt7+NUYeaSQ3ptKlvsgTK0X8Bvd6AwWCkzqSwt78NJOmkq5T2NpIk4fjGLGwXjotVKHEu/Arz0JxYyklnUHwBcvrm0NjQiMfjptnacv2Ki4s5VNMIEQVFVQBoskZL/un1BoYMGYzSxkqWQu8lgm2hS8myjNFo1MzUrqioICsrCwBjvwyC5bUYs1tGuMrLyzXnMJvNXdNZQRA6jBxnii7PPWNULGdZMhrOu0AbWn5HRXQSO4bYGVTmY7yqoJeigwiyzRIr/QcQViMUOyQK+thRjgbg4veclj4xus6CqijUPvUu/j3FpD5yPWnfu1lb+aaDSAY9Op2O/Px89uzZgymoDZ4lSUKN/gcAU1DBYDCQn59PXJyl20sXCj3LeZezLfR8OTk5mu0VK1agqtGyWPqUBCyjB8X+ABcXF1NSUnLK4wVBEHqSrKwsdLroSKciSxzMsbD/glwSrpiKMTcDQ2YSpkHZmIflkHDFVPbNzOVQjjUWaOv1+tgAhKAlyTIDP/kzqd+9kdqn3uPgzAdwr97Z4c+jT4suZmQ0Ghk9ehSTkvqSbIuPPS7bLUhGPbLVjMlkYmp8NuPGjcNms2uOFwQQI9tCN5gxYwaHDx+ObR86dIhFixZx5ZVXalbjq62t5d///rfm2ISEBPLz87usr4IgCF+XxWJh3LhxsVUIARZ/+Tl97r+f/Lk3aNru2rWLxR98rtk3fvx44uLiuqSv5yLZZCDjidtwXHsBZY8/Tc2f/ot1+sgOrWJjGT+Upk/WgwqyrKNfZjaPjRxI+cgMio6U4PV6MRqN2Gw2JsmJ+D7dpD1+Ul6H9UU494lgW+hyEyZM4L333sPtbimNtWTJEjZs2MCkSZOIj4+noKCArVu3oiiK5tgLLrggNmIkCILQU82ZM0cTbIdCIZ5++mkGDRrEqFGjANixYwcFBQVtHiucnnlYDgMXP0mkyYMkSbhX7yRUVY/jG7PPOvDWJ8VjHtEf/+7j5gvtKCCjvI6B00diHJVGqN5F/Yqt+CoPAS3Pp4u3EJff/6yeXzi/iGBb6HIGg4Fbb72VF154QbO/vr6eTz755KTHZWVlcfHFF3d29wRBEM7awIEDmTFjRqtSp4cPH9bc2TvRzJkz6d9fBGpnSpJl9I5o6kbT0k3UPfM+jW99SZ8/P4ix39nVuk64fCqBg6WaKjrhOheuD49dU5VwIIjOpM0ZT7hqBpIYFBKOI4nc48cAADlJSURBVHK2hW4xfvx4brnlljMefUhPT+eRRx7BZDJ1cs8EQRA6xq233sq4cePOuP2ECRO45ZZbOrFH57esX91N7n9/TuDAEQ5M+w41T72HGo6c/sCTMGQmk3zHZUiGMw+c4y+fgmX80HY/p3B+ktRjM9OEbqOqKk6nE4fDcc6vnPZ17dmzhw8++KBV7e1jDAYDU6ZM4dprr8VqtbbZpiP15mvR04hr0XN01LUIBAKUlZVRv3EPejX6JTr7oq5dGbCrqarK559/zueffx5b0vtE8fHxzJs3j7lz5572/RWfi9OLuH1U//51mpasZ/BX/0BnO7v890BxJY1vfUG4uvGER1QCgSAmkxHZZiHhqhlYJw47q+cS2qenfy5EsN0D9PQfks6mqipFRUWsW7eO2tpawuEwFouFIUOGMHXq1C4Jso/vS2++Fj2JuBY9x9lei7KyMlasWMGGDRsIBoOEahpBUUCWGTNnBrNmzWLUqFHn9XUOh8Ns376d7du343K5AHA4HIwePZqxY8ee8VwU8bk4c4rXj2wxEyypou7Fj0j/0TfR2S3tOpeqqgQOleFZu5vgkSoUbwDJZCAcH0fyBWOxjB2CpBepI92lp38uRLDdA/T0H5LeRFyLnkNci56jvddCVVUWLVrEJ598wvF/ao4Ptg1HS6Tl5eVx7733YrG0LxjqLcTn4utzLV7Lkfv/iD4xnuw/PkD8pR1zN0Vci56jp18LkbMtCIIgdIr33nuPJUuWcCZjOvv27eNvf/ubWCFW6HAJ86cxdM1zmIflUHzrLym583eEqhu6u1tCLyKCbUEQBKHDbd68mWXLlrX5mMMej05ufcu9pKSEt956q7O7JvRCxn4Z5L7zK3Je/BHebQdRPP7u7pLQi4jSf4IgCEKHUlWVTz/9VLNPkiTmzZvHhRdeiOFgJQGPly2H9vHZwe00NzfH2q1fv56rr74ah8PRxb0WzneSJOH4xiwSrp6BpNeheP2UPfp30h6/GXNev+7unnAeEyPbgiAIQocqKipqVWHolltu4brrrosF0UaDgWljxvODH/wAvb5l3EdRFL766quu7K7QyxybyBiqrMe3s4BDsx+m6revofiD3dwz4Xwlgm1BEAShQ+3YsUOznZyczMyZM9tsm56eztSpU095vCB0BtPAbAavfIbU795I7VPvcXDmA3jW7+nubgnnIRFsC4IgCB3K6XRqtkeOHIksn/zPzbHly092vCB0FtlsJOOJ2xi88hn0qYlEmr3d3SXhPCRytgVBEIQOdbrSW5JORj36L3BG1UoEoTOZh+Uw8OP/hyRJqKpK6Xf+hH3uBBzfmN0jS8kJ5xYxsi0IgiB0qBMnN+7atQtFUWLbxn4ZyHYLxn4ZAOzcufOUxwtCVzgWVKv+IGowTOm9f6Tohp8RLKnq5p4J5zoRbAuCIAgdasyYMZrt+vp6Vq1aFdvWpyRgGT0IfUoClZWVrFu37pTHC0JXkuNM9Pv3E+T+9+cEDhzhwLTvUPf8h93dLeEcJtJIBEEQhA7Vr18/cnJyOHLkSGzfW2+9RW1tLRdddBFJSUkEAgE2bNjAwoULiUQisXayLDNjxozu6HavF65z4d12kEh9E2o4gmw1YxrcB/PwXKRT5Nyfr+IvmYx1+iiqf/86ajAMRFOeRFqJ8HWJYFsQBEHoUJIkcdlll/H888/H9qmqyrJly1i2bBl2ux2Px6NJLTlm6tSpIo2kiwWPVNP0yXr8+4+0esy9agc6hw3bzNHYZo1G0rVejOh8prPFkfXbe2PbVb9+BdUfIv3HtyNbzRgMhm7snXCu6H1fVQVBEIRON27cOObNm9fmY83NzW0G2rm5udx0002d3TXhON7N+6n5+7ttBtrHRJxuXB+tof7Fj1ACoS7sXc+jT3FQ/+onHJx6P81LN2Kz2bq7S8I5QATbgiAIQqe47rrruPLKK8/otvuIESN47LHHMJlMXdAzAcC3p4iGNz8H5cyqwfgPlNLw6ieobXxR6i1SH7iWoWufwzwsh+JbfknJ//wOwpHTHyj0aiKNRBAEQegUkiQxf/58xo8fz4oVK1i3bh2BQEDz+MiRI5k1axYjRowQubBdSAmGaHzrCzghzpbjTJhHDkCOMxEsrCBYWqN53L+vBO/GfVinjOjC3vYsxn4Z5L7zK5wLVuLbfADJoI+Wr1TVXpnbLpyepIoCp91OVVWcTicOh0P8selm4lr0HOJa9BwddS2CwSAVFRV4vV6MRiPp6enY7fYO7On5r6Ouhef/t3fnYU2daf/Av1mBEGQREEXBNSAguKNIXbFYBWu1LnVp377T2tFXq53FWq3WttOOvzrWWrWtdhm1zrih1tZqq9Z9QSjudUEFQREQwhYIkO38/kCiMbh0xpBAvp/r8pI85znn3MkheufJfZ7nxIWaZPse7rGd4JnYB2L53TrkqsvZKFr7E0zaux+SZIG+8P/zOKd/X957s2Txxl+g/udOtFzyOlw7Bts5Mufj6P9f8CMYERHVC7lcjtatWyMsLAzt27dnom1HFcfPWzx2adsCXiP7WSTaAOAaEgSvMQMt2vQ5hdDfN+LtrGq/qZEHNYOhqAxX+k9H3offwlSls3Nk5EiYbBMRETkRwWSCLjvfok3Zr/MDRwTdOrWFxMvyRsDqzFybxdeQaLVaCIIA994RUB1aAb+ZY1CwdDPS+/6f1WtMzovJNhERkRMRqnRWtdqyVv7mnw2FpdCevgJDYSkAQCQWQ9bSz/IYldUgS2JXOQLemogOB5dD2TsCsuZNAcDpZ3AhJttERERORSSznhvBWKwx/6zLyoOpvNJimfJ7tz/oGFTDNTQILZfOgEgmhfbMVVzq8jKKk/aDt8g5LybbRERETkQkk0LiY1kvr025aP5ZMJos/tbdLIA+p9CivzTAx8ZRNg6yAB+49wrHjcmLkDl6vsUHGHIeTLaJiIicjHvPjhaPK1IuoPJ8hlU/k7YKJZv2WbSJPRRwDQmyaXyNhayZD4K/eQut17+D6svZuBwzBWV7Uu0dFtUzfg9ERETkZNx7R6Bsd+rdBW0EQP31j3CNaAORXAaRRAzD7WKUbj9sMe0fALj3CoNI6lzLtv+3msRHw71PJG5/vAGKLioAgLFMC0kThZ0jo/rAZJuIiMjJSJq4wyOuOzS7LUdZq85nwnC7GILJBJFYDKm/t+V+Ph7w6N+lPkNtNCRKNzSf/zIAwKAuRXrMFHiN6o9mcyZBonSzc3RkSywjISIickJNhkRDcV85ycOIPRTwnTwcYoWrDaNyDhJPJfymjYJ6zS6k9/4jyn4+Ye+QyIaYbBMRETkhkUgE73GD4DmsN0Qusof2dVG1gv/M0ZA1442RT4JIKoHf9FEIOfY5XEODcP2Fd5H3wVp7h0U2wjISIiIiJyUSieAR1x3usZHQnrwM7a+XYdJWQdDpIVa6wb1PBJQxnSBr4WvvUBsleXAAWm96DyVbD8KlfUsAgP52MaS+nhCJOR7aWDDZJiIicnJiVzmUMZ2gjOmEipSLEHR6iOQyq1lL6MkTiUTwHtUfQM3qnplj5kPs5oKWS16HayhnfWkM+LGJiIiIyAGIxGK0+NurMKhLcaXfNOR9+C1MVTp7h0X/JSbbRERERA5CGRsJ1aEV8JsxGgVLNyPjuTlcfbKBYxkJERERkQMRu8oRMGcSvEb2g/7mbYhEIhiKygCRCFJvj0cfgBwKR7aJiIiIHJBraBA84roDAPLe/SfSe72G4i0HONLdwDDZJiIiInJwzd6aBPeYCNx49SNkjp4PXVaevUOix8Rkm4iIiMjByQJ8EPzPOWi9/h1UX85G+lP/B0Oxxt5h0WNgzTYREREBAARBgLaqEvrKKriLWRvsiJrER8O9TyTKD5+B1NsDgt6AqktZcOvUzt6h0QMw2SYiInJyt27dwsGDB5GSkoLS6zmAyQSRRIKOMT3Qr18/dOnSBVIpUwZHIVG6wfOZXgCAovV7kfOn5fCdPBzN5kyCROlm5+jofnznEBEROSmdTod169bhxIkTVtsEQcCVK1dw5coVeHt749VXX0W7do179FQwmWBUl8FUrYNILoPUpwlEUom9w3oon/GDYSqtQN7CdSjdcRSBi6aiSXy0vcOiezDZJiIickI6nQ5Lly7F1atXH9m3uLgYH3/8MaZPn47Q0NB6iK5+GdSlqDh2HhXJv8GkrTa3i1xkUHQLgXtMJ8gDHXPJepFUAr/po+A5vA9y/rIC1194F21/+H9Q9ulk79DoDt4gSURE5IT+9a9/PVaiXctgMODzzz+HWq22YVT1SxAElO1JRd6H30Kz76RFog0AQrUeFcfO4/Y/1tdMuWcy2SnSR5MHB6D1pvfQZusHcI+JAABoDpxy6JidBUe2iYiInExeXh6Sk5Mt2uRyOeLi4hAu9YKbRIpreTk4nHMF2dnZ5j5VVVXYvXs3XnjhhfoO2SbKfjgKzf5Tj9W34sg5mDRa+Lw4BCKxY45VikQiePTvAgCounAdmSPnQhEdhpZLXodraJCdo3NejvnbQkRERDZz8OBBi8cymQyzZ8/Gs88+i+Z+/vBUeqBbWCe89dZbiIqKsuibnJyMqqqq+gzXJrQn0+9JtAWUlBTj4sWLSE1NwbHk40hJOYHffjuPwsJC8yIylWeuQfNLmv2C/h1cw1qj7fcLYVCX4kq/acj78FuYqnT2DsspMdkmIiJyIoIgIDU11aJt4MCBCAwMtOorFosxbtw4iEQic1tVVRXOnTtn8zhtSRAElP2cAgAoKytDWloazp47h7Mow6G2Lvgl0gMHVK44Jdfit0sXkZKSgsLCQgBA+b6TMFXr7Rn+Y1PGRkJ1aAX8ZoxGwdLNKPziO3uH5JSYbBMRETkRnU4HjcZyMZQePXo8sL+Pj4/VLCS1iWdDVX01B4bbxVCr1Th79iy0Wi3SgxRID3aH1q1m9pFquQSZgQqca6+ETleNixcv4NatHJiqdKg8lW7nZ/D4xK5yBMyZhA4Ha6YHBICyPalcEKceMdkmIiJyIkaj0arNze3u3MwiidjibwBQKBSPPEZDUnn2KsrLy3Hp0kUIgglaVwlyfV3q7FvcRAZ1ExkA4Nq1aygqUqPy9JX6DPeJcA0NgljhClNlNW6+/gnSe71Wc9PnnRIZsh0m20RERE7Ezc0NEonl3NGXL182/ywPDoDYQwF5cAAAQK/X49q1axb9lUql7QO1IWNJOTIzM2G6M1NHgZcMEIng7++P0aNH4/WXX8Xz0f0Q5FfzGhR6y837XruWAUNphV3ifhLEbi7osH8Z3GMicOPVj5A5ej50WXn2DqtRY7JNRETkREQikdVc2Xv27IHBYAAASH09oYhqD6mvJwDg8OHDqKiwTC47duxYP8HaiKa0FCUlxebHJpEIvXr1wrvvvou4uDi0kXmgtyoCM0e8gGHDhsF0t2QdVVWVKMjPt0PUT44swAfB/5yD1uvfQfXlbNya95W9Q2rUmGwTERE5mX79+lk8zs3NxfLly5F/TxKp1+uxd+9eJCUlWfQNDQ1Fs2bN6iVOW8nIu2XxOKBKhPHjx0N8Z0o/wXhnbmqTgMTERLQVu1v0v17QOEaCm8RHQ3X8CwQumgoAKD96DtoGVI/eUHCebSIiIifTqVMn+Pv74/bt2+a2ixcvYv78+QgODoa7uzsyMzNRWVlptW9cXFx9hmoTt1yMFglQW1dPCBl5QMdgq76G/GKEQolM3H2tcuQNu2b9XhKlGyTKmpr9ws+2oeznFPhOHo5mcyaZ2+m/w5FtIiIiJyMWizF58mS4uFjfFJiVlYULFy7UmWgPGDAAnTo1/GXAS3wVqJbdTYFcXFyhXrML5YfPwFSth0gihmA0ofrqTRR8ts3idTKJRMh7wM2UDV3w6jkImP8/UK/ZhfSYP6Jsd4q9Q2oUmGwTERE5oVatWmHmzJlwd3d/dGfUJNpjxoyxcVT1w81dgZv+rubHGo0GQrUeJVsPIXf+Vyj98RiK1v2M8sNnYdJoUX7PVIl5TeVw8fKwR9g2J5JJ4f/68wg59jlcVEG49dZKmHQNY05xR8YyEiIiIifVtm1bvPPOO9i7dy+OHj1qdSMkAISHh2PQoEFQeTeD5sfjMKhLIRiMELu5wKVdINy6qiCWy+wQ/X+uXbt2SG2WAs9yPXxL9VCr1aiqqoKrqysEnQFGXTkkyprpDo1GA/LyamrZNQoprrZUYMB98443NvLgALTZ/B4MBSUQy2WovpaD8sNn4fNivMMuVe/IRAInWLQ7QRBQUlICLy8vi1W6qP7xWjgOXgvHwWvhOGx5LfR6PS5cuIDCwkIYDAYolUqoVCo0KdOhbGcyqjNu1bmf2M0F7r3D4fF0T4hdGkbSrdVqMWvWLBiqdQjNqkCzIh0UCnd07NjRYk5xna4aly5dRmlpCUqUUpxvp4RBKsaCBQsQEBDgNO+Lgs+/Q+7cVVD0CkfLJdPhGhJk75AsOPq/URzZJiIiIshkMkRFRVm0VZy4gIJN+wDTg8flTJXV0Ow7iar0G/CdPBwSD8UD+zoKhUKBXr164fDhw7jY2h35PnIE3q6GNi0NXl5eUCrdUVlZiaKiIpQoJMhp447b3nLgzrSJzZs3d6rFYPymjIBbp7a4+adluNJ3GvxmjoH/G2MgdpU/emdisk1ERETWKs9noHjjL8Bj5pT6mwVQf/UD/KaNgkjm+OnFiBEjcOnSJRQUFKDIU44iTzlcdCYotXpIjcUweopQEdAEla53FwByd3fH+PHj7Ri1/ShjI6E6tAK3P94I9arv4TNxMOStGvYUkPWFhTdERERkQdAbULxpv1WiLfZQQBkbiSZDe8E1NAi47xt7XfZtlB8+W3+B/heUSiVmzpwJf39/c1u1XAy1lxz5TV1Q6C23SLQ9PDzw+uuvN/g5xv8bYlc5AuZMQuiZ1ZC3agZjeSVuzfsKhmLNo3d2Yo7/0ZOIiIjqVeWZqzBptBZtyr5R8EzsA5H0bgKqu1kA9Tc7YCwuN7eVHz0LZf/ODeJGOl9fX8yePRs7d+7E0aNH65zuUCaToUePHhg+fDi8vb3tEKXjkTSpKRWqOp+BorU/oWTTPjT/cDK8Rvazac20wWDAlStXUFRUBKPRCA8PD3To0OGxZ9SxF94g6QAcvbDfmfBaOA5eC8fBa+E46utaFCzbYnFDpLxNAPymP1/nOauv3kTBim0Wbb6Th8O1jgViHFl1dTXS0tKQlZWFyspKuLi4oEWLFujZs2edyRzfFzX0uWrcemslSr8/AuXAbmi5+P8gDw54oufQaDTYt28fDh8+DI3GchRdKpWiW7du6NGjByIiIhzyWnBkm4iIiMwEQYAu23I5cmVs1AOTGHm7QMgCfKDPKzK36W7ebnDJtouLC2JiYhATE2PvUBoUWfOmCF49B2U/nUDOXz+DLivviSbb165dw4oVK+qclhKoGe1OTk7G4cOHMX78eAwePPiJnftJcfzveIiIiKj+GE0QDCaLJlmgr/lnQ2EptKevwFBYCgAQiUSQBfpZ9Bcqq20fJzmUJkOiEfLrV1D27QxBEJAz6zNoT6X/V8e8fv06PvnkE8tEWxAgNgmQGAXgnuIMQRCwefNm7N279786py1wZJuIiIjukogBschiuj9DYSlkzXwAALqsPJgqq6HLyoPU1/PO9hKLQ4ga2CI39GTUzrNuVJehIvkC1N/shO/k4Wg2ZxIkSrffdSyDwYBVq1ZBp9MBABSVRgQWVMG/SIcmcjdIJBJotBVQe0iQ4+uCPNea39ekpCR06NABwcGO880KR7aJiIjITCQSQda8qUVbRfJv5p8Fo8nib/2tQuiy8i36S+/bn5yL1NcTHX75BAHz/wfqNbuQHvNHlO1J/V3HSEtLg1qthsQoICyjHD0vlCJc74Zenbuie/fu6NKlC3r37InOHs0QebUcvdK1UFQaIQgCfvnlFxs9s/8Mk20iIiKy4B4dZvG46nwmKo6ft+pn1GhRtN7ya3uxuyvcwtvYND5yfCKZFP6vP4+QY5/DRRUE3bWc37X/wYMHITEK6JyugX+xDu7uSoSHR0ChuHuzqkwmR5s2bdGyZUsoq4zoelkDpdaAtLQ0qxsp7YllJERERGRB0T0UpT8eh1CtN7cVb9qPipSLECtcIZJLYbhdjJKtBy36AIB7r3CL6QHJucmDA9Bm83vm+uq8D9ZCFugHnxfjHzg9ZFVVFa5dvYrw6xXw0BoAAK2CWkH8gP6tWrXEjRs3IDUK6HS1HKlhYqSnp6Nbt262eVK/E5NtIiIisiB2c4FnQgxKthy0aNddz4PhdjEEkwkisRhSf8t5pyU+HvAY0LU+Q6UGQCQSASIRBEGA4XYxbi/egOJN+9ByyXS4hgRZ9S8vL4eH1gi/Ep25zdvLGyIXGZRPRUIeFAB9YQmEKh0qT6YDhSVwd3eHVquFi96EwNvVDjWyzTISIiIisqKMjYRH3OOPDEo83eH72rMQu7vaMCpqyEQiEVounYG22/8OQ0ExrvSdhry/r8P9S76IRCIEFljOaCPIJPD/01h4DouBoNNDLJNC5u8N/7++AHnr5jAajea+LQqrIXagVWSYbBMREVGdPIfFwHvcIPOKgYAAo8kEg9EAoXYtdxHgGtEG/m+MgcyfKyzSoymfioLq8GfwmzEahsISqzncPRTuaFZiWZ50s4XC/Pt17026YrkMuqfCUFl5d8VTF70J3hVGOAqWkRAREdEDuUeHQdvaF2n/2oa8fSkw5qghNplgkEmgVKjQcexQdO7fBxIpUwp6fGJXOQLmTDKPahd9+zMqUi+i+bt/gFgE+Hk3RWFhgbn/T9fPo9OdFTvvZTKZsPXIL3B1EUN5Jz+XSmUI8nScGXH4ziAiIqI6GQwGbN68GQcPHqxJigKl0MvkgMkEiMWQiUtwZPO/4b13F1555RW0b9/e3iFTA2Me1ZZKULr9CDQ/p8D/rYlo3ry5RbJdXKXFBx98gGeeeQZhEk/IjAIuZ13DwV++Q2ZmJiIlIuBOsh0QEAAJHGfZdibbREREZMVoNOLzzz/H+fPWU/7dr7i4GEuWLMHUqVMRHh5eD9FRY+PzQhw8+nfBrbdW4taflkPawhdNmnqgrKLmRkcvjR5qSRk2btwIU5UOpopKiN3dIHaVQ2IU0KTSBIjEkEqlCAxsAbH771tEx5YaVc22VqvF9u3bMWPGDMTHxyMyMhLdu3fHxIkTsWPHDnuHR0RE1GBs3rz5sRLtWgaDAStXrsTt27dtGBU1ZrLmTRG8eg5a//sdSDwU6BgRBjc3NwgCEJRfZZ4+UOwqh7SpJ8SucgBAy9tVEAsCxGIxwsLCIHd1hUu7FvZ8KhYa1cj2r7/+ilmzZsHLywu9e/fG008/DbVajT179uDPf/4zTp06hXnz5tk7TCIiIodWXFyMAwcOWLRJpVL069cPEXIfuMvkyMy/haO515CdnW3uU11djZ9++gkvvvhiPUdMjUmTIdGQeLqjeNN+hLVojXOHjsGjqTvCZGJcbamATl4zViw2CQi8XY3WuVWQyeWIiOiEJk2awC2iDSSeSjs/i7saVbLt7++Pf/zjHxgyZAhkMpm5/U9/+hPGjBmDdevW4dlnn0VkZKQdoyQiInJshw4dspiOTSwW489//jPatm2LipSLEHR6+Pr5oe//jMGXX36JkydPmvumpKRg1KhRcHd3r+vQRI/FrWsISncmQ+7qghBFU5TmFMHTIIZ/kQ4lHlIYJCJ4lhvg7aZE8w4qeHp6ws2tZtpJZd/O9g3+Po2qjCQ0NBSJiYkWiTYA+Pr6YuzYsQCA1NRUe4RGRETUYKSkpFg8jo2NRdu2ba36icVivPDCC5BI7q4Yqdfrcfr0aVuHSI2c2EUGn0nxkPp6wishBv7dIxCk1iM834ABAe0xpENn9O3ZG126dEFAQDPz6pIeg7rBpV2gnaO31KiS7YeR3pmS6N5/EIiIiMiSIAhQq9UWbT179nxg/yZNmiAkJMSirbCw0CaxkXNxVbVC0/8dBpGrHG4RbeE14inIm/lA4eMFNzc3SO9bvl05oCuaDOttp2gfrFGVkTyI0WjEd999B5FIhJiYmIf2vX8Vo/pQe057nJss8Vo4Dl4Lx8Fr4Tjq41oYjUaYTCaLNoVCcfec4pplt0V3/rbajprR7cb++8L3Rf1wDWsN/z+Pg2b/SVSmXTaXiJi0VSjblQzXiLZokhgDebf2aNK9Ziac+rwm9y/IUxenSLaXLl2K9PR0jBo1CiqV6qF9S0tL7fbGKS0ttct5yRqvhePgtXAcvBaOw9bXQiQSobr67nLZJ0+ehEJRs4qk0csNxkotJF5u0JWUwGQy4fz589DpdBbHKCkpsWmMjoLvi3ogA0RPd4XrU+FARh6kWh1MmgpUFxZDu/80DAYDfAdG2eVaeHs/etVUh0y2o6Ojf9ebdO3atYiOjq5z28aNG7Fy5UqEhYVh7ty5jzyWp6fnY5/3SREEAaWlpfD09HysT0hkO7wWjoPXwnHwWjiO+roWUVFRFnXXycnJiI+Pr7knyssLaBdk3nb8+HFUVlZCLpeb27p372610l9jw/eFHXgBaN7s7sOR/VF++AwKv9gOsafSYa+FQybbCQkJqKioeOz+vr6+dbZv2bIF77zzDlQqFb755pvHujPanhdJJBI55C+JM+K1cBy8Fo6D18Jx2Ppa9O/fH2fOnDE/LiwsxIoVKzBhwgT4+/sDqCk3SU5OxoYNGyxiCQ4ORuvWrW0Wm6Ph+8K+PPp2hvKpKJSUlDjstXDIZPtJzIWdlJSEefPmoX379lizZs1jDfMTERER0LFjR7Ro0QK3bt0yt126dAnz5s1DmzZt4OHhgczMTGg0Gqt94+Li6jNUIofXKGcjSUpKwttvv422bdtizZo18PHxsXdIREREDYZIJMIrr7wCV1dXq22ZmZk4e/ZsnYl2dHQ0evToUR8hEjUYjS7Z3rx5s0Wi3bRpU3uHRERE1OAEBgZi5syZUCofbyW+Xr164aWXXnLIr/GJ7Mkhy0j+U8ePH8e8efMgCAK6d++O9evXW/Xp2LEjv+IiIiJ6DG3atMH8+fOxZ88eHD16FFqt1qpP+/btMWjQIHTp0oWJNlEdGlWynZuba562b+PGjXX2ee6555hsExERPSZPT088//zzePbZZ3Hu3DkUFBRAr9dDqVRCpVKhRYsW9g6RyKE1qmR75MiRGDlypL3DICIianRkMhm6du1q7zCIGpxGV7NNREREROQomGwTEREREdkIk20iIiIiIhthsk1EREREZCNMtomIiIiIbITJNhERERGRjTDZJiIiIiKyESbbREREREQ2wmSbiIiIiMhGmGwTEREREdkIk20iIiIiIhthsk1EREREZCMiQRAEewdBRERERNQYcWSbiIiIiMhGmGwTEREREdkIk20iIiIiIhthsk1EREREZCNMtomIiIiIbERq7wDI2qpVq5CcnIxr166huLgYbm5uCAwMRGJiIsaNGwc3Nzd7h+gUtFot9uzZg3379uHSpUvIzc2FXC5HaGgoxo0bh4SEBHuH6FRSU1Oxb98+nD9/HhcuXEB5eTmee+45LFy40N6hNVpnz57FsmXLcPr0aej1erRv3x4vvfQSEhMT7R2aU9m+fTvS0tJw/vx5pKenQ6/X4+9//ztGjhxp79CcSn5+Pnbt2oVDhw4hIyMDhYWF8PT0RNeuXfHKK68gKirK3iE6jbKyMnz66ac4d+4cbt68idLSUnh7e6NNmzaYMGECnn76aYhEInuHacap/xzQwIED4e3tDZVKhaZNm0Kr1SIlJQVXrlxBaGgoNmzYwIS7Hhw6dAivvvoqvLy80Lt3b7Rq1QpqtRp79uxBWVkZJk6ciHnz5tk7TKcxe/ZsbNu2DW5ubmjevDkyMjKYbNvQiRMn8Ic//AEymQzDhg2Dh4cHdu/ejZs3b+KNN97AH//4R3uH6DQGDhyInJwceHt7Q6FQICcnh8m2HfzjH//Al19+iaCgIPTo0QNNmzZFVlYW9u7dC0EQsHjxYgwdOtTeYTqFrKwsjBgxAlFRUQgKCoKXlxfUajX2798PtVqNMWPG4P3337d3mHcJ5HCqqqrqbP/rX/8qqFQqYd26dfUckXO6ePGi8P333ws6nc6ivaCgQBgwYICgUqmEM2fO2Ck653P27FkhPT1dMBgMwqlTpwSVSiW8+eab9g6rUdLr9UJcXJwQEREh/Pbbb+Z2jUYjDBs2TAgLCxMyMzPtF6CTOXr0qHDz5k1BEARh5cqVgkqlErZs2WLnqJzPzz//LKSmplq1p6amCuHh4ULPnj2F6upqO0TmfAwGg6DX663aNRqNMHToUEGlUgnp6el2iKxurNl2QC4uLnW2x8fHA6j5REe2FxoaisTERMhkMot2X19fjB07FkBNaQPVj06dOqFDhw6QSCT2DqXRS05ORnZ2NhISEhAWFmZuVyqVmDp1KgwGA7Zu3WrHCJ1LTEwMAgMD7R2G03v66afRvXt3q/bu3bsjOjoaJSUluHz5sh0icz4SiQRSqXUltFKpRGxsLADHypWYbDcgBw8eBAB06NDBzpFQ7ZuciR81RikpKQBg/k/rXn369LHoQ0R3/0+oKwGk+lNdXY3k5GSIRCK0b9/e3uGY8bfCga1evRoajQZlZWU4efIkzp8/j9jYWIwYMcLeoTk1o9GI7777DiKRCDExMfYOh+iJu379OgAgODjYapunpye8vb0datSIyJ5u3bqFY8eOwc/PDyqVyt7hOJWysjKsWbMGJpMJarUahw4dQm5uLqZNm4bWrVvbOzwzJtsObO3atcjJyTE/Hj58OBYsWGBV1kD1a+nSpUhPT8eoUaP4Dys1SuXl5QAADw+POrcrlUrk5eXVZ0hEDkmv12PWrFnQ6XT4y1/+wm8761lZWRmWL19ufiyTyTBr1iz87//+rx2jssZk20Zq67ce19q1axEdHW3Rtm/fPgBAQUEBTpw4gUWLFmHMmDH4+uuvERAQ8CTDbdSexLWotXHjRqxcuRJhYWGYO3fuE4rQeTzJa0FEZE8mkwlz5sxBamoqxowZw2+d7aBly5a4fPkyjEYjcnNzsXPnTixZsgSnTp3CJ5984jBlPY4RRSOUkJCAioqKx+7v6+v7wG1+fn5ISEhAUFAQRo8ejYULF+KTTz55AlE6hyd1LbZs2YJ33nkHKpUK33zzDdzd3Z9UiE7jSb4vyHaUSiUAQKPR1Lm9vLz8gaPeRM5AEAS8/fbb+P777zF8+HC8++679g7JqUkkErRs2RKTJ0+GWCzGokWLsGnTJowfP97eoQFgsm0ztph/OTIyEp6enrwx6Xd6EtciKSkJ8+bNQ/v27bFmzRp4e3s/gcicD+clbxhqax2zsrIQERFhsa20tBTFxcXo0qWLHSIjsj+TyYS5c+di69atSEhIwMKFCyEWc74JRxEbG4tFixYhJSXFYZJt/nY0IBUVFdBoNKwJq2dJSUl4++230bZtW6xZswY+Pj72DonIpnr06AEAOHLkiNW2o0ePAgB69uxZrzEROYJ7E+2hQ4fio48+4v/JDiY/Px+AY80WxmTbweTk5ODmzZtW7Xq9Hh9++CFMJhP69u1rh8ic0+bNmy0S7aZNm9o7JCKbq10xdceOHbh48aK5vby8HJ999hmkUimee+45O0ZIVP/uTbSHDBmCRYsWOVRC50wuXrxYZ5lbSUkJlixZAgAOlStxuXYHs3fvXkyfPh3du3dHcHAwvL29UVhYiOPHjyM3Nxdt2rTBunXrWMtaD44fP46XX34ZgiBg7Nix8PPzs+rTsWNHxMXF2SE65/Prr78iKSkJAFBUVISDBw8iKCgI3bp1AwC0bdsWkydPtmeIjUpycjJeeeUVyGQyJCQkQKlUmpdrnzlzJqZMmWLvEJ3G5s2bkZaWBgBIT0/Hb7/9hq5du5qnZoyLi+O/Q/Vg2bJlWL58ORQKBV588cU6b76Li4tDx44d7RCdc/nggw+QlJSE6OhotGjRAm5ubrh16xYOHDgArVaL+Ph4fPLJJw5T3sOabQcTFhaGF198EampqdizZw80Gg0UCgXatWuHCRMmYMKECVAoFPYO0ynk5uai9rPoxo0b6+zz3HPP8T+5epKdnY1t27ZZtWVnZwOoKWtgsv3k9OrVC//+97/x6aefYteuXdDr9Wjfvj1mzJiB4cOH2zs8p5KWlmb1u3/y5EmcPHkSABAYGMh/h+pB7VS8Wq0WX3zxRZ19AgMDmWzXg/j4eJSXl+P06dNITU1FVVUVPD090a1bN4wYMQLDhg2DSCSyd5hmHNkmIiIiIrIRxxhfJyIiIiJqhJhsExERERHZCJNtIiIiIiIbYbJNRERERGQjTLaJiIiIiGyEyTYRERERkY0w2SYiIiIishEm20RERERENsJkm4iIiIjIRphsExHZybJlyxASEoITJ07YOxSnUFFRgdjYWCxYsKDezx0SEoJJkyZZtL355psYMGAAqqur6z0eIqo/TLaJiMgpfPXVVygpKcFrr732H+0/adIkhISEPLF4pk6divz8fKxevfqJHZOIHA+TbSIiO5kwYQJ27tyJyMhIe4fS6JWVlWH16tVISEhA8+bN7R0OACA4OBhxcXH48ssvodVq7R0OEdkIk20iIjvx8fFBu3bt4ObmZu9QGr3t27dDq9Xi2WeftXcoFoYPHw6NRoMff/zR3qEQkY0w2SaiBu3EiRMICQnBsmXLcPLkSUyaNAldunRBr169sGDBAlRVVQEADh06hHHjxqFz586IiYnBokWLYDQaLY6l0WiwatUqTJw4EbGxsYiIiEBsbCxmzZqF7Oxsq3PfW3O9bds2jBw5ElFRUeba3NqyA51Oh6VLl2Lw4MEIDw/HsmXLrPa/V1JSEqZMmYKBAweiU6dO6NmzJ/7whz8gOTm5ztfAYDBg5cqViIuLQ6dOnTB48GCsXLkSN27cQEhICGbPnm21j1qtxocffojBgwcjIiIC0dHRmD59OtLT0x/7tT9//jzee+89JCQkoFu3boiMjERiYiJWrVoFvV5f5z4pKSmYMGECOnfujOjoaMycORO5ubkPLNEQBAFJSUkYN24cunbtiqioKIwcORJJSUmPHScAbNu2DV5eXoiOjrbadv36dbz11lvm1zs6OhrPPfccFi5caO4TEhKClJQU88+1f+5/bTdv3oyEhAR06tQJ/fr1w0cfffTQmuy+fftCoVBgy5Ytv+v5EFHDIbV3AERET8KZM2fw5ZdfIjY2FuPGjcOJEyewfv16lJeXY9CgQZg9ezYGDhyIqKgoHDhwAF999RWUSiWmTJliPsa1a9fw6aefIjo6GoMHD4abmxsyMjKwY8cOHDx4EFu3bkVgYKDVub/++mucOHECAwcORExMDCQSicX2adOm4dKlS4iNjYWnpydatWr10Ofy3nvvITQ0FL1794aPjw/y8/Oxd+9evPzyy1i2bBni4uIs+s+ZMwfbt29HUFAQJkyYAJ1OhzVr1uDUqVN1Hj87OxuTJk1Cfn4++vTpg7i4OKjVauzevRtHjhzB6tWrERUV9cjXfNOmTdi/fz969OiBvn37oqqqCikpKVi8eDHOnTtn/lBR68iRI3jttdcgkUgwdOhQ+Pn5ISUlBePHj0eTJk2sji8IAv7yl79gx44daN26NRISEiCXy3H06FHMnTsX165dw5tvvvnIOEtLS3HhwgU89dRTEIstx5jy8/MxevRoVFZWol+/fhg6dCi0Wi2ysrKwbt06czI9bdo0bNu2DTk5OZg2bZp5/44dO5p/XrFiBT799FP4+vpizJgxkEql2LVrFzIyMh4Ym1wuR3h4OE6dOgWtVguFQvHI50NEDYxARNSAJScnCyqVSlCpVMKePXvM7TqdTkhMTBRCQkKE6Oho4cyZM+ZtGo1G6N27t9CzZ09Br9eb28vKyoTi4mKrcxw/flwIDQ0V5s6da9H+6aefCiqVSujcubNw6dIlq/0mTpwoqFQq4dlnn63zuLX7JycnW7RnZ2db9c3PzxdiY2OFp59+2qL92LFjgkqlEkaOHClUVlaa22/fvi306dNHUKlUwptvvmmxz9ixY4WwsDDhyJEjFu0ZGRlCly5dhISEBKvz1+XmzZuCwWCwaDOZTMJbb70lqFQq4ddffzW3GwwGYcCAAUJoaKhw+vRpi31mz55tvob32rhxo6BSqYQ5c+ZYXKfq6mrhtddeE1QqlXDu3LlHxnngwAFBpVIJH3/8sdW2tWvXCiqVSlizZo3VNrVabfG49nrW5fr160JYWJjw1FNPCYWFheZ2jUYjxMfHCyqVSpg4cWKd+3744YeCSqUSjh8//sjnQkQND8tIiKhR6Nmzp8WIr0wmQ3x8PARBwIABAyxuQlQqlejfvz9KSkqQl5dnbvfw8ICXl5fVsXv16oX27dvj2LFjdZ57zJgxD52lYvr06XUe90HqGvn29/dHfHw8rl+/jpycHHP7999/D6BmZgtXV1dzu5+fH1588UWr41y4cAGnTp3CiBEj0KdPH4ttbdq0wZgxY5Cenv5Y5SSBgYFWo/gikQgTJkwAABw/ftzcnpaWhpycHAwaNMhq1HzGjBlWxwGAdevWQaFQYP78+ZBK734RK5fL8cYbbwDAY9U6115jX1/fB/a597Wr5ePj88hj1/rhhx9gMBjw8ssvo2nTpub2+789qUtt/3t/F4mo8WAZCRE1CmFhYVZt/v7+ACy/6q/l5+cHoKaMoGXLlub2EydOYM2aNTh79iyKi4thMBjM22QyWZ3nftRsIr93tpEbN25g5cqVSE5ORn5+PnQ6ncX227dvm8tZLl26BADo0qWL1XHqajt9+jQAoLCw0KrMA4C55CEjIwMqleqhcep0OvzrX//Cjz/+iIyMDGi1WgiCYBFnrYfFGRAQgObNm+PmzZvmtsrKSqSnp8Pf3x+rVq2y2qf2ujysRKNWSUkJANRZqtK/f38sXrwY7733Ho4ePYqnnnoK3bp1Q5s2bR553HtdvnwZANCtWzerbd27d3/ovrUfxGrjJKLGhck2ETUKSqXSqq12tLSubbUjpfcm07t27cIbb7wBhUKB2NhYBAYGws3NDSKRyFyvW5d7RzLr8rAR1ftlZWVh9OjRKC8vR3R0NAYMGAClUgmxWIyUlBSkpKRYJN/l5eUQi8Xw9vZ+rLhKS0sBAAcOHMCBAwceGEdlZeUjY3399dexf/9+tG7dGkOHDkXTpk0hlUpRVlaGtWvXWsUJPHi02NfX1yLZLisrgyAIyM/Px/Llyx8Yw+NMmefi4gIAdd6o2KpVK2zYsAErVqzAoUOH8NNPPwGoGeWfMWMGnnnmmUceH6i5uRao+zV/1PWvvYm3rtF1Imr4mGwTEd2xfPlyuLi4YOvWrWjdurXFtoeVK4hEooce91Hb77V69WqUlpZi0aJFGD58uMW2+fPnm2fEqKVUKmEymVBcXGyVyKrVaqvj137wmDdvHiZOnPjYcd3v7Nmz2L9/P2JjY7Fq1SqLMpDTp09j7dq1dZ63qKiozuMVFhZaPHZ3dwcAhIeHY+vWrf9xnMDdBP9BI8ehoaFYtmwZ9Ho9fvvtNxw6dAjffvst3njjDfj7+9c5Wn0/Dw8PADWv+f030d7/3O5X+wHo95StEFHDwZptIqI7srOz0a5dO6tEOz8/Hzdu3Ki3GABg4MCBFu0mk6nO2UVCQ0MBoM5tdbXV1ks/aKaSx1X7evTv39+q3vrXX3/9XXHm5eVZ1SsrlUq0a9cOGRkZKCsr+69irS2HycrKemg/mUyGzp074/XXX8fcuXMhCILF6H/tTCb3TxkJwFyzn5aWZrWtrtfjXpmZmRZxElHjwmSbiOiOFi1aICsry2Iksrq6GgsWLLAoN7Gl2lHR+5O2L7/8ss6bFhMTEwEAn332mUWZREFBgdXoMlBTPx4VFYUff/wRO3futNpuMpmsRs/r0qJFizrjvHLlSp011t26dUOLFi3wyy+/4OzZsxbbli5dWufrO2nSJFRWVuLtt9+us1zkxo0bFqUnDxISEgIvLy+r8wI1I/R1fQNQ21ZbggIAnp6eAOq+kTExMRESiQT//Oc/LY5XXl6Ozz///KHxnTlzBn5+flYf8oiocWAZCRHRHZMmTcL777+PESNGYMiQITAYDDh27BgEQUBoaKj5Jj9bGjduHLZu3Yrp06dj6NCh8PLywunTp3HhwgX079/fqs46JiYGiYmJ+OGHH5CYmIhBgwZBp9Nh165diIyMxP79+63KWBYvXoyXXnoJb7zxBtasWYPw8HC4uLjg1q1bOH36NIqKinDu3LmHxhkZGYnIyEjs2rULBQUFiIqKQm5uLvbt24d+/frh559/tugvkUiwYMECTJ06FRMnTsSwYcPg6+uL1NRU5OfnIzQ01HyT4b2vxZkzZ7Bt2zacPHkSMTEx8Pf3h1qtRkZGBs6cOYPFixdb3OBaF5FIhIEDB+K7777D7du3zTfOAjWziKxfvx49e/ZEUFAQlEolrl69ikOHDsHb2xvPP/+8uW+vXr3w888/Y8aMGejXrx9cXFygUqnQv39/BAcHY+rUqVi2bBmGDx+OZ555BhKJBLt374ZKpTKPXt8vOzsbN2/exAsvvPDQ50BEDRdHtomI7pgwYQLeffddeHl5YdOmTdi7dy969OiBDRs21DmThS2EhYXh66+/Rnh4OHbv3o0tW7agSZMmWL9+PSIiIurcZ+HChZgxYwaMRiO+/fZbHDx4EC+99BKmTp0KwPoG0VatWmHbtm2YMmUKtFottmzZgg0bNuDSpUvo3r07Pv7440fGKZFIsHLlSowaNQrZ2dlYt24drl69ilmzZuGvf/1rnfv069cPX3/9NSIiIrBz505s2rQJzZo1w7///W+YTCarOEUiERYuXIglS5agQ4cOOHDgAFavXo2jR49CLpfjzTffRO/evR/nZcXYsWNhMpmsau8TEhIwcuRIFBQU4Mcff8S3336LzMxMjB8/Htu2bUNAQIC575gxY/DKK69ArVbjiy++wOLFi803VAI1C9/87W9/g5eXFzZs2ICffvoJQ4YMwdKlSx8YV+3UjePGjXus50FEDY9IuHeeJiIiajQ2b96Mt99+G++88w7Gjx9v73AeqLy8HH369IFKpcLmzZttdp5x48ZBo9Fgx44dv+umVVsxGAyIj49HYGBgnSU/RNQ4cGSbiKiBKygowP3jJvn5+fj8888hkUgwYMAAO0VmSavVmqcArGU0GvHRRx+hqqrKahn6J23WrFm4evUqdu3aZdPzPK7t27cjJycHs2bNsncoRGRDrNkmImrgVq1ahYMHD6Jbt25o2rQpcnNzsX//flRUVGD69Olo3ry5vUMEUDMbyPjx4xEbG4uWLVuioqICaWlpuHr1Kjp06IBJkybZ9Pxdu3bFu+++W283uz6KSCTC+++//8DyICJqHFhGQkTUwB06dAirV6/GpUuXUFZWBrlcjpCQEIwfP948W4kjKCoqwqJFi5CSkgK1Wg2DwYAWLVpg0KBBmDJlSr3VxRMR1Scm20RERERENsKabSIiIiIiG2GyTURERERkI0y2iYiIiIhshMk2EREREZGNMNkmIiIiIrIRJttERERERDbCZJuIiIiIyEaYbBMRERER2cj/B+1Rj5rPHnwYAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_change_xy(x_orig, y_orig, x_new, y_new, color=\"C0\"):\n",
" for ii, (xo, yo, xn, yn) in enumerate(zip(x_orig, y_orig, x_new, y_new)):\n",
" label = \"change\" if not ii else None\n",
" plt.plot((xo, xn), (yo, yn), linewidth=2, alpha=0.25, color=color, label=label)\n",
"\n",
"\n",
"D_true = measured_divorce_inference.posterior.mean(dim=(\"chain\", \"draw\"))[\"D\"].values\n",
"\n",
"# Plot raw observations\n",
"utils.plot_scatter(AGE, DIVORCE, color=\"k\", label=\"observed (std)\", zorder=100)\n",
"\n",
"# Plot divorce posterior\n",
"utils.plot_scatter(AGE, D_true, color=\"C0\", label=\"posterior mean\", zorder=100)\n",
"\n",
"plot_change_xy(AGE, DIVORCE, AGE, D_true)\n",
"\n",
"# Add trendline\n",
"# AGE and DIVORCE are standardized, so no need for offset\n",
"trend_slope = np.linalg.lstsq(AGE[:, None], D_true)[0]\n",
"xs = np.linspace(-3, 3, 10)\n",
"ys = xs * trend_slope\n",
"utils.plot_line(xs=xs, ys=ys, linestyle=\"--\", color=\"C0\", label=\"posterior trend\", linewidth=1)\n",
"\n",
"plt.xlabel(\"marriage age (std)\")\n",
"plt.ylabel(\"divorce rate (std)\")\n",
"plt.legend();"
]
},
{
"cell_type": "markdown",
"id": "2a9ea3ef-601c-4871-8cb8-e60682b9ccab",
"metadata": {},
"source": [
"- black points ignore measurement error\n",
"- red points are posterior means for model that captures measurement error in Divorcd rates\n",
"- thin pink lines demonstrate the movement of estimates by modeling measurment error\n",
"- Modeling measurement error in divorce rates shrinks estimates for states more uncertainty (larger standard errors) toward the main trend line (dashed red line)\n",
" - partial pooling information across states\n",
"- **You get this all for free by drawing the graph, and following the rules of probablity**"
]
},
{
"cell_type": "markdown",
"id": "c74d31b3-3ea9-4215-93dc-86b9e71aecca",
"metadata": {},
"source": [
"### Divorce and Marriage Measurement Error Model"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "cc68c649-279d-46b8-ae9a-f39aa056bb4b",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"M \n",
"\n",
"M \n",
" \n",
"\n",
"\n",
"D \n",
"\n",
"D \n",
" \n",
"\n",
"\n",
"M->D \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"M* \n",
"\n",
"M* \n",
" \n",
"\n",
"\n",
"M->M* \n",
" \n",
" \n",
"Marriage Measurement \n",
"Error Model \n",
" \n",
"\n",
"\n",
"D* \n",
"\n",
"D* \n",
" \n",
"\n",
"\n",
"D->D* \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"A \n",
"\n",
"A \n",
" \n",
"\n",
"\n",
"A->M \n",
" \n",
" \n",
"Marriage Model \n",
" \n",
"\n",
"\n",
"A->D \n",
" \n",
" \n",
"Divorce Model \n",
" \n",
"\n",
"\n",
"eD \n",
"\n",
"eD \n",
" \n",
"\n",
"\n",
"eD->D* \n",
" \n",
" \n",
" Divorce Measurement \n",
"Error Model \n",
" \n",
"\n",
"\n",
"unobserved \n",
"\n",
"unobserved \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[(\"M\", \"D\"), (\"A\", \"M\"), (\"A\", \"D\"), (\"M\", \"M*\"), (\"D\", \"D*\"), (\"eD\", \"D*\")],\n",
" node_props={\n",
" \"unobserved\": {\"style\": \"dashed\"},\n",
" \"D\": {\"style\": \"dashed\", \"color\": \"red\"},\n",
" \"M\": {\"color\": \"darkcyan\"},\n",
" \"A\": {\"color\": \"darkcyan\"},\n",
" \"eD\": {\"color\": \"blue\"},\n",
" \"D*\": {\"color\": \"blue\"},\n",
" },\n",
" edge_props={\n",
" (\"A\", \"M\"): {\"color\": \"darkcyan\", \"label\": \"Marriage Model\", \"fontcolor\": \"darkcyan\"},\n",
" (\"A\", \"D\"): {\"color\": \"red\", \"label\": \"Divorce Model\", \"fontcolor\": \"red\"},\n",
" (\"M\", \"D\"): {\"color\": \"red\"},\n",
" (\"M\", \"M*\"): {\"label\": \"Marriage Measurement\\nError Model\"},\n",
" (\"eD\", \"D*\"): {\n",
" \"color\": \"blue\",\n",
" \"label\": \" Divorce Measurement\\nError Model\",\n",
" \"fontcolor\": \"blue\",\n",
" },\n",
" (\"D\", \"D*\"): {\"color\": \"blue\"},\n",
" },\n",
" graph_direction=\"LR\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "8c2b6ba1-a76d-433e-af64-12a4237d8b0b",
"metadata": {},
"source": [
"### 4 Submodels\n",
"\n",
"#### Divorce Model \n",
"\n",
"$$\n",
"\\begin{align*}\n",
"D_i &\\sim \\text{Normal}(\\mu_{Di}, \\sigma_D) \\\\\n",
"\\mu_{Di} &= \\alpha_D + \\beta_{AD} A_i + \\beta_{MD} M_i\n",
"\\end{align*}\n",
"$$\n",
"\n",
"\n",
"#### Divorce Measurement Error Model \n",
"$$\n",
"\\begin{align*}\n",
"D^*_i &= D_i + e_D \\\\\n",
"e_{D,i} &\\sim \\text{Normal}(0, S_{Di}) &S_{Di} \\text{ is the divorce standard deviation estimated from the sample}\n",
"\\end{align*}\n",
"$$\n",
"\n",
"#### Marriage Rate Model \n",
"$$\n",
"\\begin{align*}\n",
"M_i &\\sim \\text{Normal}(\\mu_{Mi}, \\sigma_M) \\\\\n",
"\\mu_{Mi} &= \\alpha_M + \\beta_{AM} A_i\n",
"\\end{align*}\n",
"$$\n",
"\n",
"#### Marriage Rate Measurement Error Model\n",
"$$\n",
"\\begin{align*}\n",
"M^*_i &= M_i + e_M \\\\\n",
"e_{M,i} &\\sim \\text{Normal}(0, S_{Mi}) &S_{Mi} \\text{ is the marriage standard deviation estimated from the sample}\n",
"\\end{align*}\n",
"$$\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "508712b5-1c28-4956-9fa6-4957b2eca90a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [sigma_M, alpha_M, beta_AM, M, sigma_D, alpha_D, beta_AD, beta_MD, D]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91c78e9aa55143afaa700989344bbb3b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.\n"
]
}
],
"source": [
"MARRIAGE_STD = WAFFLE_DIVORCE[\"Marriage\"].std()\n",
"MARRIAGE_SE = WAFFLE_DIVORCE[\"Marriage SE\"].values / MARRIAGE_STD\n",
"\n",
"coords = {\"state\": STATE}\n",
"\n",
"with pm.Model(coords=coords) as measured_divorce_marriage_model:\n",
"\n",
" # Marriage Rate Model\n",
" sigma_marriage = pm.Exponential(\"sigma_M\", 1)\n",
" alpha_marriage = pm.Normal(\"alpha_M\", 0, 0.2)\n",
" beta_AM = pm.Normal(\"beta_AM\", 0, 0.5)\n",
"\n",
" # True marriage parameter\n",
" mu_marriage = alpha_marriage + beta_AM * AGE\n",
" M = pm.Normal(\"M\", mu_marriage, sigma_marriage, dims=\"state\")\n",
"\n",
" # Likelihood\n",
" pm.Normal(\"M*\", M, MARRIAGE_SE, observed=MARRIAGE)\n",
"\n",
" # Divorce Model\n",
" ## Priors\n",
" sigma_divorce = pm.Exponential(\"sigma_D\", 1)\n",
" alpha_divorce = pm.Normal(\"alpha_D\", 0, 0.2)\n",
" beta_AD = pm.Normal(\"beta_AD\", 0, 0.5)\n",
" beta_MD = pm.Normal(\"beta_MD\", 0, 0.5)\n",
"\n",
" # True divorce parameter\n",
" mu_divorce = alpha_divorce + beta_AD * AGE + beta_MD * M[STATE_ID]\n",
" D = pm.Normal(\"D\", mu_divorce, sigma_divorce, dims=\"state\")\n",
"\n",
" # Likelihood\n",
" pm.Normal(\"D*\", D, DIVORCE_SE, observed=DIVORCE)\n",
"\n",
" measured_divorce_marriage_inference = pm.sample(target_accept=0.95)"
]
},
{
"cell_type": "markdown",
"id": "5f362674-ce76-4d66-9cf0-6dc0ea968fad",
"metadata": {},
"source": [
"#### The effect of modeling the Divorce and Marriage Rate measurment error"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "da4b55b2-b4a1-4b28-b165-2bb51b0f0ab3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4HOW1+PHvzGxX7725yB0XbINtwBSb3kILJLmkkdACN/2Xws1NubkBkpBCSyAVyA09oTcbbIx7L3KTrWJJVi+72j47M78/Rl5pLdmWZTXL7+d5/Dze2Zndd3ck7dl3znuOZBiGgSAIgiAIgiAIg04e6QEIgiAIgiAIwlglgm1BEARBEARBGCIi2BYEQRAEQRCEISKCbUEQBEEQBEEYIiLYFgRBEARBEIQhIoJtQRAEQRAEQRgiItgWBEEQBEEQhCEigm1BEARBEARBGCIi2B4FDMOgo6MD0V9o5IlzMXqIczF6iHMxeohzMXqIczF6jPZzIYLtUWK0/oCcicS5GD3EuRg9xLkYPcS5GD3EuRg9RvO5EMG2IAiCIAiCIAwREWwLgiAIgiAIwhARwbYgCIIgCIIgDBERbAuCIAiCIAjCEBHBtiAIgiAIgiAMERFsC4IgCIIgCMIQEcG2IAiCIAiCIAwREWwLgiAIgiAIwhARwbYgCIIgCIIgDBERbAuCIAiCIAjCEBHBtiAIgiAIgiAMERFsC4IgCIIgCMIQEcG2IAiCIAiCIAwREWwLgiAIgiAIwhARwbYgCIIgCIIgDBERbAuCIAiCIAjCEBHBtiAIgiAIgnDaMgxjpIdwXCLYFgRBEARBEE5LgR0Hqbjqu+j+4EgP5ZhEsC0IgiAIgiCcVgw1AoBtXC72SQXYR3FIO3pHJgiCIAiCIAg9GIZB2z+XsXfOlwlXN6DEO8n/zf3YMlJGemjHZBnpAQiCIAiCIAjCiYQPNVL7jUfxfrSF5FsuQo53Ru/z+XwkJyeP3OCOQwTbgiAIgiAIwqjmfnMNNXf/CiU5geIXfkLi0nkjPaR+E8G2IAiCIAiCMCoZagTJasExtZiUz15K9g9vR0lwjfSwTorI2RYEQRAEQRBGFT2s0vjL/2P/+fei+4LYx+WS9+Bdp12gDWJmWxAEQRAEQRhF/Fv2U3v/bwnuO0Tmf94Myuk9NyyCbUEQBEEQBGFUaPr9yzT89G84Z4xj4oe/wzlj/EgP6ZSJYFsQBEEQBEEYUUdys53TSsj+0efJuOcGJIsy0sMaFCLYFgRBEARBEEaE5vZS/6M/E65roeSln5JwydkkXHL2SA9rUJ3eSTCCIAiCIAjCacn99lr2LbiLjn99TNJV5470cIaMmNkWBEEQBEEQhlXNvY/Q/s9lJFw6j7xffQ1bfsZID2nIiGBbEARBEARBGHKGYUBEQ7JacJ09ifiL55B8w2IkSRrpoQ0pEWwLgiAIgiAIQypc00jdNx/DPqWY3J9+mbQvXTXSQxo2ImdbEARBEARBGBKGrtPypzfYv+gegnuqiT9vxkgPadiJmW1BEARBEARh0OmBEBU3/BD/+t2kfekqsn/0RZTE068D5KkSwbYgCIIgCIIwaAw1AhYF2WknftEMsv/r88QvPPNmtI8QaSSCIAiCIAjCoPBvK6f8kq/T8eKHAGQ/cGYH2iCCbUEQBEEQBOEU6YEQ9T/+CweWfAMksE8uGukhjRoijUQQBEEQBEEYsPChRipu+CFqXTPZP/wPMr52I5JVhJhHiHdCEARBEARBOGmGGkGyWrDmphN/wUzS7/4Ujon5Iz2sUUekkQiCIAiCIAgnxfPuevbOvQP/tnIki0L+I/eJQPsYxMy2IAiCIAiC0C+RFjeHv/8HOl5ZScKSuVjSk0Z6SKOeCLYFQRAEQRCEE/KtK6Pqcz8DoOAP3yb55ovGfKv1wSCCbUEQBEEQBOGYjuRm2yfkk3T1QrJ/eDuWjOSRHtZpQwTbgiAIgiCcFgzDoK6ujrq6OsLhMA6Hg6KiIjIzM0d6aGOSoeu0/vVtmh99hYnLfoslPYn8394/0sM67YhgWxAEQRCEUU3TNNavX8+KFSuorq7udf/kyZO58MILmTVrlkhrGCTB8lpq//N3+NeVkfqFK5BsImQcKPHOCYIgCIIwanm9Xp544gkOHjx4zH327t3L3r17mT17Nl/+8pexWq3DOMKxp/355dR+4/dY8zIY9/qDxJ931kgP6bQmSv8JgiAIgjAqBYNBfvOb3xw30O5p69at/OEPf0DX9SEe2dhkqBEA7FOKSP/qtZR+/JgItAeBCLYFQRAEQRiVXnzxRWpra3ttT0hIYNy4cTidzl737dq1i/fee284hjdm6IEQ9T/9Kwcu/xaGGsE1cwI5P/kysssx0kMbE0QaiSAIgiAIo47H42HdunUx25KTk7nttts466yzkGWZSCTC+vXreemllwgEAtH9PvzwQ5YuXYrFIsKcE/Gt3UXNf/4O9VAjmd/5zEgPZ0wSM9uCIAiCIIw6q1evRtO06G2LxcK3vvUtZs2ahSzL0W2LFi3irrvuijnW4/Gwbdu24Rzuaanh53/n4FXfxZKayMSVj5H1rVuRrOILymATwbYgCIIgCKNOWVlZzO358+dHS/zpIRW1vhU9rAJmNZLx48cf93ih25HcbMfUEnIfupvxb/8Sx6TCER7V2CW+vgiCIAiCMOp4PJ6Y21OmTAFAD4YJbCvHiGhY3D4ck80gcerUqTELKY8+Xuhqtf6DPwJQ+NR3Sf7UBSM8ojODmNkWBEEQBGHUOZIqckQ4HMbQNIJ7qjAiZnqJZFVi7u9JURQEk2EYtL+ygn0L7qRz+WYSLj57pId0RhEz24IgCIIgjDqpqanU19dHb2/ZsoW56YXoviAAssOGrSgbMIPJrVu3xhyfkpIyfIMdxQxdp/rzP8fz1lqSPnUBub+4E2umeG+Gkwi2BUEQBEEYdebOnRuTd71jwya2J+UxbfxEJEXGMaUYyWLOXn/44Yc0NTX1Ov5MZug6GAaSouCaN5mU25aQdOWCkR7WGWnMBduNjY288847fPzxx1RUVNDS0kJSUhJz5szhjjvuYObMmSM9REEQBEEQTmDu3Lm89NJL+P1+9JCK3hng6X+9wOKz53PxTdfhdNqorq7mo48+Yu3atTHH5ubmMmHChBEa+cgLHail9uu/J2HJXDK/fguZ99880kM6o425YPvZZ5/l6aefprCwkIULF5KWlkZ1dTXLli1j2bJl/PrXv+bKK68c6WEKgiAIgnAcNpuNyy67jFdfehmtwwsY6IbByj3b+eS35cc99pprrkGSpOEZ6ChiRDSaH3+Vxgefw5qThmtO6UgPSWAMBttnnXUW//jHP3pdPtq0aRNf+MIX+MlPfsKSJUuw2WwjNEJBEARBEPrj0iVLqFyzmY0tZj62ZLchx/fuGtnTlVdeyZw5c4ZjeKNKpL2Tyht+SGBnBel3X0/29z8nOkCOEmMu2L700kv73D537lzOOeccPvnkE/bt28eMGTOGeWSCIAiCIJyMcHkdn11yFfFWOyu2bkRJij/mjLWiKNxwww1ccsklwzzKkWWoESSrBSU5Htc5U8n71b24zp400sMSehhzwfbxHGnberz2rYZhDNdwej3nSDy3EEuci9FDnIvRQ5yL0eNMOhfh2ibUlg4kSeJTl1zGJZ+9iVUb17N27Vr8fn90v6SkJM4//3zOP/98kpOTgeF5f0b6XEiShG9dGbX/+XtyfvZlEi+dT96Dd2EYxhnx89HTSJ6L/qQrScYZckYOHz7MZZddRlJSEitXrjxm/c2Ojo4z7odUEARBEEYTrcOLuvdQ9La1tAAlNQEAXddxu92EQiGcTieJiYlnTH62xWIhLi4Owxek4Wd/o/VPb+KaO5n8338d+6QCgsEgwWBwpId5RulPickzYmZbVVW++93vEg6H+fa3v33cQvdJSUnDODKTYRi43W6SkpLOmD8Yo5U4F6OHOBejhzgXo8eZcC70QIhAQx32+HgAbIVZ2AqzYvZJTU0diaHFGIlzIUkSwT3VVN7yIyLtHnL/96ukfeUa6GoA5HA4cDjOvDzt0f57MeaDbV3X+cEPfsDGjRu55ZZbuP7664+7/0ieJEmSRuUPyZlInIvRQ5yL0UOci9FjrJ4LQ9MI7T0Emo4kSVhSE7EVZo3q1zpc58KIaGBRsBVlEX/hbLK+fWu0qY9gGq2/F2O6XbthGDzwwAO8/vrrXHvttfzkJz8Z6SEJgiAIgnAMof216P6uDpFOO/bSglEZPA0nwzDoeHUle+d8idDBOmSXg4JHvy4C7dPImJ3Z1nWdH/7wh7z66qtcffXVPPjgg8jymP5uIYxSoVCIzZs3U1FRgd/vx2q1kpuby/z580U7YUEQhC7hmkYirW4AJIuCY0pRtEPkmUo93ELdd57A8846kq49DznBNdJDEgZgTAbbPQPtK6+8kocffvi4edqCMBQCgQBvvvkmn3zySZ8LVv79738zc+ZMrrvuOnJyckZghIIgCKNDpM1DuLoxetteWnDG14j2fLCRQ3c8hOyyU/TMAyRdvXCkhyQM0JgLtnsG2pdffjm//OUvRaAtDLv29nZ+97vfUV9ff8x9dF1n69at7N69m7vvvpspU6YM4wgFQRBGB90fJLS/JnrbVpSFJTVxBEc0soyIZs7sTyok+aYLyf6vz2NJThjpYQmnYMwF248//jivvvoqLpeL4uJinnzyyV77LFmyRAQ2wpAJBAInDLR7CoVCPP7443znO9+hqKhoiEcnCIIwehgRjeCeanPxH2BJS8JWkHWCo8YmI6LR/MS/aP/H+0xY9ltshVnk//prIz0sYRCMuWC7rq4OAL/fzx/+8Ic+98nLyxPBtjBk3n777V6BtiRJTJkyheLiYlpbW9m2bRuhUCh6v6qqPPPMMzzwwANn/GIgQRDODIZhENpfgx4w/xbKLgf20vwRHtXICOyqoPb+3xLYUUH6ndciKWKN2Vgy5oLtBx98kAcffHCkhyGcocLhMJ988knMtqysLO666y5yc3Oj2/x+P8888wxbt26NbqutreXgwYNMmDBh2MYrCIIwUtSaJiJtHqDHgsgzMO2z5anXOfzA09gn5DPh3V/hmjt5pIckDDLx1UkQBtGWLVti2ggDvQJtAJfLxR133EFaWlrM9o8//njIxygIgjDSIq1uwod6LIicVIjstI/giIbfkdQZx+RCsr51KxNX/F4E2mOUCLYFYRBVVFTE3J48eXI00NZ9QYJ7qok0dwBm293FixfH7F9ZWTks4xQEQRgpvRZEFmdjSTlzFgBq3gB13/sDlTc9gGEYxF8wi6z/91lkm3WkhyYMkTGXRiIIIykQCMTc7rngMVzTRKTVTaTNg8vlQI5z9FoQefSsuCAIZ7ZwOMzBgwfxeMx0i+Tk5FHRqnygogsiNR3oWhCZnznCoxo+ncs3U/vNR4m0usn+we2g63AGps6caUSwLQiDyGazxdxubW2N/l+Od0JLBxgGocrDOKePo6WlJWZ/u/3MuowqCELfWlpa+PDDD1m7dm3Ml3DDMLDb7VxyySVcfPHFJCaePiXyDMMguP/QGbsgsu7bj9P6l7eIXzyLca/9Anux6K9wphDBtiAMoqOb02zfvp3Ozk4SEhKw5qah1rdihMJoHV4ibR5Wr1593OMFQTjzbNq0ib/97W+oqtrn/Z2dnbz99tusXLmSO++8k8mTT488X/VQI1pbJ3DmLIg0DAM03Xy9M8aT//uvk/LZpaLq1BlG5GwLwiCaP39+TBMlVVX5+9//jqqqSLKMvaQ7mH7r/17k4MGDMccvXCg6hAnCmWzTpk386U9/Omag3ZPf7+fRRx9l//79wzCyUxNpdROuaTJvSBL2yWN/QaRa30r17f/D4QeeBiDt85eT+rlLRaB9BhLBtiAMosTERObMmROzbefOnTzwwAO8+eab7G2oYW15Gb969s+89sG7GP7uWttJSUnMmjVrmEcsCP3j8XioqqqioqKClpYWc8ZOGFRtbW387W9/6/O9zc7OJiMjo9f2SCTCU0891Wu9yGii+47uEJk9pjsiGoZB27PvsW/BXfg37iV+4fSRHpIwwkQaiSAMsuuuu45du3bFfPh1dHTwxhtvAGCoESKtbsBclS457UiyxM033xwzKy4II03TNLZu3cpHH31EWVkZNpstOiuXlZXF4sWLWbBgAS6Xa4RHOjasWLGi14z2/Pnzufbaa6OBdm1tLc8991xM5aPOzk7WrVvHRRddNKzj7Q9zQWRV94LI9GRs+b2/NIwVelil6tP/jXflNlI+s5Scn91xRlVaEfomZrYFYZBlZGRw77334nA4+rxfslqQHV2XTw0d3evnhhtuYN68ecM4SkE4vpaWFn7+85/z9NNPU15e3uv+xsZGXnzxRR544AH27t07AiMcW1RV7dUQa968eXzpS1+KmdHOy8vjK1/5ChMnTozZd+XKlaPuaoNhGAT3HUIPhgGQ4xzYJ+aN8KiGhqFpGIaBbLPimjuZkpf/h4LHviECbQEQwbYgDImJEyfyne98h+Li4j7vlxNcIEkkxSdw+5KrWXr+4j73E4SR0NraysMPP0xdXd0J9/X5fPz+97+nrKxsGEY2dlVVVeHz+WK2XXPNNdErCZE2D5rbC4Asy1x99dUx+9bX19PW1jY8g+0n9VAjWnvPBZHFY3JBZHB3FQcu+xbtz70PQPYPbyfh4jknOEo4k4g0EkEYIvn5+Xz/+9+nqqqKjz/+mIqKCvx+PzabjZycHOaVTGJSXBqKohCuasAxtXikhywI6LrOk08+idvt7vN+RVHQNC1mm6ZpPPXUU/z4xz8mJSVlOIY5KHRdJxAIoCgKdrt9RBeudXZ2xtxOS0sjKysLMAPt4O4qAJyzzBntSZMm9ToXHo+nV1fakRJp6WNBpMN2/INOM3pIxf3bl6l58nXs4/OwTy468UHCGUkE24IwxIqLi/uc4TY0Df+mfWYOd9eslZIUP/wDFIQedu3aRU1NTcy2zMxMLrroIi644AIsFgvl5eW89dZbMekjwWCQjz76iBtuuGG4h3xSNE1j+/btrFy5kv3796PrZi5xXFwc8+fPZ/HixSNSgvPoQD8SiWAYBpIkobm7Z7yNrpxuXdejYz9ClkfHxWrdFyRU3rNDZM6YWxCpHm6h4sYHCB2sI/Mbt5D5zVuR7aIDpNA3EWwLwgiRFAVbcTah8loAQhWHcc6aKMpCCSNqxYoVMbfT09P5/ve/TzgcxmKxIEkSpaWlTJw4kSeffJLt27dH9/3kk0+45pprsFpHZ9BRVVXF008/3auZFJjpMB999BEfffQR55xzDp/73Od6NakaSkdfEXC73VRWVjJu3Dj0QDC6XXI6IOBj27ZtvXK0k5OTh2Oox2WokdgFkRnJ2PLSR3hUg8eIaEgWBUtWCnELppHym3vIOGeG+LstHNfo+BosCGcoS2aK2VkSczYo0tg+wiMSzmTBYJDdu3fHbLvyyiuj1Ub0YBjdZwZ+kiRx4403xuzr8/lGbc3n8vJyfvWrX/UZaB9t/fr1/O53v+tXrevBUlhYSHp6bFD68ssvmzPcXSVCJUVGtlsJBoO89tprMftOmDCBpKSkYRtvX8wOkTXdCyLjndgnjp0OkZ0fbWHfOV/Ft2EPkqKQ/8h9JM4qHelhCacBEWwLwgiSJCmm0U24ugHjqHxYQRgubre712zpkbrxRjhCYFs5/q37o6Urs7KyeqVcdHR0DMtYT0ZHRwdPPPHESQXPBw4c4Nlnnx3CUcWSZZkLLrggZtvBgwd58MEH2bZrJ5qmEbHIrF+/nl//+tc0NjbG7HvhhRcO21iPJVzdELsgcnIR0ihJbTkVkfZOau59hMobH8Can4ElMxkwv1yM5vrmwugh0kgEYYQpSfFY0pKItLox1AhqbTO2ouyRHpYgAN15wIaum5fQJYnwoUYsaeYs6tG14Udb+TmA999/H7/fH7MtLy+PSy+9lNLSUvx+Pxs3bmT58uUxAfn69eu54oorhi2H+/zzz2fZsmV4PJ7otkMVVfxp4zYAZIcdOSmOcDgck+KSk5PD7Nmzh2WMxxJp7kCtbTZvSBKOKUX9XhDZ1NTEypUrKSsrw+PxIMsyqampnH322SxcuJCEhJHL9/Zv3kfVZ3+KHgyT/7v/JEV0gBQGQATbgjAK2IqzibR5wDAI1zVjyUodcyv3hdGvr6Bm586dnH322cgOG0q8E90XRPcF0Tx+PFqoV3nAxMTE4Rpuv4RCIdasWROzbdq0adxzzz1YLOZHYGpqKvn5+cybN4+HHnqIcDgc3XflypXceuutwzJWl8vFPffcw29+8xtCITN1JOZKl6V32byEhISY1zISNG+A0IHa6G17SU6/Fnt7vV6effZZtm3b1uu+zs5Oqquref3117nwwgv51Kc+Nayv8Uhutm18LglL55H9g//AmjM6Kr0Ip5/T//qOIIwBstOONbcrX1M3CFc1jOyAhDOSy+ViwoQJMdvefvvt6GyvpUewoTa08sYbb8TMZNvtdkpLR1cOa1lZWcylfkmS+MxnPhMN3Aw1En0N+fn5XHzxxTHHb9iwYVhn60tKSvjWt75FamqqOb5Id7AtKbEf2bm5uXz3u98lMzNz2MZ3NHNBZHX3gsjMlO6/ZcfR0dHBQw891Geg3VMkEmHZsmU8/vjjRCKRwRjycRmGQdtz77Nv3ldQG9qwJCdQ8OjXRaAtnBIRbAvCKGEryETqmrmKtHSgefwnOEIQBt/Rub91dXU88sgjVFRUoKQlIlkUmttb+evf/8Ynq1bF7LtgwYJjdk4dKUcviCwpKYkuRIy0d+LbuIfAlv0YXWX0ju7k6vP5orPMw6WoqIif/vSnfOELX6AouzuF5cjfhwkTJnDnnXfywAMPjGyg3dUh0gj1WBA54cQdIiORCI8++ihNTU39fq7du3fz3HPPDXis/RGqqqfyhh9Se/9viVswDUmU8hMGiUgjEYRRQrIo2AqzCFUcBiBUeRjXzAknOEoQBtfs2bNJT0+PCVIrKip49NFHSU9PR/GHaa4zf0blBBdKnFlNR1GUXrPCo8HRDXiOVFYBzI6MuoEeCKF3+lGS4omLizvhYwwHq9XKggULmOnKwN3YjMfrJX7+FJKSk1FVleTk5BHPHQ5XNaB1mF0tJavF7BDZjwWRa9asoba2Nmabw+Hg/PPPZ+rUqaiqypYtW1i/fn3MVYW1a9dy8cUXU1hYOLgvBOj418fU3PcbLKmJlLz4UxKWzB305xDOXGJmWxBGEUtOGrLTDoDe6SfS3DGyAxLOOBaLhbvvvrvPGWqPx0N7qPuKi+EPRYOh22+/PdrxcDSJj4/NHa6oqIimxcj27nUReld5vX379sXsL8syTqdziEd5bEYgRIIrjvyCAvLy8/v8MjAS1KZ21LqjFkT2YybYMIxetdwzMjL4yU9+wk033cTUqVOZOXMmX/ziF/l//+//9arZvnLlysF6CeZ4utJ0HJMKSf3cZZSuflIE2sKgE8G2IIwikiRhG5cbvR2qaohe3haE4ZKfn8+3vvWtPpukSBYFyWYGQIamoegGX/rSlzj33HOHeZT9M2nSpJjbfr+fjz/+GADZZY9u1wMhNE3jgw8+iNm/tLR0xDoz6mE1Ggz2HOuwPLc/SGDnQbxrduJbu8vMy1bNnOk+F0Qm9u9LQG1tba9FtbfeemufP2slJSVcdtllMds2bNgwKLnbelil8eH/o3zJ19HDKo6pxeQ9eBdKguvEBwvCSRJpJIIwylhSElBSEtDaOzFCYdS6ZmwFo2/GUBjbCgsL+fGPf8wnn3zCihUrYgIk2eXALlk4d8YsLrz4IvLPmTOCIz2+zMxMpkyZwp49e6LbXnnlFQDOO3dBdFvT4Xr+/dYrvdIbFi9ePDwD7YMR6M4VP3LFa6ip9a14V27Dv2UfhhqbPiO77LjmTkZOike2meGDJSu1Xwsij6ivr4+5nZiYyLRp08znbmonXN2IZLPgnF6CpCicd955vPnmm9H9w+Ew7e3tZGRkDPQl4t+8j9r7f0uwvJbM/7wZRl+1SmGMEcG2IIxC9uIc/B1eMAzU2q5SgDaxWEcYXk6nk6VLl3LJJZewa9cus5uhYZCQkEBmSxCLDiChh9R+pRCMlCVLlsQE25qm8eKLL/Lmm2+SJznwBwIcampASY/twJiens7MmTOHe7hRR1JbgGEpBepbu4v2l1eA3nf0qfuDdPx7FWCQePm5OKYWYx+f2+e+x3J0Y6GUlBTQdIIH66Jpc0YojBFUkeKUPme8e5ZmPFmNv36exl88h/OscUz88Hc4p48b8GMJQn+JYFsQRiE5zoE1KwW1oQ1D0wlXN+IYQ22PhdOLJEkUFBTELMoLOxoJH2oEwyDS0DqqGzFNnz6diy66iI8++ihmu9/vZ09rfTQ9QjaM6OuzWq3ccccdvZr2DKcjbc8BpCFOI/GtK6P9xY+Ou4/m8WOEzWDZ8846nDMnnHSHyKPz3+uqDtG+vgxbj/jemp2KHGeuGaiqqur1GD0XufbXkbrZjtICsn/0BTLu+VS0uosgDDWRsy0Io5StKLu7FGBjG5pXtAUWRg9LVip0BaZqQ9uo7BzZ0y233MJFF13Ua7vUM5iOmOsjXC4X999/PyUlJcM1vD7pgWD0/7Jz6Eoqqk3ttL/UR6AtS9gKMrFmp5oVW/zd41ESXLT/c1nMF4L+KCkpQZIkDMNA8wYINLayeuM6oKvF+6RC7BO6JxaWL18ec3xKSkqfs93Horm91Nz/Ww7d8RAASdcsIvP+m0SgLQwrMbMtCKOUZLVgzc8kXGXmOIar6sUlT2HUkO1WLKmJRFrdGGoErdWD5ag0jNFElmVuvfVWpk+fzrJly7rTSnoEXQ6rlfMuuYilS5ea6Q0jzOhKI5EUeUjTdLyrtvdKHYk7bwaJS+ejJLrQOv10frwN3yc7CVfVoyTGIdms6N4A/s37iF80o9/PlZKSwvQpU9n6ydroLPmbqz4kOSOdhTdchdKVmx6JRHjnnXfYuHFjzPEXXHBBv0seut9aQ913nkD3Bcn5yZcxely5EIThJIJtQRjFrLlpRBpa0YNhtA4vkVY3lrTRG9AIZxZLTiqRVjcAan3LqA62j5g+fTrTp0+nqamJffv24a5rRDvcQlpSCjMXLyBhwuDXcB4IQ9fRQ2YwKg3h4kg9GMa/cW/MtriF00m58ULz/rBKcE81lqR4Eq84B++HW9Dcvui+vk92ELdwer+D2EirmwVZxWwJf9y1RUKzW3l25bt8sG8bU6dOJRwOs2PHDjo7O2OOtVqtnHfeeSd8DsMwqLnzl3S8vIKEy88h/1f3ntQiTkEYbCLYFoRRTJJlbMU5BPdWAxCurEdJSTjpPElBGApKUjyy026WzXP70P1BZNfo6iB5LJmZmWRmZqL7gvi37gfAMvy9a47JCIShKzVnKCuRhKsaMEI9Fi1KkLDUrDNtGAahfYeiM9BKUjzJn76Y1qfeiO6uNrShe3woSbH1zI9maBrhynrUhjYm5Rez8Kw5rNm1DUtyfLSUZGNjI42Njcd8jFtvvZXExMRjP4dhgK4jKQrOsyaQePk5JH2q/zPhgjBUxCe2IIxylvQklCSzhq0eDKPWt43wiATBJEkSluy06G214fT72ZScPRrbnGT+8VDSh6nsn+71x9y2ZKRgSU4AQGvzRGexzQ6RRTgmF/V6DK3z+OtJNG+AwPaDMT8fn7n1Ns676tJooH0iN99883FntcOHGqm88QGafv0CABlfu4HkGxaLQFsYFUSwLQinAVtxTvT/ak1jtHqCIIw0a2YyyGZAE2lqxxiB1uanQpJlpK5Okj3rWo+02MWRQ1iJ5KirZEaP0nxHAmHJouCYUoxss2KEe//tkeRjB7Tq4RYCOw50L66UJewT8nFNK+GLX/4yt99+Ozk5Occ8vrS0lG984xssWbKkz/sNTaPlj6+xf9HdhMprcc0pPeZjCcJIEWkkgnAaUBJcWDJTzGAmohGuacI+7uTq2wrCUJCsFizpydGfzUizG2t26kgP66TILjtaKIwR0dDD6qioaa8HepT9G8JgW0lJiLmttXsJH2rEVpiFkuDCNX8KkiQhWc1wIdCVctM9OFCSe6eQGGqEYHkNWlt33rUc58AxqTCaaiRJEosWLWLhwoWUl5eza9cuPB4PsiyTkpLC2WefTW7usf/OaR4/lTf/F/6Ne0i742qy/+sLogOkMCqJYFsQThO2omy0VjeGpqPWt5q1aE+T/FhhbLPmpBFpagdAbWg9/YJtpx2t3QwKjUAIRkWw3TONZOga2tiKslBS4tHavdFtHf9eFa1D3fOLh9bpx/P+hpjjewbPR0Q6Ogntq4m5AmfNTcdWnN3nehNJkigtLaW0tH+z0kdqZssJTlxnTyLnx18kbsH0fh0rCCNBpJEIwmlCtlux5nW1KDYMQlX1xz9AEIaJkuBCjjeblejeAJrHf4IjRpeeaRo9uzaOpCMpLZLdFlsLfJBJstwrUA1X1tP0mxfwb91vLn7t9ONds5OmR16ICcoB4nqU/TN0nVBlPcFdldFAW7IoZqfJcbmDsrDbv2U/5Yu/hvvNNUiSRO7/flUE2sKoJ2a2BeE0Ys1LNxuIhFW0tk4iHZ3RxUyCMJKs2WmEDtQC5uy2knj6XM6Xe3Rn1EcobzvS3olvzU4C2w4QaXWjNrQhO+04phRhzU7BVpA1ZM8dv3AG3lU70Du7vySph1tpe+a94x5nK8jEMbUYMFu5B/fXoPdovqWkJGCfmD8oaTm6P0jDL56j5cl/45hegq1o6N4PQRhsItgWhNOIpCjYirMJ7a8BIFxRjzI7Xqy4F0acJSOJcFW9mbfd0oFRkhPN8x3tJEePYDs4vMG2oUboeHUlvvW7oauvjBFWwTDMAHZPNU2PvIh9fB4pn1t6whJ7AyHHOUi/42qan/hXbBnA41BS4kn78lVIsoza2Ea44jCGZnbgRJKwFWVjzUsflL9NoYN1VN78X6gNbWT/1+fJuPcG0QFSOK2INBJBOM1YMpK7L9n7g0Qa20d4RIJgfhG0ZHZ1XdQN1NPo51K2W5EU2Wwh3uEdtmo/elil5Q+v4VvXHWiDmZN8xJGgMnSwjubfvkSkuWNIxmIrzCLjazdiSTt2HevovkVZZP7nzchxToJ7DxEqr40G2rLTjvOs8djyM0450D7yPljzMohbMJ3Sjx8j8z9vFoG2cNo5PaYdBEGIkiQJ+7hcAjsOAhCubsCSniQ+gIQRZ81ORT3cAkCkoXXQZjaHkqHrBHdX4X5nXXR2tiMrFTkxDtecUuIWTseaOTSt29v/uZxQxeHeYzoyQwxg6Z4T09w+Wp5+A/uXLx+S8djyM8j63ucI7DiI95MdhCt7rAuRJRxTi4lfdBb2SQXonX78W8sxQt1VUyxZqdjH5QxKjrn7nXXU/+Apiv/5YxyTCyl4/Jun/JiCMFJEsC0IpyElMQ5LWhKRVjeGGiFc24S9+Ni1agVhOMguB0pyPFqHFz0YRnN7R/WagnBtE21/f5dIi9uc0e4Kcg1NQ+/04125De/KbbjmTyHlpgsHNS0mfKiRwLbymG2SRcZ17jTkOAe6N4ha24Ta1BFT/1tr6SC0aR9clTFoY4kdg4JrTimuOaXowbCZxy1LyAkus862YaDWNBGuaYp2uJQsCvbxeVgykk/5+SPNHdR97w+4//UxCZfOQxal/IQxQATbgnCashVnE2n3mJfsD7dgzU5DdgxdiTBB6A9rdhpah1mxInK4ddQG26HKelr++Fo0R1nqMYNsRHSkHp+O/g170Fo9pN957aAF3N7VO2NuS3YrGffdhC0vHf+mvejxYWx56TjPmkDzY6/EdF8Mrd+DceWiIb9qIDtsMX9T9GCY0P4aNI8vuk1JjMNeWjAof3u8H2+j+ou/AFmi4Onvig6QwpghcrYF4TQlO+1Yc9PNG7pBuKphZAckCICSlhgNSCPtnej9XHA3nDS3l9Y/vRG7GNDSI4iO9M7ZDh2so/2ljwbl+Y2I1qs5TMIlZ2PLS8fQ9eh7JjntyHEOkm9cHDv+Vg9q9fD+vkda3AS2lXcH2pKErTALx4xxpxxoH8nNtk/IJ/GqBUxa+0dSbrxQBNrCmCGCbUE4jdnyM6O52pGWjpgZJ0EYCZIkYc1JM28YBpHGtuMfMAI6P9raq562NSeNhIvmkPofl5Hy2UtJuGg2kjU299i/cS/qILweze3FUGPb2rvmTQbACISj6RlH6n/bxuf16tIYaXaf8jj6w9A0guW1BPdWR4NiyW7DOWMctsKsUwqIDV2n5U9vsH/R3WhuL9bcdAp+/3Us6UmDNXxBGBVEsC0IpzHJomAryo7eDlXWYxjGcY4QhKFnyUqFriBMrW8dVT+TeljFv2FPzDZ7aQFZ3/ssjqnFKIlxKCkJJF17Hhn339wr4Pat2XXKYzg60AYzHQOAHrGrHG/mK0uS1KtuudHH7Ptg07wBs+53jy8YlvRkXLMndo93gIL7azh41Xc5/N0niT9/JgxCwxtBGK3ET7cgnOYsPdq2653+ISsNJgj9JdutWFLMXG1DjaC1ekZ4RN1Cew/1alyTctOFyDYrkt1MhziyINGWn2EGgj34N+875S8PR7c3Bwh3VSWRXQ7s43KxFWRizTHb3uvBMGp96wkfY7AYhkG4roXAjgPR90pSZOwT8nFMLjzlykdtz75H+QX3EmnpYNybD5H3q3tRxEJIYQwTwbYgnOYkScJW0l2JJFzVgKH1njkThOFkyU2L/j9YXoN/6368a3bi27CHUNXIXYGJtMSmX9iKsqJVNI50kjQiGnrYzJt2zpkUs7/uC/a78cuxyAnOXqkSnSu2Rt8Ta246tqLsaHtz3+qdsbPhkrlAeijoYZXg7irClYdB70pniXfinDkBa3bqKT12NDd7Yj7pd3+K0o8fJ37hjBMcJQinP1GNRBDGAEtKAkpqAlpbJ0ZYRT3cMqTtnQXhRJSkeCJN7fg27jVrwaclIvVYhGjJSCZu0QziFkwblHbe/XX0F9GeM8RKggutvRMgGujKcXaO1rPpzEBIkkTcwum4X18d3RYsq8L96sckXrUguuDQ0HX863fjeWddzPG2qUVD0kky0t5JaH9NTFMfa14GtqKs6PsxEHogROND/8C/aS/jXn+QuHOnEXfutMEYsiCcFkSwLQhjhL04B3+7FwwDtbYZS2Yqsn34ghhBOMLQdTpeWUnnBxvROv0A6P4QSmL3R06kuQP3v1fhW72T9DuvxZI2PIvi5LjY9ItwdQOGGkGyWrDmpZs1pV2OaKpE+EDdUQ8gITtPvcxd3PypeN7bEDNL7v1kB76Ne8xUDauFUHktmrv3omf7gsENVA1dJ1zVEG1IBCBZLdhLC6LpQAPl/WQHtV//PWpdM1nf/Yw5Wy6uqQtnGPEjLwhjhOxyRC/zGppOeJhLgwkCmPm+7S98iG/NLrOaRteCPyMYAkPvtX+kuYPmx15Fc3uHZXz2Cfkxt3V/CN+6MsBsOW/Lz8SSarYsNzSNzhVbY48vyR2UDolynIOUWy/ptd0IqQS2H8S/aV+fgXbcBbOwlgxeAyvdHySw/UBMoK2kJuCcPfGUA+3DP/ozFdd+D0tGMhNXPkbmNz4tOt0KZyQRbAvCGGIrzOouBdjUHp1VFIThEti8r7vahywjO7rSMBQFJT25Vwk7AK3DS9v/LRuW8VkzU7BPjA243a9/gveTHTHpIZH2Tlr/+jZqXUvMvnHnDV6OsWvWRDPglvtXPi9u0XSSrl00aM+vNrQR2H4A3Rc0N8gStpJcnFNLTim158j76JhUQO4v72H8Ww/jKC0YjCELwmlJpJEIwhgiWS1Y8zMJV9UDEK6qxzlj/AiPSjhTGIZB50dbYrbJCS6cc0pxTitBSUnAOXMCoQN1dLyygkhje3S/0P4awnUt2PLSh3yc8RfOIlRe2z3uiJn24nlnHbaSHHR/yPwdOmoNp5KagHPGuEEdS9w5U7HmpNG5bBOBXRW9nhPMRZzxF87GOXPCoDynEdEIldcSae1eLCo77dgnFaLEOwf8uJHmDuq+/0eURBf5j9xH6mcvHYzhCsJpTwTbgjDGWHPTiDS0ogfDaG4fkVb3sOXDCmc2M+83tkRd6ucuQ7Iq6N5A9J9jYj4Z995A44PPxTSX8a3Zie3mi4Z8nI4pxcQtmo5vdWzNbN0fIlhW1ecxklUh9T8uG5QUkqPZCrNI+9JVRDo6CWw/aC7S1HXkBBeOKUXY8jOj+55qFRfN4yO49xBGuDtX3Jqdiq0kZ8CvzTAMOl76iMM/eAoMg9xf3HlKYxSEsUYE24IwxkiyjK0kh+CeagDClfUoKQmnVE1AEPojtO9QzG1LWiKuuZOINLYTOmDOJKv1rSgJLpQEF3GLZtD5wabo/sG91cMyTkmSSL5hMRj9a1Ij2a2kfekq7MWDlyvdF0tyAgmLZw3JYxuGgVrTRLimKdqhUrIo2Cfkn1LHRiOiUfW5n9L5/kaSblhM3i/ujJZSFATBJIJtQRiDLGlJKElxaG6f2RDjcCu2/IyRHpYwxh29RsA+MR9JkrBkJBGuqseIaGitbsDM33VMKowJtnVvYNjGKskyyTddiGNKEd4V2wgdrOu9j92Ka95kEi6aE100OdgOHz7M1q1b6ejowDAMkpKSOOussygqKhq059CDYUL7a9A83QsulaQ47KWFA65YZOjmYlfJouCcOZHUz19B0hXnDsp4BWGsEcG2IIxRtpJcAtvKAVBrm7BmpSBZxa+8MISOWuhnhM16zZKiYM3PIFzVgOTsrlvdqzmM1L+FgoNFkiSc08fhnD4OtaGN0IFadF8AZBlLWhKOqcXRmteDraysjHfeeYfy8vJe97355psUFxdz2WWXMWfOnFN6nkhzB6GDdd2LPyUJW2Em1vxMpAG+38HyWuq+/juSblhM+pevJvv7nzulMQrCWCc+eQVhjFLinVgyU4g0tWNENMKHGrGPzxvpYQljmCU5tlRccE81elhFtlmjJfWkHjOpgR0HY48/xVJzp8KanXrKHRL76+233+a111477j5VVVX88Y9/5JJLLuHmm28+6cDY0DRCBw8TaepehCrZbTgmFaIkDqw1uqFGaH78VRof+gfWvAwckwdv9l0QxjKRxCkIY5itKBtJMX/N1YY2dH9whEckjGXOmROidbXB7BzoeWd99LbsckQX4YVrGvFt3BN7/OyJwzLOkbR8+fITBtqnsj+Y6TyBreUxgbYlIxnX7IkDDrQjzR2UL/0GDf/zDOlfvZbSjx8jfpFotS4I/SFmtgVhDJPtVvPyfXUjGAahqnqcU0tGeljCGGVJT8IxuSi6OBfAu2IrkZYOEhbPwlacg+b24t+41ywRqPeorCFLQ97COxwOU1ZWRmtrK5qmkZCQwOTJk0lNHZ4Z7ZaWFl5++eVe2xMTE5k+fTqKorBr1y7a29tj7n/nnXeYPXv2CfO4DcNArWsxG1odWQSpyNjG5WLNGthrNDQNSVFQ0hJxzS4l/zf34ZpdOqDHEoQzlQi2BWGMs+amo9a3YYRVtLZOIu2dI3q5XhjbEpbOM6uK9Iijg7sqCe6qPO5x8QtnoCTGDcmY2tvb+eCDD1i7di1+f+wiTkmSmDFjBkuXLqW0dGiDyJUrV6LrsV00r7/+epYuXYrFYn4c67rOqlWreP7552P2XbFiBZ///OeP+dh6WDUXQXZ0d+KU4504JhWanTwHwLd2F7Vf/z15v7mP+IUzyP/NfQN6HEE4051SsF1XV0dDQwPt7e04nU5SU1MZN24cdvvAfrEFQRh8kqJgK84mtL8G6CoFmBw/4MVRgnA89pIcUm6+iPYXP+r/MRPzSbruvCEZz759+3jyyScJBPqudGIYBjt27GDHjh1ceeWVXHvttUPyu6FpGqtXr47Zdt5553HFFVfEbJNlmcWLF9Pe3s4777wT3b5x40ZuvvlmnM7eTWcibR5C+2tiOmBa8zPMjrIDKPmpefw0/PSvtP7lLVzzp2BJTz7pxxAEodtJB9tr167l1VdfZf369TQ3N/d+QIuF6dOns3TpUj71qU+RkpIyKAM9Ga+99hqbN29m165d7N+/H1VV+cUvfsENN9ww7GMRhNHAkpGMWt+K3ulH9weJNLRhzUkb6WEJY1TcgulIdhvtL37Yu+LIUVxzJ5Fyy8VIlsFvFlNRUcGjjz6Kqh5/DEe8/fbbAFx33XWDPpbGxkZ8Pl/MtksvNTssGrqOWtuMoevRAPniiy/m3XffjTaxUVWVmpqamNl3Q9cJV9aj1nc3EpKsFuyTCnotVu2vwK4Kqm79MZrbS+5Dd5P25atEjX5BOEX9Drbffvttfve733Ho0CEMwyA3N5clS5aQlpZGUlISoVAIt9tNZWUlZWVlbN26ld/+9rdce+213H///WRmZp74SQbJ7373O+rq6khJSSEzM5O6ut71UwXhTCJJEvaSnGj1h3B1A5aM5CEJcISRpes6tbW1MXWbCwoKUIag8+HxuOaU4phUiG/DbnxrdhFp6W4NLtmtuOaUErdwxpDVf49EIjz11FO9Am1JkigqKsLhcFBZWUkoFIq5/+2332bq1KlMnDi4izWPDrQdDgdZWVkYmkZwT3U0/UOJd2FJTyIxMZH09PSYSa2eKTC6L0hof03MomclNQHHxIIBlfg8kpttK8wm/oKZZH3/c9gKsk76cQRB6K1fv5G33HILO3bsYNq0aXzve9/jiiuuOG7wHIlE2LhxI6+//jrvvPMOb731Fg8//DBLly4dtIEfz//8z/9QVFREXl4eTz31FL/+9a+H5XkFYTRTEuOwpCcTaekwSwHWNg15Rzxh+Pj9flatWsXHH39MS0tLzH1JSUmcf/75LF68mMTEoWnO0hc5zkHCRXOIv3A2emcAPRBEslpQkuKGpO15T5s3b+610HDGjBl8+tOfJiPDDPBDoRAffvghr732Wkwb9GXLlg16sG2zxdbrDgaDBHw+qGyMBtqSIiMnmNVCNE3D4/HEHGO1mmUTtcZ2Aq2+6CJIZAl7cQ7W3PSTHpdhGHS8upLGnz/DuNcfwpafQcET3zrpxxEE4dj6FWzb7Xb+/ve/c8455/TvQS0WFixYwIIFC/jBD37AX//6V+rr609poCdj4cKFw/ZcgnA6sRVnE2lzg26gHm7BmpU64MVTwuhx8OBBnnzySTo7O/u83+128+abb7Js2TK+8pWvMH369GEdnyRJKImuAZedG4iVK1fG3C4qKuKee+5B7pESYbfbueKKKzAMI6a83vbt22lvbx/UNMiMjAxkWY4uejQMg5XP/4vzJp0FmJ0YHVNLoh0dt27d2mvWPTM1jeCeKtTqeuzx5roL2eUwF0HGOU56TOG6Fuq+/Rid720g6frzB9xNUhCE4+tXItazzz7b70D7aAkJCdx///3cfvvtAzpeEITBIzts3bNfukG4qmFkByScssrKSn7zm98cM9DuKRgM8vjjj7Nr165hGNnICYfDVFRUxGy79NJLo4F2pL0T9XBLdDb74osvjpl5NgyDffv2DeqYXC4XM2fOjD6+1tbJm++9R0NLczTQPvJlpK2trVeJwJK8fOJqO4i0ds92W3PScM6aMKBA2/3OOvYvuJPA9gMUPfsARX/5PpaM5IG/QEEQjkmU/jtKz0uJw/2cI/HcQqwz4VxY8zJQG9swwhHUlg4s7rQhK7l2Ks6Ec3GqQqEQTzzxBOFwuNd9CQkJyLKM2+2O2a5pGk899RQ/+9nP+p1ScrqdC6/X26vEXmlpqRnkur0EdpmBuB0zYLXb7RQVFbF///7o/p2dnYP+ei+44AK2bN6M1t6JEY7gR+XhZ5/mvCsuZU68gaIo7Ny5k1WrVsXMauveAPOzStBDYQzDQLIo2CcXYu2qEnJS49R1JEXBPj6P5JsuJOe/v4icGHfanNvR5HT7vRjLRvJc9Kd6kQi2j+J2u0fsF+foD0Vh5Iz1c6ElO1ErzNQu//b9WKcXj9pSgGP9XJyK1atX96oKNW7cOK655hqKioqQJIna2lreffddysrKovuEw2HefvttLr/88pN6vtPlXHR2dvb6AtLQ0ICmaYR3VaJ7zTKAIb8PpcPMHW9vb485JhAI0NHRMajjykrPoDgulT11TeYGSUJLdPLhJx/z4Scf99rf0HQMt4+C9Ewm5Rfh9XqRk+KwlY7DZwH6MT5FUXC5XChIND/+Kh2vrGTC+4/gKC0g/5H7CIVCBEbwc28sOF1+L84EI3Eu+pNu1q9g+/vf//6ABiBJEv/7v/87oGNHSlJS0rA/p2EYuN1ukpKSRm3Ac6Y4U86FkZREwKtGKxnYVbBmJo/soI5yppyLgTIMg02bNsWkP4wbN45vf/vbMZVHkpOTmTZtGk888QQ7duyIbt+yZQs333xzv6qUnG7nIjExkYSEhJjZ4fLyckpSMgmiQHw8ssuBc1wBkiTR0NBAc3NzzHtZVFREcnLyoI3JUCMEyyr5ytU38sRL/6C6sR4lNeGYFYH0YBi9M0BWWgb3fvo/SIiLx1aUhSU3HY/Hc1LnIrirgsr7f0dgZwXpd18PhhENrm02W6/Fm0L/nG6/F2PZaD8X/Qq2//Wvf/W5XZKkPr8NH9l+OgbbI3mSJEkalT8kZ6Kxfi4kScI+Pjfa1U+tbsSanjTkFSIGYqyfi4Fqa2ujvr4+5r257rrrop0ItU4/GAZKYhySJHH99dezc+fO6L4ej4dDhw4xbty4fj/n6XIuFEVh7ty5rFmzJrrt/fffZ5o1mXSXWX/aXpKDLMtEIhFeeOGFmNcVHx/P1KlTB+21Hgm0dV8Qp8PBfZ/7Iq/t2cT6LZt6fYYauoHu8aEHQ8wqncKtl11NfHIS9tJClERXdP/+novmx1+l/sd/wV5aQMGT3wJdp+2590ECJSke5/Rx2CcXnhbndbBobi++tWX4t5WblWB03ey2ObmIuEVnYcs7uaoup8vvxZlgtJ6LfgXby5cvj7mt6zo///nP2b59O7fffjtz584lLS2N1tZWNm7cyLPPPsusWbP4wQ9+MCSDFgTh1FmSE1BSE9DaOjHCKmpdC7ZCUVf3dHH05VJFUZg8eTJg1mAO7DgIhoF9XC7W3HTy8/NJSUmJKYd3dGm5seTCCy+MCbb9rR08/PQTXDT3XOadM58UxWDv+vW8//771NbWxhy7aNGiaJm9U2WoEQI7K6JXkSSrheQZ4/ji+bO4vv1GVq1axZYtW3C73WjBEHEaTJs+h0Wz5pCRkoYlMwX7+NyT/iIcrZs9LpeUWy5GSUvEt6b3wljfml1Y0hNJuGQurnMG7wvGaGRENDr+/TG+tWWgx37J0drNANy3tgx7aQGpn1mCkhQ/QiMVxpp+Bdt5eXkxt5966il27NjBa6+9FlNve9y4ccybN48bb7yR66+/nnfffZevfOUrgztiQRAGjb04B3+7FwwDta4ZS1aqKP91mjK6UgMkSQJZitZgDlXVIyfGocQ70TQt5pixHFgVFRUxc+ZMtm/fbi6M9AXQdJ131qzkg73bkP7Z98dfXFwcl1xyyaCMQQ+rBHdVdgfaNivO6SXILrN6SEpKCtdeey3XXHMNal0z4erG6HmTFBnb+DysmSdXflDr9NPws7+h1rVQ+PcfEGnuQLJZ0Tv7blcPEGnx0P7Ch4Rrmki+6cIx+XNhqBFannqd0IETN7kL7a+h6bcvkfG1G7CkDX9qqTD2DKgH68svv3zcxjZZWVlcccUVvPTSS6c0OEEQhpbsckTbthuaTrhalAI8XRy9KEfX9WhJP9lpjynxGNpbTeXBg71mskdijcpw+tKXvkRhYSG6Lwhd1Ulkuw3J1negbbPZuPfeewflfdHDKsGeM9o2K84Z46KBdnS/kEqwrNIsw9kVaMsJLpyzJp50oO35YCP7F95N2/99QPwFM+l4eSWBreX9Pt63Zheet9ae1HOeLtqfX96vQPsIrcNLyx9fRw+rJ95ZEE5gQNVIGhoaTrigwm6309AwMh/cL730Eps3bwaIlnJ66aWX2LBhAwBLlixhyZIlIzI2QRhtbAWZRJraMSIakaZ2tJw0lIThaz4iDExycjJFRUVUV1dHt73++utMmTIFq9WKrTgbzeND9waI+IO89Oo/Y45PTU2lsLBwuIc9rBwOB9+4736e+tnD7Ni/B5CiHRqPlp6ezle/+lWKiopO+Xn1kEpwVwV6wFygKdlt5oz2UQ2kIq1uQuW1GJHuKw62gkyshVknNbtsGAZ1X/89bc++R/yFsxn/2/sx1AjNj73aa19bYSaOKcUYuk5wVyVqfWvM/Z3LN+M6e1L0S/hYEK5pxL9lf+xGWSLunKk4Z05AslkJ7TuEd9V2dH/3otpIcwe+tWUkLJ41vAMWxpwBBdvZ2dksW7aMr3/969jtvbvPBQIBPvjgA7Kzs095gAOxefPmXos6t2zZwpYtWwAzLUYE24JgkqwWrAVZhCsPAxCurMd51vgRHpVwIpIksXjxYp555pnotpqaGh566CGuu+46pk2bhr20gO2vvc/bq1ZQUXcIJSk+GvBdcMEFMd0UT3eGYaDWNqEebsUIq0g2K7aCTBR/kDuuu5maxnrWVu5le00FwWDXbLMkUVpayoUXXsjMmTP7VZnlRPSQSnDnQfSgWUZQstvMGW1Hj6Y5uk64sj4m0JVsVhyTCvqVJ3wkEDcMo7tu9uQi8h//Jim3XoIkSbT+/d3YY6wKqbdfjnN694LYxCvOxb9pH+3PL4vJYfau2UnKjRcO6PWPRr7Vsbnqkt1KxtduwJbffXXeXpJD3Hln0fzYK0Qa23scu5P4C2aOydQaYfgMKNi+6aabeOSRR7jtttu45557OPvss6MLbzZv3szjjz9OXV0d3/zmNwd7vP3y4IMP8uCDD47IcwvC6ciak0qkvgU9GEbz+Ii0uLGkj+0Ug7Fg/vz5vPXWW5SXl9PY2IjP52PDhg289tprJCYmkpeXhw0Z3e0FQPP4kKwW4pMSOf/880d49IPD0DT8G/bg/WQH6uHYWVojEgFFwTl9HAVTCpl0zcVgUQgEAmiahsvlilZvGQx6MExgZwVGyAy0ZYcNx/TYQFv3BQnuOxRNLwGwpCZin5iPZO3fWJKSkojUt1L3nSdwTCki+4HPk3H39dH7NW+AwI4DMcckXnZOTKANZtAeN28ykfoWOj/aGt3u37iX5GvP6/d4RjMjouHfGjurnXDR7GigHV3nACjxTpJvWEzLk/+O7htp7kA91IitaGQmD4WxYUC/SXfccQdVVVW8+uqr3HfffQDIshzt2GUYBjfccAN33HHH4I1UEIQhI8kytpIcgnvMlIRwVVcN4DE08zkW7du3D6/Xy969e4lEIjH3eb1eDh8+TEJCAuOy83BJChgGsjfIXd/9DvHxp3+lBc0boPUvbxKu7DtlUfcG0INhOhvbiDS14zp7MrIsExc3+B1T+wy0Z4yPWXCsHm4hVFXfPYssS9hLck8uZcMwaHvmPer/+8/ILjspn+l9lVata46ttiFLxC2YZh6u64QO1GGoEZQEF3Kii7hFM2KCbSOkoja2Y8vPOIl3YHTS3F6McOzvhmv+VMD8ohbYcRAjpGLNz8Sal459Yj5KcrxZErCL2tQhgm3hlAwo2JZlmf/93//l+uuv51//+lf0D358fDyTJ0/m+uuvZ/78+YM9VkEQhpAlLSn6IaMHw6iHW8fEh+1YtWrVKv7xj39gGAYzZ86krKwsmh7RU2dnJ7v85UzKLSQvLYM7rr+FImvCCIx4cOnBMC1/+DdqXUuf9xvhSHcqhywTaWqj9ek3SL/rukGfsdUDITPQ7lpMJzvt5ox2V6BtqBGC5TVobZ3RY+Q4B47SQuQ4R5+P2efz+INU3vpjfJ/sIOVzl5Lz0y9jSe59Lo1Q7KI+S2pCdGGm1tZJpMlMk9Dau8YjSWi+AOgGks2CbLVgBEOMBYaq9dqmJJp5+0ZINRfPYk4wRFo6cEwsQEl0xQTbHPVFVhBO1in9xZk/f74IqgVhDLEV5xDYZlYvUGubsGaljIlLyWPNrl27ooE2mOXqzj77bJqbmzl8+DBerzdmf7vdjuG08dUbbqU4Jw/1cAtKUtxpXdbM/cbqPgNtJdGFJSOFQFlFdJsc7wRJJlRxGM/7G0i6auGgjaPPQHvGOGSbGWhHOjoJ7avBULsDNmtuOrbi7H5fOTI0DWTZ7Hp51ngyv/lpEi6cfcz9j/6d1Tq86GEV2WZFTnQhJ7jQO/3dr8Ef7L7tAw0IlteCJKEkxiEnxp22JUGPrv4CEK5qwD4+D9nlwFaQSbimCTCvhHg37Ca4vwbZboOu9BLJ2XttmiCcjAF9ij722GOcc845zJs375j7bN68mbVr1/K1r31twIMTBGF4KfFOLFmpRBrbMCIa4eoG7BPyR3pYQg+GYfD888/36jxYUFDAbbfdRnp6OmVlZaxYsQKPx4PNZsPhcCBJEh+V7+SLOWbfhOZte9kWaKG6toZgMIjNZiMvL48FCxYcs6zrifh8PtatW8eBAwcIBAJYrVZycnI499xzyc3NPeXXfoTuC+LfsDtmm5IcT/JNF+KYWozW3oljVwXhg4fxrd2F7OoOlnyrd5GwdF40GB7Ic2tevxkoWxRC+7sDadnlwDG9BNlmNRdBHmpErW2OHitZFOylBVhSE/v9fIFdFdTe/1syvnYjyTcsJvd/voKmaTG5xkez5sampRgRncDmfcQtmI5ss+KaOSG6PkNz++hctilmf0mRkexW1PrW6CJO2WEz67UnxZkB+GkSgMoJTizpSURauptAda7Yim1cLpIkYSvKRklJIFReix4IEdxVYX45sSgoSfFINgv2kpwRfAXCWDDgYBs4YbD9+OOPi2BbEE4ztqIstJYODE1HbWzHmpN+Upe6haG1e/dumpubY7ZddtllfOpTn4oGXzNnzuTmm2/mz3/+M1u3dufilh2qoNbv4cOPlrN17250RUZJTcCiG6S5VdrCOrv+/Ar5E8dx8Zduo2DapH6NqbOzk3//+9+sX78eVY1NYdixYwfvvfcepaWl3HjjjRQXF5/aGwD4NuzGiOjdG2SJ9Luuw5qVimEYhKsakGQZ+8R8nLNLafv7O9Fd9UCIwJb9xJ077ZiPf6TrY7i6AT0QQpJltE4/kTY3kQYzBcOIRNDavVgLM6Mtz50zxiFZLWbQtu8Qure7kYySHI+9tKDfQb4eUmn61T9p+t1L2CfkR3OGDcPA4/GQnJx8zGOVpHgckwsJ7j0U3eZ+Yw3WgqxoapjssCE7bOidfsJV9VgyUzDCEYywin1Cnjmz2+MLnR4MowfD0RQUyWpBSYpHSXSZM99xjlFZsUOSJOIWTMf9xurotuCuStyvfULiFeci260oiXE4Zo7H89Za/Ov3AObCykirG+esiccsFykI/TVk14dVVR1TZaUE4Uwh26xY8zOi3exCVfU4p5WM9LCELj1bkAPk5ubGBNpHWK1Wbr/9dnbv3k0oZObfer1eHvjjb0g0LKBrOIMRils6yPGD0nNB3eEy1nzy30y98iIm3nYl9onHvrrR0tLCb37zG1pa+s6dPmL//v388pe/5Mtf/jJz5sw5yVcdq2cQCeCcOQFrVioAkcb2aKUPOcGFa+YE/OsKCO6r6T5+X02fwbYeUulcthHf2rJoLq/u9RPcV2OmiUgSlrQkLDmpGP4ghm6YJfxqmnA1tOGYkI/e5iFccRhD6/oy0DV7as1L73cwGj7USOXNPyJcVU/Wt24l4xu3nPRMfNx5Z8W8T3ogRNMjz+OcORHHlCLQdQK7KgiWVZnDlGUkhw0cNlJuW4ItPxOt04/eNfutef0xiy4NNUKkpYNIS4d5vEVBTnShJMahJMYjxztGzQLruHOm4nl/Q0wuu3flNvzrd2OfXIRst0Zz6pXkeHNRZVftc1tRFoEt+82Fk6J9uzBAAw62j/dHIxwOs3nzZtLSxk5RfEE4k1jzMlAb2jFCYbT2TiLtnVhSTv9FdWNBXV1sF7xFixZF/x6HaxpRG9qxF2djyUjG5XJx9tlns2bNGkKhELt27SIpKYnUceNJqnEzvUHFoqtIdisosYGRrmnsfutDrLWt5Fx/IcaCyb3G4vf7+d3vfnfCQPuISCTC008/zde//nUmTerfrHlfdF9s63FHaUH0/2pjW/T/Ry7/20sLY4Jt3dudr3yE5vHR8sfXYsoHap1+grsru4NMw0BtakM93Iy1IBPZ5UCyWrCkJBCubqD+R382Z0u7rgTJDhv2SYX9bhJlaBqSomDJTsU1dxJFf/0+jqnF/Tr2aI6pxTimFhPcXdXjCSCwrTy6LqMvrrmTsBeb75slJQG6fu8NXUf3BtDcXjSPGYRHv1BgzgRrbZ3di0BlCSXBZdZ2T3ShJLiQBqGO+UDIcQ5SbrmYtmffi9muB8O93gvJasGSnoTuDWAbl4stPzNaacaanYqtOAfJMjKvQzh99TvYvuSSS2Ju//3vf+fVV3t3p9J1nfb2dkKhEDfffPOpj1AQhGEnyTL24myC+8yZsXDFYZQ5paPyMvGZJhwOx9xOT0+P/v/IF6TQgVqU5HgkqyV6f1VVFaFQCE3TSAnCjBYDBYnUlBTiXXGEbTItrS3REoKGYUTrdhfUN+BemUPezUuYNWsWVqs5y/rWW2/R1NQUMx5FUZg1axbFxcW0t7ezceNGOju7q3Dous5zzz3HT3/60wH/PB09Y6r3mLE8khphyUxBSTRL/BlHt9xWZMrLy9m7dy9erxerAXmrKsiSHdHuyIYaIbS3OnY2V9fN2VHDIFzdiL20AGtmAkZER3N3Ymg6nnfXkXTDYqxZqdjH5/Y7wOxcvpm6//ckRX//Ic5pJRQ8fmp9KiRJIvX2y2n542uEK+v7dYxjShEpn76kz/skWe6ate56Tw3DDL49fnS3F83ji+mEiW6YM+Ju35EBIcc7ux7DnAEfzsXXrjmlGKEw7S+viC2L2CeJhKXzSLzyXEIHD0cXj6oNbUTaOrFPzBeTD8JJ6fdPes/FOJIkYRhGrwU6ABaLhQkTJnDuuedyzz33DM4oBUEYdpaMZOTDLeidfvRAiEh9K9bc9BMfKAwpp9MZc7umpoZZs2YBYEmJR21ow9B0wnXN2ItzOHToEKqqRvO87ZLC1EofySnJlOYUYj1S8tlpY9Ili1i3ZROHN+0k4gv06J0ASl0tL9SW83xOCueddx4XXXQRq1evjhlLXl4e99xzT8wXgBtuuIHnn3+eTz75JLqtqamJ3bt3M23asfOmj0dJTYCa7iA/sL082lLbXlqArTAruoDPMAz80dlLg4aGRnbU72P91u487nG1ftTGIFVIpKenU1hYiLXNi+S0o8Q7MUIqWqsbSZaw5GeixDvBImPJSAZZjuYxA0Sa2pEUJWa2/Xgi7Z3U//Ap2p9fTvziWeZjDxLZbiXj7utxv7kG39pdfZbBA7OjYvwFM0m8/Jx+p35IUtfMdYIL8szzrfuDZoDt8aF5/NGa4wAYhvm3pNOP2nVxRnY5zMA7KX5YKp7ELZiOJSeNzg82EdxTBX3E3Na8dBIumoOza3LBedZ41MOtqIcaMDQdI6wSLKvEkpmCrVjU3hb6p9/B9ocffhj9/+TJk/n85z8vFj8KwhhnL8mNdqILH2rEkpkiLqGOsJKSEmpra6O3V61axeWXX47VasVakIXa1A66gXq4BbfNXKDY1NQUDZynyAnYNZg6dSpWixWtpQNbSS5x582gMyeJjc3b+WBnIxPCMvNCLiTMdJGEhHgKmoLsTvDy7rvv8sYbb6BpGg6HmTIhSRJf/epXYwJtMHPHP/e5z3Hw4EHq6+tjxj3QYNs5ayKB7Qejt8OVDfi37MfVFSD1LNXmW73TzOPWdfbt20dLSzP7JiYAZmAn6wY5LUdqShu0tDRT521nVslE0gvMjotGOAKTC5EUBbW2CclmNWsxt3tJWDoPbcVWdF/A3J4UR3B3JfELp5/wdfjWlVH9+Z9jhCPkP/p1Uj6zdNCvHklWC8mfuoDEy+bj27CH4O4qs5OoJCEnxuGcOR7XnEkxXS4HSnY5kF2OaJOeIxVPjuR964HY2t26P4juD6I2mKk/kt0WrXaiJA1NxRN7cQ72r1xDpNVNYPtBtI5ODMNAiXfimFyEtTAr5hxIkoQtLx1LWiKhA7XR+tuRpnYi7R60tHg4zmJVQYAB5mwvX76cxMT+ly4SBOH0pCS6sKQnE2npMEsB1jSJMlgj7Pzzz2fVqlXR2263m6effpovfOELuFwurNlpqIdbaGlr428vP4uu69E0DlmWma65SEtLw2YzAxn7pEKsxdm43R5+948/0Wk1SM/JZnu4GgU4O+SKVhhJ71CxqjqqVebQoUO0tbUxc+ZMbDYbkydPJjvbnOnTOv3ml7PURKw5aUiSxOLFi3n++eej466qqhrwe+CcMa5Xrei2594jdKCWuIXTsWSkEGloxfvJDvyb9gEG+/ebgbbfrtCR0P3Rl9EexqrFTnFWZdiw79nL9OkWkuPi0do7Sf70xSiJcXS8vAJD09HaPOYCyYo6XPMmE9i016znjURwdxV6SD3mTO2R3GxbSQ4Jl5xN9o++iDU7dcDvR3/ILgcJF84+bn3uQX/OroonZKYAZmrOkXKDmsdnLkLtcYXcCIWJNB1V8eRI4D3IFU8saUkkXNz/hbqyw4Zz+jjUhjbCVfUYEQ0jHEEtryWoGmbd7gGWkxTGvgEF23l5eX1ur6mpYe3atdjtdpYuXYrLJcrlCMLpzlacTaTNHZ0ttWannjY1dseioqIixo0bR0VFd9OW7du3873vfY/Zs2eTlpzCwdWbKDuwHx0DS3oymmamD+RnZJHkNYjL6m5X7pw1ESOk8sprL9PubkeyWojr+tu9yxZkvpFMnNNJQkIiPp+PuDY/+yU/zc3NdHR0UFZWxqxZs2I+F8KHGtHaO9E9vugsZ35+bEWTvrpd9pekKCReOo+OV1Z2bzTAt7YM39qyXvs3t7RE02iqch3RZiUZGRnMs9uwd9bT3t5mrjlKsGLIEmCwd88ezh5XiiU5IdphNf7iOXS8vCL62JHmDtK/ei2hnhVSDLNNuNwVZEY3GwZtz75H82OvMOHdX2PNSqXgiW8N+H043UhWi1nNpauZkqFp0cWWmseH1tlHxZNWN5FWs0Z2bMWTOOR457BXPLFmp6KkJBA+WIfaNa5Iixvd7cNWkhOtiiMIPQ0o2H7qqad4+eWXeemll0hKMn9p1q9fz1133RX9A/rkk0/ywgsvRO8XBOH0JDts2PIyzC5rXTWMHVOKRnpYZ7TPfvazPPzww9GSfgChUIh169YB5syybphpI7o3gCzLOBwOxucWwH4/gUB3NQ/7pEJaDlSz43AVhlVBliX83k7i4+OZPHky9kMR0g07+QX51NbUUlu+j716Bx6PB7/fj8fjIRAIoCgKV155JXFxcd31pXsEQo2NjTGvwW4/tS9scYtmoDa04lu964T7Hu6q4FKd7aAp1Y7dbuf222/n7LPPpu2Z9wgo5UQiEQ4ePEi13N38JOwP0NzeTm56MkpyPI4pRWie7tl02WFDSYrvuxPnUYvwQpX11H3j93g/3k7KbUtAFouNJUXpu+LJkbST/lY8SYxDToobtoonst2KY2oxSlM7vu37omMLldcSaXGbs9yDkJYjjB0D+kr44YcfkpWVFRNIP/zww+i6zn333cdtt91GVVUVzzzzzKANVBCEkWPNz4hWDoi0utHc3hMcIQyl/Px8vva1r0XzpY8mx3XP3uqBENmZWcyYMQNLV1pDS0sLkYiZGmKJd7Fu1zZw2SGiYRjQ3N7GtGnTcLlcWCI6fr+fPbt34/P5KBxXgizLWCzdczVut5uVK1fygx/8gJrKqh4dFbsXKfZMfYFjXyHtL0mSSL7xQhIvn3/cwNXn89HR2cmBfBeVuebiw1tvvZW5c+ea+d1WMzizWCxMmlRKQVIaqqWrTbci09jagu4Pmb8DigIYKMnxKCkJKMkJyA5btGpPTz3L/bW/+CH7z7uHUFUDJS//DwWPfxNLsqhmcbQjFU9s+Zk4p5XgOncazlkTsZXkYklL6l29pKviSbimieCuSnzrduPfVk6osp5Iqzv6czhULBnJ2GaOx5KeHN2mtXcS2Lof9XBLn0UkhDPTgILtmpoaJkyYEL1dX19PWVkZn/nMZ7jnnnv40Y9+xIIFC3j//fcHbaCCIIwcSVGiHezAnKUTHyQjq7S0lB/84AfMnj27VwMxSZaR45zYLFYWzZzDz7/2LeLi4ghbZDRJQtc19u7dh6ZpBPdWU9nSYLbodjk45GkhISkRu91OnE8l0thO0OvD6Jqp1eMdpKenx1RFCYfDGIbB+vXr+cUvfkFjq1l3W3Y5MAyDN954o1eO9nnnnXfK74EkSSRedg7ZD3yehCVn9+r0pyTH0zIpkw3TEokoEtMqfJxbGWL8hlpa//Y2vo17MCJ6j4V7ElPtqfgc5vskWRR8hooU78S7fAsA/k17kR12s8MioKQl0vnBxpjntRVkIsc5MLrSd+zjckm7/XJKP3nipPKEz3SSJKHEO7HlpeOYUkTcOVNxzSnFPiHfXKxtP2r2uKscoVrXTHBPNb71u/Fv2U/oQC1qU3tMichBG6PVgmNyIY6pxUhdOduGphOqOExwV0WvRaHCmWlAaSQejydmgeTmzZuRJImLL744um3q1Kkxi2EEQTi9WbJSUOtb0H1BdG+ASFO7yE8cYVlZWdx11120t7ezbt06Dh8+TCgUwul0UlxYyHQlCafFBpLEWVOnsW3XTlpSrGS1hWlvb2PDhg1kNtRRLzdR09BAU3srIT3CpGlTkXWD/H2thAIB4hPtGGGVkNNKR4KFtLQ0QqEQoVCIjo6OaKUTt9vNx6tW0Xigiq99+j/wH7Kx4ZkyGhoaYsadnJzMzJkzB+19sKQkkHTVQhKvXIDeGcAIm416JKeNPQ/+kbP3eKKLIFNT41GrG1GrG/Gu2IahRVAbO3B0VRtJcroYtz9IU4qVnDazdJ2maXg/2UFwTzVqfUs0qNL9QdS6lmi3ySNc86fQ8Ivn8K7cyvg3H8Y1dzKuub2bAgknL1rxpGtBqR5S0dzerrxvf7R76BFHKp7Qs+JJV7lBJdGF7Or76tDJsqQmosyJM2fVuxoraW4f/q37sRWeXAdRYewZULCdnp4e08Vs9erV2Gy2mD+eoVBI/GAJwhgiSRL2cbkEdpoL88JVDVjSk0asK5zQLSUlhSuuuKLX9nBNI+HqRjAMrpqzkP0VB6nLiJDVFURGIiqHK6ooaG2hMeyhU9YowMb8yhCTK1sJtvuQHQnomEUjGlJt3HjTTbjdbpYtW0YoFGLDhg34fL7oc0ZUlV0V5Tz6wrOkF+VFA9Oebr31VpQh+LmRJAkl0ZzdNtQIrX9+C9f2QzHVRkJdtZ+NsIp+5P+BIKGDddgnFhAKhclsDxORJVx+jYhVQm/1EGj1oHvM1ym7HBi6Dppu1mPucWVB9wep/fbjhCsOk/mNT2PoOhLid2SoyHaruRD16IonHr8ZhPdV8aQ5TKS5A+iueCIfqXpyChVPJIuCY2I+kYwkQuV1Zp1x3SBcVU+kpQP7hPxBraMunD4GFGzPmDGD5cuXs2LFCux2O++++y7z58+Pdt4CqK2tJTMzc9AGKgjCyFOS4rGkJhJp82CoEdS6FmyFWSM9LOEYrLnpqHUtGBGNVMPC3V+8g8f/9EdakgKku7svqbsUK0vVZFJ1BSsyUkjD4QihGzYUVSES1mm3wdxrL+OSJUt44IEHAHOR4+zZs2lra6OhocFcIN+VbtLY2kz6+MKY8UiSxK233srs2UNbfs4wDNr+bxnBvYdwuWKDG5/Pi8/nxR7ozue1jcsjVF5LuLKeJsNcAGnRDZAgw6MRqTwMdAdgR2ZP7RPyYwLtwPYDBLaV45w9kYkf/R7ntJIhfJVCX/qseNLpR3cfv+IJPSueJLii9b4HUvHEkpyAMmci4epG1MNmSpXuDRDYfgBbQaaZ/z/MVVSEkTWgYPvOO+9kxYoV3H333YD5B/TOO++M3u/1elm/fj2XX3754IxSEIRRw1acTaS906xMUtuEJSt1yDu/CQMjKQrW/EzCVWYzmUJrPN/7/vd5/u/P0vnWFhICGrJuUBSxYRjd3QUlQJYtSJKZHiLrZhAzcWcTrz37T1paWjD8ISSrhfj4eL75zW/yt7/9jWXLlkVz+Tu8nTEBRVZWFjfddBNnnXXWkL/u0N5DBLq6RiYnp2CXLRjBMJ44C21JVryBBpamlUBjB5JFwZKagDSpAM+OAzRrHuhaIOl3KmRkZEKw9/oEa0Gm2UESwNCRXU6SPnU+yTcsJv2u60Tzp1FCUhRzMWpyHxVPPD50jz+mzbwR0dDaO9Ha+6h40tVqvj9X8yRFwT4uF0t6MqHyGjN32zAIH2o0K5ZMyI9ehRHGvgEF29OmTePFF1/ktddeA+Cyyy6LtgsG2Lt3LwsXLuTqq68elEEKgjB6HOkQpx5uiV4idUwqPPGBwoiw5qSi1jVHZ/Ay8yfwje99l7pPV1P28F9xrNyNrNjwWyIYmo7FoiBLMuFwCF3XMGwWWl0SikVi+/pNtG6KIBc7CAcDIEmUzJnBnDlzyMnJoaO9g7p9B+j0eYlgUFBQQG5uLgsWLGDy5MnDllroXb0DMIi0dxJpaKMgIHNIBoeqk9MUJHToIK+k1FI6fSrjwwpaeztNTc20ax6UiI4aDZQlMqeMx6aDWt9KpKUDSZaxFWdjyUhBD4UJbDuAJTOZ4mf+SwRPp4EjFU+URLPWvGEY5jqUHs12YqqYdFU80dxdqVKShBzn6Aq+XRj68SueKIkunLMnotY0Ea5tNhdx+oMEdh7EmpuOrTBTpOKdAQYUbIPZsn3y5L4XfMydO5e5c+cOeFCCIIxutsIsIk3tGBGNSHMHWk66CDRGKUlRsBVkEqo4DJh53M6pJeSVFBG35CI8mgu1sQ1fbSNtTc0YuoEqQ71VpynkQ4lI4DWwSAppSck4FZmJ9VCWYs6Af+qKq5EkiWAwiNNqpTjXLOknOx384Ac/6FUpZahpHh+BnRWE9h2KttZOnlxMecV+Ojo6CPr9Zu3mVth/sJ6dLhtZjnicTgeSRSJoVSgbF092W5gZ6Xk4kxKQ7VacMyfgPGs8crwTIxDCu2YXLU/+Gz2skn7XdeLn/zR1pOKJEu/EmpsOmOUyo10uPT70YLj7gK6KJ7o3gFFnEPJ68We0YkmO75r5jutVY1uSZWxF2ShpSYQO1Jp16A0Dta4ZrdWNfWI+SlL8cL5sYZgNONgWBOHMJVkUbIVZ3QFcVT3Os8aP8KiEY7FkpxKubcYIq2ZTEI8fyarg27AbOc6JfVwetpJcfC1N/PtwGc1xEk2dIQ42tpEVsXBBMJ6ksI6m6yhAljvCgUSF66+4isnjzPO+efNmjEh3A5LktNRhD7QBQlUNBMsqo411dMOgorWJSEQlFAzFNEmRZJm4YAS730eTrZOU5BRsNithm4z1U4u48K67er0GQ9c59KUHcb/+CYlXnkvew/dEgzRhbJCddmSnPabiSbTLpdvXu+JJIIQaDPeueHJk0WVXxRMl3olz5gTUumbChxpBN9CDYQI7K7Bmp2IrzhHpR2NUv4LtP//5z3z2s589ZgOFE9mxYwft7e0sXrx4QMcLgjD6WHLSUOtbzVkgj49IixtLuugYOxpJsmx+OTpQC0D4UANaeydGuPsSuKTIzP3VN9GXr+CFN19D1XVkJBotEd5xebhZTaTT7yM5PgG7rPCFqQuZNnMORkilrq6OlStXYkS6H2/e/HnD/joBOt9b3x1o6zpN7nY6NAmL1Up8RiqBpjbUiGp2t5RAA5I1mYCq09rWSlpqGosXLOLqu74QE2gbhgGGgSTLOKYVk3T9+SRdd56ounUGkO1W5IzkaI6+oUbQOv1EOrzIdVq0gdQRvSqeWJSuLpdmuUFrXgaW1ERCB+rQuircqA1tRNo6sU/Iw5KaiDC29CvYfvTRR/nLX/7CZz7zGa699loKCgpOeIyqqqxcuZIXX3yRVatW8e1vf1sE24IwhkiShK0kh+DuKsBsdKOkJohV9qOUJSsFtbYJPRhG6/AS2Hkw5n7n9BKs2anMu/ACpuUVs3XfboJvvMTe6gp8mkalPcJUTUeRZUpy8klTFZrbW9n6zjZWbN+Eqqoxs8YXLrlkuF8imttLcG911y2Djo4OIqpKeV4y9Zl2NAmUJgfpDT6yW4Ko4TCSpqNIEpmGDeIs2Gw2Fiy+ICbQDlc3UPv135Nw6Xwy7r6erO98ZthfmzB6SFaLWVc7JQFbipO4hAQztaSr3GCviicRjUibB9o85vGKjJwYh5wcj2SzmNVQDLMcZXB3FZaMZOzjcnt3zBROW/06k++++y6PPPIIjz32GI899hhTpkxh1qxZTJ06lfT0dBITE6PNDaqrq9mxYwebN2/G4/GQk5PDL3/5S7FYUhDGIEtqIkpyPFqHFyMURj3cgi1flPwcjSRJwlqYRWh/DQBqbUvM/bZxZq61NTMZS1U986adxUPjSnjktX8SDodJqfeSWuFF03X2Vh7Ee7iCDRWrkJ0OlKSuxWZdC8vOOWs2WXm5w/jqTL51ZcgOs0V8OKwSDIdoS7aBDLosER8XxxU338y8efPQt1dw6E+v0bKrHEubFyegOmwEJVixYxM3T5uAoWm0PPUGDT//O5bURDLEQmChD7EVT7K6Kp4E0TzeviueaHpMxZNoMK7ryHFOs1xhhxf7+DxxtXCM6FewnZ2dzcMPP8w999zD888/z2uvvcbu3bv7vHxmGAayLDN37lxuvfVWli5ditUqyoIJwlhlL8nFv63cXPBT04QlMwW5j0YmwsizZCSj1jShB0IYagQ9FEa22zB0Hc3txTAMJKsFa146am0zeeNLuOOOO/jDH/5gNoZRFIhEcKkGrpDOgqowiaqKEz+qIuHVVZxpyZyfNpFIqzta63i4BHZVItmsKCkJ+CtrCNgVIhaJcXUBtOQ47vnu/WQW5iNZLRgXzMb36sc4HYm02SOEQkEcIY3qHAe1G9Zz9SWXUvfZn+Hfsp+0r1xD9g9vR0kQiyCFEzMrnri6Gyz1rHjSNfvds+KJZFGwZqYQafOg1jRh6Dqyw0a4ugFrXgaOmeOxxIufvdOZZBhG7wKiJ2AYBvv27WPLli00NjbS3t6Ow+EgNTWV0tJS5s6dG9POXTg+wzAvdyYnJ4v8vxEmzsXAhA7UonYtDrJmp2KfkH/KjynOxdCINHcQ3HcI99tr8W/cixEKY4QjSA4brnlTcEzMJ27RDOwT86Nfmnbt2sX6e/+X9KYA8Z1hZN0AA5AlkCQkRQYD7BYLqQW52EtysKQm4pw5kZSbLxy0ltgnUv/ff0bz+Im0d1K9Yj2tCRZCdjMdpCA1k5KZ07CWZKPEu4g0tOFbs9PMlY1EaG5uJmCX+WB+Kr44K3fffTfpz6wi5dOXEHfO1GEZf3+I34vR41TOxZG1Lpo7tuKJrkaI1LWgdXZ3ZZUUBVtJDrbinO5mO0dVPDnTjfbfiwElBEmSdNzSf4IgnFmshVlEmjswNB21sR1rTjpy3PAEWMLJkZPj8a3ZRbCskkhjG5LdiqQoGMGw2fwmohHcU40lI5nU2y/Hlp9BYauKYs8kaG3Fp3hQwiqqZKDJEhLgcrlw2u1YdNDbOwkboCS4CGwrR61vIePeG4Z1Vlhz2fDbYj9w01NSCNc2Ea5tim7TVfPSvsViwWq1UmuNcHjZOlzzptDe3s6sR+4btjELZ5ZoxZOsroonYTXa5dKSHI9a14J6uAVD0zA0zZzQaGzDmpuObLOaV3C6Am8lMU78vR3lRPa9IAinTLZZsRZkEq5qAMMgVHkY5/RxIz2s05rH42H16tWUlZXR2dmJLMukpqZy9tlnM2/evAGl5xlqhNan3yBUWY/sciDZbRiqas5MI5kpJp1+LNmp6KEwDT/9K/YJ+fjW7sJo9+J0OrAFVHTDguGwIssyss2K4rJjhLVogw89ECS0rwbH1GIije20/uUtMu67ccgXz8qJcWges916R4IFS3eaLLbUJGRVxwgEMXSzskg0Z1bXCYZC7K2vgmQZyWlH07Q+nkEQhoZsO6riyYzxRFrdBMoqo6lfeqefcHktlqxUlLREjGa1d8WTI+UG452jcob3TCWCbUEQBoU1Nx21vg0jZFa7iLR5RAmrAQgGg7z44ousW7euV8B3+PBhdu3axcsvv8zll1/O0qVLT+oDteOVlYTKa5EdNnSrxaxQcqgRI6JH6/tqHd5oMxiAwI6DGF3jMNQIhqqhuOxmsO50oCS5sBXlEGlsQ1dV9M4ARkjtKgfZgSUjhXBVA4Et+3HNHdqroc7pJai1zeYXEUkmbNFpSLOT0RGmw+MhMzMT4p3ooTCRpnbQNQzdIFjbRK2vFffUXBJnFSPJEgkJCUM6VkE4HsmiYM1KxZqVSqTNQ3BfDZrbi+4LoHX60L1+LNlp0XSSPiueJLi6004SXKJS1AgSwbYgCINCkmXsxdkE9x0CIFxZj5KSIGZXTkJnZye//e1vqa2tPe5+Pp+PV155hdraWr7whS/0q3mM2tSOb/3u6G053olF17HmZaC1dGDJSEbz+FHrWzECoeh+WqcfMMDlwAiEkeOdOCbmYWgGhqaR+tnLSLp6Id41O+l46SOMxBByYjzBskrUhjYsGSkAeFfvHPJgO27BdDzvb0RGJikpEbfbTUZHmMocB964ADdPL0FrdROurEcPhrFPLEROcFHrbiWYn0t4VhqSJCHLskiTFEYNS2oicfMmE66qj66NMQwDIxRGcliRXY6+K570/OIsSyjxLuQjzXYS40QDnWEkvuYIgjBoLBnJKIlmGTg9ECJS3zrCIzp9aJrGE088ccJAu6f169fzr3/9q1/7+lbvjLmtxDtJvf0K0v7jMhKvOBfJbsOalYrzrPHRUn4YBkYghBEIoxsg2aw4JuZjyUwFWcIxqRDJIqMHQyjxTuLPOwsUBdlhw1aUbdYe7uq2F65qQG1q7/drGwglMS66mDEnxyw9aNUMSmsDJG+pZt2rb+E5WEOkqZ3grko0i8Sh+lqaEyzUFCVGm5PMnj2bpCRRck0YPSSLgn1CPs4Z45AdNvNLocOOEVQxwhHs00pwzS7FPi4XS3oy0tEVoXQDzeNDrW0muLsK37oy/Fv3EzpYR6TFjR5WR+aFnSHEzLYgCIPKVpxDYMcBAMKHGrFkpogZlH5Yt24dFRUVMdssFgvz5s1jypQphMNhNm/ezJ49e2L2+eCDDzjvvPPIyso65mMbhoF/y/6YbfHnnUXcOVMI7KzAMbkIx9RiDN3Av64MI6wS2FpuNqlRZGSnHSknDam5HUt2qrlAS5axFmWhuX1E3ObsmW18LvKmvQAoqYmgyOj+YLQaSaSpHWtmyim/V8eTdP35qIdbSNN1HA4HwaAZ7EtAZ10ja7fuxeYNY0uOJ7xtKygSNZkOmlO7qzssWbJkSMcoCAOlJMXjnD2R8KEm1MMtYBjo3gDBHQex5WdgLcjEmpsO9Kh44vGju73RiidH6L4gui+I2jUpIjts0S6XSlL8kFU8CYVCbNiwgQMHDuDz+bBarWRlZXHuueeSnZ09JM850kSwLQjCoFISXVgyks3qJBGN8KFG7OOGv8HJ6cQwDD766KOYbSkpKXzzm98084y7nH/++ezYsYMnn3wSXdejx3788cfcfPPNx378kBptYX6Ec84klKT4aFMidANHaQEJ552Foes0/fp5QuW1BHYcBIxoK3bzA1hCTnAi26wYkQi62yxTJsky1qwUtHYvkiyZs2t6d1fJnu3hh4pss5J+1/W0PfMuU/x+tm/fjq5rMUGFlp1CKMEFElTnOKnK6a7kcP311zNunFjcK4xekqKY5TXTkggdqDWvHhkG4ZomIq0e7BPyURJdfVc8OdLl0uND9wVjHlcPhtGDbUQazVQVyWY1U0668r4ll/2U0gKDwSCvv/46q1evjn4J7umdd95h8uTJXH/99ZSUlAz4eUYjkUYiCMKgsxXnmDWYAbW+Fb1HDrDQW21tLTU1NTHbbrvttphA+4izzjqLiy66KGbb2rVro8F3n7Te98nxZoBpK+yeSTK6LiVLsoySFA89r0h0fcbqfvNcyi6nWQEhIQ7JYcNWmIUlMyWaNmKoETP3u0c+uey0H3uMg0h22Ej7yjUUf+M2Zl5/KRarFawW5Hin+bOZHEd9hp1NUxOpynVG00euv/56Lr/88mEZoyCcKiXRhXPWBGwFmdGfYd0fJLDjAKGKw9GFzUfINiuW9CTs4/NwzS4l7txpOKYWY83PMNP/jgqkjbBKpKWD0ME6/Fv341+/m+DuKsK1zWgePyfTpsXtdvPwww+zfPnyPgPtI/bu3csvf/lLNm3adBLvxOh3SjPbzc3NvP/++1RWVhIIBPj5z38OQFtbG7W1tZSWluJwiNqPgnCmke1WbHkZhGuazBmXynrskwuJNLajdfqRZAklOQElLVEsoATq6upibicmJjJjxgwA9JBKcE8Vss2KfVIBkqJw/vnns3z58uj+Pp8Pt9tNSkrfKRqS02Z++dG7PxzDB+qwzJ2MkujCMaUI3R+MXn42Ihrh6gZkuxXJomBEIkhOB5IlgNrQin1cHrLdSqSpnfjFszE6/VinFuPfsAcjZM5eq12zY3K80xyDImMt6P3l4WiGYRDaX4N/y360FjeGpiG7HNgn5OOaPwWl6/FOSNfxfrwN+Z3NLHn2QdYsX8HWjRtxB/x4nQq6Yv7cKYrCnDlzWLJkCcXFxf17bEEYJSRZxlaUjXJklrvrCpZ6uAWtzYN9Yr75xbmvYy0KltTEaNUoQ9fRO/3dzXY6/WYqWZdjVjzpWW5Q6Z0yGAqF+P3vf9/r79yxaJrGn//8Z+Li4pgyZcpJvR+j1YCD7X/84x889NBDhMNmDpAkSdFgu7W1lU9/+tP85Cc/4ZZbbhmckQqCcFqx5megNrSheXx4PthI5P/eR/fFznBb89KJXzQD59mTzugW70f+jh6Rnp4erTCitXnMhYYEkA41YS/J6XPG+3izRZIsYy/JJXSw+8Ouc8VWnHNKkWTZbKveo7W6b11Z1wy2ZJYHrGs2qxgY5oe4EudESk+ifsNOGqrL6chLInX9Wgr3tJDkcKG1uFFrm7s63Zmz2Y6zxp8wUA7sOIj7zTXR2sExr29PNe1vfkJThpO6cSmEZQOn08n48eOZPHlyzJe24N5D1N7/W/yb9pJ2x9UkZmdw1Z23c9mXP8P+/ftpbW1F0zQSEhKYOHGi6HgsnPaUeCfOmRNQ65oJH2oE3UAPhgnsrMCanYqtOKfPtTOGYXDgwAHKy8uj+dOZmZnMmjULl9OJ7g1Eu1xqHt/xK55IEnK8M6bZjmRReP/993st/JYkiWnTpjF+/Hg6OjrYtGkTPl9310xd13nmmWf4+c9/3q9qS6PdgILtDz/8kJ/97GdMnz6de++9l48//pjnn38+ev/EiROZNGkSy5YtE8G2IJyhJEXBUCO0/eN9jJBqzqKkJxHNRwDUuhbaX/yIzuWbSbvjGqzZqSM34BF09BXAhoYGIpEIFosFJSUhOiutHm7BmplCbUtjr8dwOo8fyMYtmh4TbKt1LbT+9W2Sb1yMJdmsKW1ENHwbduN+bVV0P0tWKpo3gOy0Y3HYCdU10bxtL53hID7FQN8VIVUHZIlDVgtxmkyC3UFcXByWnLTo48RfMPO44/N8sBHP2+v6vC8cDlNTc4jGxkY0TcPnUNg+MYGwzfwQTk9P5+KLL2bx4sV0/P1d6n/4FNbCLMa/9TBxC6Z3vxaLhalTR0/rdUEYTJIkYcvPxJKaSOhAHZrHDF7VhjYibZ3YJ+RFZ7F1XWf16tUsX76c+vr6Xo/1z3/+k3POOYcrrriCtPwMIMMsN+g/sujSnP02elYxMQz0Tj96px+VZvN57BY+ev0t9FAIyWZFUmQyMjK49957ycnJiR56880388ILL7BqVfffnra2Nnbs2MGsWbMG/80aZgMKtv/85z+Tm5vLM888g8vloqysrNc+paWlYy7nRhCE/gvurqLj1Y+j+cJGREP3h6KVKXqKtHpofvRlMu676YwMuIuKimJu+/1+NmzYwMKFC80yevmZ5myVYRA6WMeHmz+O2T85OfmEpeqcM8ajpMSjtXc3rAnuqqRhdxX2klxkl51QZX2vhZSy3UbKTRfh3roPf0SlMujB5QsgAwkqGJoBBkiGjhICyQB/IIxXVylMMGtVxy+ehb04h2PxrSs7ZqDt9XrZtWsXqto9+x8X1DjrQCdbJieiyxItLS288MILbN26lf+YsoD0e28g6zufGbJqCoIwmskuB44Z44jUtxKubsDQdIywSnB3FZaMZKT8dP70t7+yY8eOYz5GOBxm1apVbN68mbvvvpvS0lIkSUKKcyDHObB2fZHWg+HutBOPr9f6nJ07d9LR1BK9LSkK//Hpz5Mu29EDoeg6DqvVymc/+1kqKytjZsFXrVo1JoLtAc3N79mzh8WLF+NyuY65T1ZWFq2tosauIJyJIh2dtD7zLhhGtO42gO4NINksSNbelzN1f4jWv7wVc5nyTJGVlUVpaWnMthdffJF9+/YBZkqO7LBhGAbLP/yQNR+tjNn3/PPPP2Huu2RRSP2Py5EsR/3Z180APrCzolegDRC3YBopX7oSdWYRO3fuxG3V6YzrOn+GgaKDQzVwqWAP69giOhbNwPAGOfTROqSMJBKvXnDMcemBEB3/XtVruyUrBX3BJF7zVVMbD0cvxYoPaOQ1Bc3Z+E178S7fzP79+3lm9xrSv/dZEWgLZzRJkrDmpuOcXWpeHesSbmzj8f/+X7at39ivx/H7/Tz22GNUV1f3eb/ssGHNTMExMR/X2ZNwzZ+CY3IR1tx05HgnVQ2HY/YvzMwmzxZPqLwW/+Z9+NbvjlYJkiSJCy+8MGb/ysrKk3jVo9eAZrYNw8BiOf6hbW1t2Gzij50gnIl8q3ZghLoqW9isyHYblqwUXPOm4Jo7CVthFqG9h3C/tQb1cPeX8khzB4EdB3HNKT3WQwMQCATYv38/Ho8HSZJISUmhtLTUbNN9mrrooovYv7+7FnYgEOCRRx5hwoQJTJ06FX9rB5s+XElzexvIMpLdhiRLWCwWzjvvvH49h70kh7Q7rqH1r29Hz8/xxC2YRvJNF4Ik8UrLfoJ5VoobzCsVqiKR0a7iMmSQzcvSOgYRi4JqkVAtEj4pQtXG7dj+EE/al67s86qGf9PeXmNJumYR8RfN5le/+hUVCQYkxFMZ0jir3IsrpJOUlIjd7kBqaGHn6g3ogSDOmRMBOHDgAB988AFXXnllv94TQRjLZIcN57QS1MY2wpX1rNm0mV3lZi18IxhGToyLpnaMHz8et9vNvn37YqobhUIh/vrXv/Lf//3fJ/xSL9usyOlJXSmDwM4MlP2JGGGz+U5+VuwVLkONEKo8jCU7FUmSKCwsjLk/EOg9AXA6GlCwXVJSwubNm495fyQSYePGjb1magRBGPsMNRLTFhzAde40HNNLkDAX2Fmz03BMLcY2Po+m37xApLG7s6D3kx3HDLbr6+tZvnw569ev77WoMC4ujkWLFnHxxRcfsyrHaDZ79mxmzZrFtm3bYrYfOHCAAwfMJkGavysFRNfRvX7sLie3zF6AsqWCTsxSYPbJRcddiOiYVEjWd26j88Mt+Dfv6zPoto/LJX7xLBwzxiFJErW1tZSXl2NLs9OUZifVrXJBnUF6RiKKAXqHFxSZoGzQ7vfgU3TCFhkkOFxfT0F5DS1/fI30e2/otRD26J8Vx7RiEi6eQ3V1dfR1AwTtCsHFU1nc7sDhcOLfsJv0/W4ySufz1gwXPqV77nvFihVcdtllKH1URhCEM5E1KxU5OZ5Pnn06uk0PhXF4Ldz+5S8xb8niaCDd0dHBc889x86d3V1n6+vr2b17N9OmTTup53W4nMh2K9jN33tPsh3njHHdzXZ8QTO1peu5m5qaYo6324enXOhQG1Cwfc011/DQQw/xxBNPcM8998Tcp2kaDz30EDU1NXzlK18ZlEEKgnD6CFXW92qWkPyp89H9IdS6ZtANwtUNOCYVItutJF42n7Zn3ovuG66sNxfkxcXOgq5evZrnnnvumPWkfT4f77//Ph9//DF33nnnabcQTpIkvvzlL/OHP/yhz3UwAHJiHHqLSlxQo6jRyznZmZTsa8O9b3X341hknDMnEn/RHGx56X0+jiUtiZSbLyLpmkUEd1UQae/EiGgocQ7sEwui+ZhHfPxxjxxxSSJDtzBl9tToFU7d60fzBnDYrNhSnWxasw6rZga/kYhKS0sLmbKM5401JN+4OPpQhq6bXfB6iFtoLmhctWoVWqffXFyryCSmpvD5++/G88c3iDS0IzkduM6dyrxv3UpxSSoPP/xw9DHcbjfbt29nzpw5J3rbhZOk+4P4N+0lUFaF7vGBJKEkxeE8azzOOZPMwEoYlSoOVdMcCaAkJ5iLJ3Wdz1x2NVOdqQTLKrFPyEd22EhOTuauu+7iJz/5SUzwu3LlypMOtnNzYxua7du3j3Y1SHpB3x1vP/nkk5jbeXl5J/V8o9WAcrY/97nPMW/ePB599FEuu+wy3nvP/KD8z//8Ty699FKeffZZFi5cyE033TSogxUEYfTTPb6Y25b0JKxZqdgKMqOlpyLNHdHWwc7pvbv1Hf0Ya9as4Zlnnjl+45YuwWCQxx57LJrvfDqx2Wzce++9XH/99X2Wo5MUmVzVwkXNVi5MKaYgsfdiUiOi49+8j6ZHnse3ru+g/QjZYcM1dzKJS+eRdMW5xF8wq1egDVBeXt59jG4wV0mNBtpGWAVFIe6CWaR96UqKb7+a5pvmU1YSb85uA26PGwDf+rJo0xvz2EivZOwj3e727d2L7guYnSsDIS7Ukqm54v/R/tz7+NbsRGt1o3f46Fy2mQJrfK+ujz1TcoRTZ6gROv69ivqf/JWOf60itL8GtaENtb6V4N5DtL/4EfX//Wc8767H6MfvqTD8jvxOyA4blvQksvJymTFhEgBah5fA1v2oTeZVRovFwiWXXBJzfM+/A/01e/bsmGpLhmHwl7/8Bb/f32vf5cuXs3fv3phtixYtOunnHI0GNLNttVr585//zOOPP87zzz+P223+IX3vvfeIj4/nK1/5Cvfdd59oViEIZ6BeTcW6/g5IFgVbcQ6hA7XR7pI97z+WpqYmnnvuuV7bZVkmPz+fSCTC4cOxi3A0TeOpp57if/7nf05YEm+0URSFK664gqVLl7Jt2zbKysrweDwoikKOR6NU7SAu1azuYqiRY1Z4QTdof+FDkCTizjm1Wf5o/VvDoKQuQHLITrCjyiz1FQiTeNUCrBnJSIqC7gtSUlDI/gPl+J0yc3d7iKhmoxtD1fBt3EvC4lkASDaLWQmyx8+M2tiGJS0JfyCAJS2JhNoOJpe7ca3dQJuk4EhKQA6FkCQJORLBcrCWpt+8yJyISrVmoHU1q+nrw1wYGD2k0vrU64QqDh93PyOk4nlvA+HaJtK+cGWfdZ2FkdOzjrUky0yaPwfntBJCB+rMnGpNJ3SgFkt6EpIsM378+Jjj/X6za+TJxHYOh4MFCxbw0UcfRbcdPHiQH/7whyxcuDBaZ3vdunW9FmG6XC7mzp07wFc7ugy4qY3NZuMb3/gGX//616moqMDtdhMfH8/48eNFnpwgnMGUpLiY25HmDtSmdqyZKVizU5FddiRFiVaLCJT1Xm0uJ3RXOvrwww/Rjmo7fMEFF3DVVVeRnJwMQGNjI6+88grbt2+P7uP1elm3bl2v1uanC4vFwty5c6MfNprbS8PPn8FISjbbKHd1cdP9QRxTipAUhfChBoxI7Kxix8sfYZ+YH62vO9CxZHaolDYHyGsOoTkkNJcLQ9OQLBYC28oJ7q3GOWMcrrMn0XG4AQCf00Jzio2sHk0pQnuquoNtWcaam45a151K4luzC+fUEiwWC/Etfkq2HMYdCLLX6cBpd5DTYeaYy7KM1WKlojxISqgT1ednpuplW2kCuiKdcBG/0D+GYdD27LsnDLR7CpZV0f7SR6TetmQIRyacrKN/JzweD5bURJQ5cYSr6lGb2lGS4pG6fl89Hk+v4wcyiXrllVeydetWOjo6otv8fj/Lli1j2bJlxzzulltuGTOFNgaURnL48GG8XnOhjiRJjB8/njlz5lBaWhoNtL1eb6/ZJkEQxj57SQ6yK3ZRi+fttRhdU95KYlw0H9tQI3S+tyFmX1txNkpXsB0KhVi7dm3M/YsWLeKzn/1sNNAGs3TeXXfd1WtR9sqVK6PPe7rzrtmFoZpfOiSbFdlpxzG1hNT/uJzEKxeQcd+NZP/oi8Sfd1bMcUZEx7d6Z18P2S+GYTClHc6qDuAK6ih6jwoBmo4cb55L2WbFv3Evbf9exbYN3Qvo2xOtOJzdM+9aZ/eMsxHRsI/PQ3N70Tw+9LBKsKwKz/JNqI1t5GypIahrhG0yIXTSw7J5JUSS0A0DbyREbUcLhw7VsG/fPuSmDiZVmZ9NGRkZA37NQrfg7iqCZVWxGyVwzhxPyq2XkPLpi3FMLe51nH/DHkJVvZulCCMnKys2T3rPnj10dHQgWRTsE/KJWzA95lyuX78+Zv+B/k4lJiZy3333kZCQcOKdu1x33XUsWHDskqGnmwEF25dccgl///vfj7vP//3f//XK9xEEYeyTrJZeaQuB7Qdp/ctbhGvNrmKGYRDcd4jmR1+J1lg9In7RjOj/q6ure7Uhv+qqq6L/jzR3EGnvBMyZzqPLvdXX19Pe3s7pztB1fGtj86/jzjuLhCVnI7vsRJra0Tw+lAQXyTcuxjV3Usy+vnVlA65f7v14O1M93R8VhmQ2vPD7/RiaDrr5ZUZ22JCcdso3bmNCtTeaTyTrBlk92stLikKkzYP7jdXU//gvdH60heDeQwTLKgls3od/8z62fuEnzP2gkqyIhQQsFOBgouYkbGjUWsLstwY5aA2xwe7Dq4aor69H1zU6OztxHmojLqgxf/78Ab1eIZbvk9jGJ7LTTuY3biHtC1cSd85U4s6dRvpXriHj3k/1qp9/Kl/yhME3e/bsmPKouq7zj3/8g0jETPOSJCk6c11WVtYr2D6V4Dc/P5/vfe97J1xgmZKSwh133DHmSncOuM72WJktEgRh8MWdPxPv6p3mArguwV2VBHdVIsc7MdRInyXnLGmJOGdNjN4+cgXtiKz/z957h8lxVunbd4XOYXLOyqOcg2VJli3LMs7ZYAwLOAA2azDL/mDZ/VhgSUtawNjgBcNigrGNc7Ysy5IlWTnnMCNNzqFzdYXvj5rpmdaMpNFoJI2kuq/Ll9UV366a7j513nOeJyeHjAyzgU9t7SS6/xgAzvIS5IwUxo0bhyAISd9PgUCA9PQL25UyXteKHkiuQfZfMwdBIDG9HztUg2vaaARBwHf1LMKbehpE9XCMeG0z9uL+FQBOhNYZovO1NWRlZnJQtqHrOpoIqiRQHQvgE234GuJIkTBqXQOtwU5a1SiZkkh2m0JjuoNJ9nSczp66ebW1k4YfPJ0odxEkCUdZLrFDNaitnURa2tFQKbPZaY3raIY5jdyBylEtgmRIyLJEkw3+LtYjRmJ8XMvFKck4HA5CoSCjQ1Li78Ri8KjtAaL7jiUtS7nhMuz9KEk4RhXiu3pWkhNoZNtB9NuusAyGhglut5vZs2ezZk2PetGOHTv4zne+w1VXXcXIkSPp7Ozko48+6hNoy7LMZZdddkbnz8zM5J//+Z9paGhg1apVHDx4kHA4jM1mIycnh3nz5jFp0iREcVB54GHNWStqq6+vx+PxnHpDCwuLiw45zUf6vdfQ8tTrfdQm+nMpBDMzmvG565Oaqo6vD4zFYokGHUHqVQd8pA4pzYeqaX0SARdDD4keOs5C3eXAXpCJYRjEG9vQgxH0cBStI4ic6sOWnYbkd6N19gToJ7ruJ8PMiOuIokhxcRGVlUc5UOSmuCaMoyNCRAkQBlobNVKQsAkiGbKNuNtOaU0EQZYp9/dMPcfrWhBsEnJmavL78bqJ17WgByPEnDI2UUZSDPzItKOAKNBiM/DIHrxeLwEbrKAWMWYnpMbZEu5gjpaGrhuIkkh6Yxhd1y/KH+1ziVrXmvRasEm4ZpizJroSJ7b/GIii2TMginjmTkgKtg1VR21ux16YjcXw4GMf+xhbtmxJMotpaGjgr3/960n3u+aaa06rDORk5OTkcMcddwzJsS4UBhxsP/bYY0mvN2zY0GcZmNMS9fX1vPHGG0yePLnPegsLi0sD18QRZHzuelqffvuUboVSqpeM+27oIzt3vDlNe3s7FRUVjBgxAinFi5TqRWsPYsQU4tVNbKnt22x5IRrcHE/vBwsAIx43mxMls9YyuusIGAaiw8wgGrqOfvw1l04v8DQMI6l0JScnh878FPau/pCyFhVB73mOSjdkYoKOTTOIawqSojAmoDDdn4c31/yB1gJh4jVNyYZFhg6CiJTuR85NR8/0E9l3CFdMQzd0JEEgRXTQKMbRZZH0rAya0x0ccMUZSSmBykNIkkStqEAQVE0lJyMbPRyl8tARRowZdVrv2SIZXUn+G5JSvAlTIq09iNZhqluozR3mA57Pjei0J2Q9gQE5lVqcOzIzM/nCF77AY4891scY7ETMnj2bG2644SyP7OJmUMG2IAhs2LCBDRs2nHD77Oxs/uVf/uXMRmdhYXFB45pQRu6/fYrQup2E1u1O/Dh3I+ek4b18Mu5Z5f2aYRQXF5ORkUFra0+G7fnnn+crX/kKNpsNR1k+4W0HwTBoO1jJy2+/mLR/eXn5RTHDJh2nJGKoOpGdR3BPHY3kdeGeOQ4EsyQDzKa244Oc01Uj0YMRtPaeMh7DMFBbOymJSTRLUfL05J8PhyHiMyQEQDC61B0r6tHycpBSvcRrmrAVZEJXtjle30Jk2yEKf/UI/iWzMOKfY9Xv/kZ1axW5LQouJY4ogE22obklDmaIMDaFuKqiR1TsyORlZlPdUIfkdiJGTHWSbk3fHdu2WsH2GXJ8+Yfa2okeiSG6HAi2nvvfrZ2utgeSAm0AwWGVkAw3xo4dy1e/+lWeeuopGhoaTridLMssXbqUG2+80ZJyPkMGHGz/6U9/Aswv3E9/+tPccsst3HLLLX22E0WR1NRURowYYU3hWVhYIPnd+K+Zg2/JTLNUoDMMooiU6kXOSTvpl7goiixatIgXX+wJog8fPswPf/hDrr32WiZOnEjM72TTqjW8s241HUoEKa1nqnPRokX9HfaCQ07zYS/LRamoTyzrfH0tjlGFSF5XUumNHo7S8cqapP3tRdnIWamndU7juKCpfv8RAu3NeDwedIeTSHMQT0wnhkFY1JAEAR8ydkFM3NNQKIS0+xCp08ch2GRseRkYSpzw5v3EDlThnjMeR2keYDbWNme72TzOzxWbWjEEDVEUscvgEkTu/MynCCkx1u/cSn0sjqZr5KRlEFKizHFlk66HCYcjGAYYokB7KNjnPVmcHrb8TPOpqasJFt2c7fBdOR3R1aM41B1sh1ZtT9pfcNiw5Vz4M0sXI6WlpXz7299m9+7dSfXTsiyTlZXF3LlzmT9//pCVjlzqDDjY7t3Z/fDDDzNnzhxmzZp1VgZlYWFx8SFI0qBqNxcsWMB7772XpPlaXV3N//7v/wJg6AZqczt0udYJsTiiw0ZRURFTpkwZkrEPB7zzJ9PaK9hWmztp/Mnf8C6ejmtiGQgC0d0VBFZsScpIA3h6KbwMFKHXTIOmaYSP1SF7ZFRRQJAkwhkenKNLGJOajdPpJBQK0rluF3pnGEnrqZsPtnWQ5rDjGJmP2txB4P0tGHGVvO8/QOYDNyKIImp7EK0tgHK0nlB7B4e9OpPqDRANMAw8MfBUtTHrusVcMe8yRFlGDUWoExT+50+/Y+KeTuL01KC2+mW8p/2OLY5H8rlxTRpBZPvhxLLOtz5CzknDOb4UQRIxNB09ZFq4Bz7YlrS/e+bYpAy4xfBCEAQmTpzIxIkTARL9LlYWe+gZ1Kfg4YcfHupxWFhYWPSL2+3m4Ycf5mc/+1kfGUAAQRSQvG60TjPA1ANh0nNKeOihhy6q2TXX1FHYVmwmXtsjlah1hOh4aTUdL60+4X5yTlpynfQAEX1uRK8LPRih8VgNNkXHLel02kQEAaZ+/XNM+vj1qK2dhNbtQnp9HbbUNAKijNrWiagbBF0SnR5Ib+vAm5GG6HVjy0kn7eNLyPr8zQDEa5sTiipe0QaGQU2KyEjRwN31ACUCgfW7UCaV479uvlkXHIpw8KVXmXIggCuqEYxFEUVzbLVZDmalpJz2e7boi/fyyUnBthHXaPnda9hLchAcNvRwDKWyzixhOi5I8863+rYuJKwg++xxxo+cdXV1NDY2nrDQ3sp+W1hYnCklJSV87Wtf44knnqC5ubnPesFlR4jIGHGVwoxsvvip+y+KxsjeCJJExn030PTL5/tkrk+E5HeTef8Ng8ouCoKAZ3Y5gRVb6KhpQAI8UdNgxlGay8Q7rwVA9LqQczMQvS5c08fgiKvsXr8ZezBKq19GD0Sof3stI26+CtHtxLtwalKpT2/xmAkjRvPiB8sRHDJht4wrpKEaOjbZRlNnBy2rthLZfhhbQRaRtg4iby4nRVUJR8Jomobb7SbklGj12y6qWY3ziWNUIZ454wmt35O0XDnagNYeRI/GAEyL714Ohb4rp/dpeLawuFQZdLC9YsUK/vu//7uPl/3x7N27d7CnsLCwsEhQWFjIt7/9bbZu3crKlSs5dOhQYp0oikyaN4c5WcWUl41CDMQw4upFN4Utp/nIeuR2Wv/vLZTK+pNuay/KJv2frj0jm3bPZRMJvL8FVYnRXRWe1hknRbcTWrcbwWEnsGIz0R2HMXQdW3YaosOOtyCLtooa4jXN6KEoalpmoswHQDlUg95V7mPLz0g4jpZ6ypl8ZDvhFVsQ0ry0RttIj8fRMIirMtu3b6ekpBSxuoajlUeJxRTC4RDBoNl4a/d62DnCS2FRESNGjBj0+7ZIJvWOK9CjCpHth5KWC3IvsyNVSwTbnssm4r/+zDSZLSwuJgb1S7R+/XoefvhhMjMzueeee/jzn//MrFmzGDFiBFu2bOHgwYNcccUViTogCwsLi6FAlmVmzZrFrFmziEQiBAIBBEHA7/fjcDiIHqhCbWzDUDVilfU4Rxee7yEPOXKqj6x/vh3lcA3BD3eYyiPdNu6yiHN8KZ75k3GMLjzjaWE5IwXfkpkY7yWXqYitIdr/8QEAalMbhq4j2G1dEiSgxBTa6xpAFE0FkoICBHePZbseVQi+vwX/sjkIgoDcK9N9zYIr2Pi3tUiSRLvXhhFUkDWNpqYgoiRRVVWFgfmApWs9rpiGy8GeCemEXRKfWLbMmhIfQgRJIv3Tywh+sI3gyq09qkK9MtmoGnKGH9+SmbjnjLeuv4VFLwYVbD/55JO43W5eeOEFMjMz+fOf/8ycOXN4+OGHMQyDJ598kieeeIJHHnlkqMdrYWFhAYDL5cLlciUts5fmorV2YqgaakMrWm46ks99nkZ49hAEAceoQhyjCk1N7ZBZyy56nAhDXKfuv3Yunb9Ow9nW04CodATQw1FEtxMpzYehG4h2GQywFWRQc0BH9HvM0gJJRMzw4RxfSqyXG2Hn2xvQgmF8i6cjZ6RgaBqRnUdIfWMbowpLOHq0Er/fT4vawkqxjQLNTqlqpzuE6w60w4LOEa+BNKsI0S2zePFiZs6cOaTXwML8m/NdMQ3vwilEd1UQ2V2B1tKBUt2I6HHhnj4W/8fmWkG2hUU/DCrY3rVrF0uWLCEzMzOxrHcX64MPPsjKlSv5xS9+wW9+85uhGamFhYXFKRDtNmyF2SiVdYBpZe6aPPKiDgAEUTyrDxSCICDdeyXN332GjJCGaEA4HCZ8oArPpBEIsoyg60R3V6K2dBD/j7uw/70ToZfkW/rlU/EvmUnTcdbfoTW7CK3ZhZTiQY/EMBQVgOLiIkRRpKKiAqEkhzolyt72djy6SK4m4zRENAwCok4g1cn4iRMQ7XauvfZabrrppov6fp9vBFHENXkkrskjTeOjtbtMQyWP07ruFhYnYFDBdiQSIScnJ/HabrcTDCY37EydOpUXXnjhzEZ3BuzYsYNf/epXbNu2jXg8zqhRo/j0pz9tuSBZWFzk2AoyURta0SMx9EAYtbENW076+R7WsMBQNSI7DhNav4d4XQuGEkd02rEVZeOdNxFHeUm/AdPCKxfz5B9eYmRTHKei44rp1NfVkmFoeItyiWw7SKymmfYZxTR9/yl6H8HucDD+49dhz0oj5frL6HhtbZ/jH292BAKFhYVkjixmy1gfs7Zuoqamhrq6Og63tQGQkpJCXl4eY/LymDt3LosXL6aoqGhw18UwUA7XENq4zyyLiWuIbieOEXl45k5ASrGEBPtDEARTGSYSMx+WDMMKuC0s+mFQwXZmZmaSo1tOTk5SsxKYtspar3q6c8n69ev53Oc+h81m47rrrsPn8/HOO+/wL//yL9TU1PD5z3/+vIzLwsLi1BiGwaFDh9i6dSu1tbW4XC5SU1OZMmUKY8eOPeWPuSAI2EfmE91lWrcrlfXIGSlJxi8XImprJ2pzB2g6oseJLT/ztN5TeOsB2l9cjR4IJy3XYnG0jgqiuyqQM1NIu+tKHKOSa92zsrLwLZ5G7KVNIApEneZ5q44dQtqyDafbRbw4Bb2thePJunoO9iwzy+27agbIEh2vfNhjlHICbAWZ5N1/A6NSvNx8z91UVVURCoUIh8Pouo7H48HtdlNUVJRwjRwMkT0VdLyyBrWhrc+62IEqOt/ZiGvyKFJvWYjkv/hKks4U0eVAj8RANzCiCkIvsxsLCwuTQQXb48aN4+DBg4nXc+bM4aWXXuL1119n8eLFbN68mTfeeOO8NEiqqsq///u/IwgCf/nLXxg/fjwADz30EHfffTe/+tWvWLZsGaWlped8bBYWFidn48aNvPHGG9TW1prZRkXBbrcjCAIrVqwgJyeHZcuWMW/evJMG3XKqDzndj9raiRFXUaoacZTlncN3MjQYmkZk2yGCa3YkuUcCiG4Hnjnj8cyfhJxxck3pwAfbTqrF3Y3a3EHzb14m7d5rcE9Jtjq/+eN38XRtI8XrjyGrBoIAgiyjZXiJpvv6vR/28hLmfzM5ueFbNBVneQmhD3cQ2rC3j628vSwX72WTcE0bnbCft9vtjBw58pTjP12Cq7fT/uIqOFncrxtEth1EOVpH1hduOW0nzosd0eOEVtNwqtvK3cLCIhnBMIyTpxf64fnnn+e73/0ub7zxBgUFBVRVVXHbbbcRCAQS20iSxB/+8IdzrrP94Ycf8rnPfY5bb72VH/zgB0nr3njjDb7yla/w4IMP8uijj57TcZ0MwzBob28nNTXVmoI7z1j34vxgGAbPPfcc7733XtKy3sF2bxYsWMAnPvGJk5rW6FGF8Jb9ZgZVEHBPG43oHnwG9Fyjtgdo+d1rxGv66or3RpBFUm9dhGde/8mNyM7DtDz1xmmdW5BFsr50O/Zis1zQMAwMw6D5WA3/c+eD5NWHyczOOuH+ugDyrLHc/LN/x3GSrLOuxInXmvKAgiwhZ6ac8sFhqAhvO0jr/711WvvIGX6yv3KXGWCeJ4bbd1S8sY3YgSoA7KV52AtP/HdxsTHc7sWlzHC/F4PKbN9+++3cfvvtiddFRUU8//zz/OEPf6Cqqor8/Hw+/vGPU15ePmQDHSgbNmwA4PLLL++zbv78+UnbWFhYDA9effXVpED7VKxevRqHw8Edd9xxwm1Epx17QRZKVSMYBrGKOlwTyoZiuGcdrTNM06/+gdYaOOW2hqrT9uz7GJqO9/Jkxz7DMOh4+cM++9jLcvHMmYCclUq8pongmp1JZRSGqtPx2lqyvngLYJbmBN7dSMujj3FHu53Dt83hgBbAfaCOtE4Vm6qjiwJRu4g4oYRJH7+emYsuP+WPnmi34Sg99zMOhqolpAt7I2el4p41DsnnRqmsJ7xlf0JWEUBt6STw3iZSbuz7+3Kp0juTrUdi53EkFhbDlyFzfCguLuZb3/rWUB1u0FRWVgKm49zxpKSkkJaWdlIjnkEk+s+Y7nOej3NbJGPdi3NPbW0tr7/+ep9rnp2dzciRI/F4POzevZu6urqk9e+++y4zZ85MlISFw2G2bdtGS0sLmqbh9XoZO3o06XYZIxZHbe0k3tx+zjKnA6GlpYWdO3fS0dEBQGpqKpMmTUL720q0rqn5JGQZ0WlDD0b6rGp/4QNsRdmJbDRAdK+pENIb37I5+JfOTry2l+Xhvmwi7c++T3hDj0tg7GAVSl0Lck4a1Q/9nPa/v4f3yhmM/PnDTC3MTtTW19XVEYvFcLvdlJWVkZ+fnzjGcP0chbceQA8m1677ls7Gd83sxAOCe854fMtm0/K/rxGvbUpsF/xoN75lc86bYdJw+44SXPbEWPRQZNiM61ww3O7Fpcz5vBcDyaQP6tuivLycj33sY/z0pz8dzO5nlW5VFJ/P1+96r9dLff2Jndc6OjrO2wen+wfX4vxj3YtzxxtvvEEs1pMREwSBO+64g7lzezR7lyxZwubNm3nmmWeSGq9ff/11li5dynvvvceWLVuIx+N9jl+SncdlRaOZNHIMoZ0HsU8eMeRa1KfL4cOHWbFiBXv37u3zfZMa0Vna7KCgIB+v1/weE9N8uJfOxDahFEES0Zo7iH6wndiWg0n7Nr72Id5PXJV4HVy1FSWmJF5LuWlos0bT3t7ed1BXTUHZshcj1H0vDJpWbsK9bDZSaQ5Fj3+V1LuuRFVVOjs70XWdrKwssrKSywb6PfYwI/DBFuK9rotckoM2Z0y/n3vpxjkEf9FLWSum0Lh2O44pQ19DfjoMp++omBLDUOII0Qix9sxT73CRMZzuxaXO+bgXaWlpp9xmUMG21+slL+/CazYaCCkp5z7rZRgGHR0dpKSkDMtao0sJ616cW+LxODt27MButyeWXX311Vx77bV97sWSJUuIRCK89tpriW0//PBDdu3aha7rpgpJr+N0U9fewrNHKqisr+XupdfhDKnYi7LPyfvrj7fffjshi2qz2fqsL6kN0d7eTkdHOyNHjqRwzEiyv/aJZC3t1FQYVUJH1hqCK7f0LD9cj0+QE1J1SiCG4Oi5Jv7Lp+FLS0NX4iiHa9Dag9jL8rHlmtKIwpyJhNbsRA9FCX20G7EzQv7dS0n52ifQdR3DMJBlGb9/8Bbww4FwaxCx13VJu3Im7q4fTOVYA1prJ3J2GnJeBkJqKnp5KcqR2sT2zo4oKamp53rYwPD8jorkZKK1mSVPbrcH0d737/piZDjei0uV4X4vBhVsT548mX379g31WIYEr9f8kendrNmbYDB4wqw3DGw64GwhCMKw/CO5FLHuxbmhrq4ORVGSrvWSJUsQBAHDMIhX1qN4QzhKcxFspjvgG2+8kfhi3blzJxMnTiT1FIGP5Peyftd2ZN3gtnmLMeIacoYPKcV7Tu/ze++9x4svvnjicxoGme1xulcfPnwY4/IJ5Ps9AGiBMIamIaea32H+pbMIrd2ZMIPBMIjtPZpoljTiKvRSvZbTvGjNHcQO12Co5gyB1tqJPS8DACnVS3T/McKb9iPYZFMysWswgUBg2DYfnS6mAkrP+7Dlpvf8zVU3gWGgVNShNrThGJmPLTcD5UhPGZMRj5/36zCcvqMktxO9vctrI6okPeBdCgyne3GpM1zvxaCC7S996Ut88pOf5MUXX+SWW24Z6jGdEd31m0ePHu0jPdjR0UFbWxvTpk07DyOzsBie6LrO4cOHaW1tRdM0fD4fo0aN6mOFfjaIRJJrjz0eT2JKTu8IotW3Evcq6IEwzoll+Hw+0tPTaWpqYt++fei6nlRWIooiY8eOxeVycejQITo7O8EwyAhr5DUZOF7eyOHtrWTmZCOlepGzUvFcNhHP7PKzrlTS0NDA888/32e50+lk7NixGIbBwT37kI/Tn35u0weU7pyNL2agR83SB8fIAmx5GYguB44R+UR7OTNqnT0GMaK7lwybrhNatxt9cjSxSLDLOEYVdO0Xpvbrv0U5UotjdCHumeNwji8luqcSLaqgKBHUMRK29As7qw0gOuxJzXzxulbsRTnm7EhRNsqxBgD0cJTIziNEth/C0HQESUzsb9FDUpNkKGqZAFlYHMeggu0PP/yQOXPm8G//9m88/fTTTJ48Ocm6vRtBEHjooYfOeJCnw6xZs/jtb3/Lhx9+yHXXXZe0bs2aNQDMnj27v10tLC4pQqEQH3zwAatWraKtLdnQw263M3v2bK666qqkhreh5viyj1AoRCQSweVyIfrcCF3T0Xo4SnTnEcQxhXR0dNDc3Jyo8+6W/5s+fTp33313ohRM0zTWLn+fvT/8A76AgmEIGEBdcyPpKSmIigO1qZ2Olz8k8M5G0j+5FOf40rP2Xt9//310XU9adt1113HNNdfgcJjBSqQzwKZP/X9UVVWDpmGoOrGGVt5/7S2uX7D4tM9pL81DOdqAHlPQO0KoHXtwjC1CdNixFWRhL82F7ua2aAzBJuO9eiaS20XsSC1qayexfccAg1hMIe6w4xhTjPfySTgnjhiWGaSBYCvMInawOvE6tG4X7lnjzGC7OAcp1UfsSA16MILaNRMgCAKi14XodmK7hOTtBkLvhzpLkcTCoi+DCrYfe+yxxL/37NnDnj17+t3ufATb8+bNo6ioiNdee41PfepTCfnBYDDI448/jizLwy4bb2FxrqmsrOTXv/61mfntB0VR+PDDD1m7di133XUXV1xxxVkZR05ODqIoJgWha9eu5aqrrkKQJGzjSxCqWkBR0SMx1v79JeKxWJIyidvtprS0lPvvvz9ZdzscY/SmWhzZxRwOHDJLM+wyHcEAkVgUd6ep6wwCeiRG8+9fI+OfrsU1aegb3xRFYd26dUnLrrjiCm688cbEa8MwkOM6JTn5hJvaaG4zXXozQwJrd2zh2ssWYk/3I+ekY8vuyv5HYsR61RIDSF0lJwDuOeV0vPohergrAIrpBN7aQOYjt+MozCay8zDVj/yCjAdvQqmowz27HOVwDdGjDSAKiax3b2IHqogdqMJZXkL6p5YhOi+8LK9n3oSkYFuprKfztbX4r5uHIIpIfjeuKaOI7jtK299NSUrDMNACYTAMbAVWsN2b3rNCVrBtYdGXQQXbf/rTn4Z6HEOGLMv813/9F/fddx+f+MQnuP766/F6vbzzzjtUV1fz5S9/mbKyC0Nr18LibFBVVcXPf/5zotHoKbfVdZ2//e1v6LrOlVdeOeRj8Xg8TJ06lS1bepr8XnnlFUaPHk1RURGi045r0kiiuyqoranm5eVvE49G6GjvAAHS09NxOBxcffXViUBbbe5AC4Zpf2EVanMHubm5HD1aiaqqIEkganQEg7gcTvRwrCdQ0A1an36bnK99YshdAquqqvpc76VLlwJ01Qk3Eq9twYir2PIyKGzMSQTbxR06DXkaHQUpFI8akXSMwLsbe+q1AUQhkZ3XOkOoNc3ImamJsgjR48SIqzT95BmUqgaCK7chZ6fS+fo6pHQ/sQNViUY3OSsVQT7xT0R071Fa/vdVMj9/03mTwRssrkkjkfxutM4e+b/Aii2Etx3EPX0Mkt9DrKKO6M7DCKKI6Haih8375xhTZF6n5g7sZXmWYyIg2GQEWcJQtZ4HOwsLiwSD+oYc7mUYc+fO5a9//Su//OUvefPNN4nH44waNYpHHnkkKZNkYXGpoaoqv/nNb/oNtDMzM3E4HAmr9N48++yziQB4qFm0aFFSsB2NRvn+97/PzJkzGTFiBH6/nx3btrPu7XfR4iqqqqLHFESHLaGKNGqUaS1uxFWi+44Sr2shvHEvgk1GdDvwen00hDqozHNR7/XimlTO2OJxRLYexIjEoCtQN+IagQ+2knb76ZdsnIxuSdJu0tLSyMgwmxK1tgDK0YbEOufEMjwHq5AddjQBnKLArOo4oV2HMUpLEGSJeGMbgeWbCG9MblR3TRqB6HMTq6gjXmNqQ3sXTaX9xVWITrtpr94ZIvDeZvRgGNeUkTgnjUQQReI1TYlAW3DaE3rdgiwipftR6lv6vK/YkVo6Xl9H6s0Lhu5inQMEWSL1jsW0PPV6klW71hogsHxz8saiiOT3ILocCLKEa/pYANTWTtT2APaCLGyFWQlr+UsV0e1E6wxhKHEMVUOQL+3rYWHRmwsrHXEaTJ48md/97nfnexgWFsOKbdu20dycbP89atQo7rzzzoQRVHt7O2+99Rbvv/9+YhvDMFi+fDmf+cxnhnxMY8eOZdq0aWzdujXpfBs2bODDDz9M2LULqT6EtgCCpoFhkGJ3keYz67ODwaCpSCKJiB4nkZ1HzOPEVbQOlVAwyIYiGdVvZuCcmWlmkJSfSXj9niRL9PCm/aRcP39IyyPk4zLE4XAYXdcRRTERxBm6jpzmxzGumFhNE/r+3QhdkaBT0TFe3UDtmgMITke/pjYI4J4zgci2Q4ksLICzvJTcSSNpefIV9GAE0e1AzvDjWjwdKdVsZDN0nXidGUwLTgfO8SWIHhf+a+fimTMewWGjrakZ+5FGOl9dk5S9DK3bhf+a2Rdchtc1cQRpdyym7bn3kwLuE2HLSyfzC7dgqBpKRZ2p9KIbKFWNxBvbcZTldZUlXZoILgd0Nefq4RiS332KPSwsLh3Or7ODhYXFOWXlypVJrwsKCvjKV76S5LiamprK3XffzZIlS5K23bRpU58M7VAgCAKf/exnGTNmzMm3k0SkdB+yw05GSipjikvR2gIYcZUNGzaY24gizollaK2dicxaJBpllz1CVImhNrejtgXILilEkEQEQcA5sSwhgwemLFx034ldZgfD8cYvsViM7du3A6aSg3vOeDxzJ+AsL8GWmUrFxGwi9uTmQ6fTiaHq/QfaGHgun4zW2tkTaNtlXNPH4CjLI7bvKJ1vfoR9RD6i24l34dREoA1mRhfDwJafYWbHHXYyPn0tvkVTEw8dgk3GM2c8mV+4ubdqHoaiEt40PKVgT4Vn3kQyP38ztoITG7EIsoh7djlZ/3wHcrofW3Ya7pljzbrtrgZRI6YQ3XeUyK4jSQ86lxLJdduX5jWwsDgRF21m28LCIplYLMahQ4eSll177bWJrKvWGcaIKUiZprbysmXLeP/99xPSeqqqsn//fmbMmDHkY7Pb7TzyyCO88MILfPDBB2Z9dT/INhsLb7yOBTVNrF6/DgwdtTXAe2+9w4wZMygpKcGIxk2N6MxUtKjCke1HaEzrmdJ2CRIjRQ+C143REUTyus1a5liP+6TWEerv9IMmOzub0tJSKisrE8uef/55Ro0ahc/nM1U9ugK39vZ2XnrnTcJj/Uw6HMQXVklNTevXsMfEwDVjrNk02VX+I6V5cY43HzqOPfor2p99H+8V00i9ZQFyRgqRbQeJ17agK3FEp53onkrkdF+inMZelouz3HwAMzQNtaUTwzDvib0wG9ekEUR2HEmMILq7Au+CKUN6zc4VzjFFOL56N/FjDYQ27kVt6sCIq4huB44RBbhnjUs2FAIEScJRloctJ41YRV2i/EZrDxLeehBbfib2ouxLqpTCUiSxsDgxVrBtYXGJEAwG+9Rijx8/HgBdiRPZYQbiDq0QW246Pp+P4uJiKioqEtufyCxqKJBlmTvvvJPrrruONWvWsHXrVhoaGnA4HPj9fsaMGcPChQvJzMykvqaWD7dsNKfyDZ1IYys/+q/vs/Cqxcwsn4geDtPe3k5NTQ1RJYKYkYKox9HDMeZNnoZNtiFn+FGVOHokhhE31U4SpRDHSfQNBVdccQV//OMfE6+bm5v59re/zVVXXcWkSZMwDINt27axYsUKwuEw2EW2jPOR1aZw28iJcFz8IrgdOMcUIeekIXm7gkFBwF6Yha0om9CanRz97A9A1Sj89aOk3X1VQqqv2/QmMZaGVtTmHptjZ3lp4t/R3ZWoHUHiog7ZmYn1vYNtLdDTaHghIggC9pJc7CW5p7Wf6HbimlCG2tJB7EgdRkwBwyBe04Ta2Ia9LC+hHHOxk6S1fYlm9y0sToQVbFtYXCIkyeJ1EY93ZXPjPWUUWmcoYd+dWH+SYww1Ho+HpUuXsnDhQt5//322bNlCZWUllZWVvPPOO6SmpjJv3jxmXHE5mz9Yg6HEwdCJNrWy4u13WPneChZubetd6UBGSKM+00VKThbXfvIunB4vcmYKostBeMt+1IY2MAxEpw1DN0xJvYo6RKcdOTt1SJrfZs2axfLly6mu7pGcCwQCvPTSS7z00kv97mMIAt6Z5Uz+2sPo7UG01k6MuAY2GT0YTiopEZ2mBrbodSKIIvaSHHxXTifv25/DlpN+8sEdr5fd9bChNnckmeQkxnX8w8gFqrc9VMgZKUhpPuLVTSjVjaAbGHGV2IEq1PpW7CPykbxn3yTqfCI4bAiSiKHpGJYiiYVFElawbWFxieD1epEkKclxcevWrSxevBjBaUssM7pcChsbG5MCQ+CUtuhDxfbt2/njH/9IW1tbokGym/b2dt58803TPdJtRzQMiKug6zjqO3C73MRsIr6wRlwWQIDi+iideT6+9KUvkV7Sox0tp/mIHajC0DT0UJR4fYs5Ba7pBN7dBJjT45454/HMn4ScMfgGOFmWefjhh/nxj39MS0tfZY/+yMnJ4Ytf/KLZSJnuR073E29oNRv0etWZ2/IysBVn0/aX5bT87lVGvvkT7EU5FP/mawM6z/GOf5Edh/FePQvlaH3PNl2W7gDRHYdPuv+liCCK2ItzkLPTULoMgcB8eI1sO4gtNx17Se4FJ5M4UARBQHA5MIIR9FgcQ9cRzsHDuYXFhYD1SbCwuESw2WxMmZJcV/vGG2/Q2dmJIEmJIECPxNB1vY+1uNvtZty4cWd9nOvXr+eJJ54gFDp53bQoitjsdkSvi8KwyJxjKnOPxpm8rwN/p0Jmu0JOSwxfUCXbsPPFzEnkabZEKY3WEaT9Hx8Q2VVBvKoRpbIOtakdKcWbcK4EU1kh8P5W6r//NIH3t/QpxTkd0tLS+PrXv87YsWNPue3EiRP5f//v/+Hz+cxxKHGieyqJHaxOBNr24hxcU0eBIFBx239Q8+ivcE0bk6jdHiiuyclGPvHaFoLvbkrU3kp+D1KaOY7o/mNE91eddP9LGdFpxzm+FOeEsqTSinh9K+HN+4nXtZzR39BwJvF+DQMjopzfwVhYDCPO6BH73Xff5bXXXuPIkSNEo1HeffddAA4fPsyKFSu48cYbycnJGZKBWlhYnDnHa1p3dnbyve99j+uuu46JzgxkXWff/r2sXPkqh48cSdp3/vz5J2nSGxoqKyv54x//OOBgxKsYTDoUoSwtBzFTpbGpESUeJ6qraJKIW3aQ6XLjMJzYDtXT9NgLSCkeBKcdtbENNB3lQFVSQ5foO8F0v27Q8coajFgc/7I5g36Pfr+fRx99lMrKSlauXMmOHTsSDxY+n4+pU6eyaNGiJE1ztaUjKcgWPU6c5aWITjutf3mHmq89ji0nnbIXvofvimmnPSbHuGKzhr2ly1HUMGj989s4J5ThmjwS56QRRDo66PxoP8EVyTrUosuBa9roQV6Nixc5zYc0bTTx2hbiVQ1meYWqETtcQ7y+BcfIgiS3z4uBpCbJcBTR4zzJ1hYWlw6DCrZ1XefRRx/l7bffBkxJqt4mGSkpKfzP//wPuq7z4IMPDs1ILSwszpixY8cyevRoDh48mFjW3t7OX/7yF7T2IHrUDDrljFQEW0+dstPp5Kqrrjrr43v11VeTrNsBxowZw9VXX01ZWRmtra2sW7eOVatW4QjHmba/E5tq0NjYyJw5cygtKkaLRM1gPa6i1naVaxgGsUM1PRnfLrWRWGUdWiCccL+Tc9IQJAk9piD5PUkKJd10vr0BW1E2rgmn70Qbj8fZuHEj69ato76+HkVREjMGCxcuZOzYsUklM4aqETtSaz4YgNkAWZqLLT8z8V7sRdlkfOZj5P7bp04Z3Bi6TnTvUcIb9xKvbzVVN5x27CW5OCeNILhyG2AGSoaqEdl+iNi+YwQ/2EY0EMLhsJOk+wd4F09D7DUTYNGDIIrYC7OQs1ITMycAeihKZMdh5KxU04XyIrl+osuybbew6I9BBdt//OMfeeutt7j77rv5l3/5F/7whz/w+OOPJ9ZnZmYyY8YMVq5caQXbFhbDCEEQeOCBB/jRj37Ux9yGXjJlhqYlgm1JknjwwQdJSzu7qgrNzc3s3r07adnll1/OZz/72URjpt/vp7S0lMmTJrH2C/+FTTUDTl3XaWhopKAgH8FlN9VFghHkvAzUhlbQze1ih2sRvW5EtxNDUVEb280TCQL2kflIPjfuWeW4p47Gc9lE1OYOgh9sI7R2V9K4Ass3nXawvWrVKl588UVTaaQX0WiU1tZWNm/eTGFhIZ/+9KcpLi5GbQ8QO1BtNoACot+Nc6wpx9fw/acJb95P2fPfxbtwKt6FU095/siuI7S/uMrU1O6Fhlk2YhgGeiCMIInooV6Nlz5XYgzH45o8At9VQy8FebEhOmw4xxaj5WUQO1yDHjKTU2pTO1prJ7aiHGwFmUkPWhciyYokVrBtYdHNoILtF198kYkTJ/Kf//mfAP1+QZSUlPQx0LCwsDj/+P1+/t//+3888cQTHOlVKiJIPS0chmZml30+Hw888MApDWeGgk2bNiWVj7hcLq6//vrE94uuxM0mLJvMCMFDrSed5khTYvtjkQ6mPPhF7GMKUQ7XmiYjm/cT2VOJocTR2oIYMYV4bTOOUYXEG1tBEJCzUrHlZSB6TcfEbhOXeG0z9sJs0u5YjJyRQseraxLnUirrUaqbsBcmm9WciJdeeok333zzlNtVV1fz4x//mAdvupNSZ1czpiSams65GYTW76H6kV+gVNSR/ehd5kPEADpvgqu30/7CqpNuIwhCl9V7LQICotvR5W4p05/FomfeBFJvW2Q1wZ0Gkt+Da+po1LoWlGMNGKqGoelm1ruhFfvIfORU3/ke5qARXHZTmcYwLGMbC4teDCrYPnr0KPfcc89Jt0lNTaW9vX0wh7ewsDjL+P1+/vVf/5U9e/awcuVKdu7cmRRs52dmseTWG5kzZw4Ox7mx4T4+0z558uTEueO1zcSO1AKmk2HnWx+R7vbSpNaDIBBxyewf6eKOccUAOEYVIIgCcpoPZIno7grk7DQzONU0Um9bRMera7DlZiSMR9wzx+GZO4HI9kOmVnJVI3JWGqLDhveKqQRXbUsyu4nsODSgYHv16tUDCrShy42xqZ0nnvwt/3LvfeSWFZtyfnaZuu/8gaZfPI97+hhGr/xVwnTmVER2Hj5loN0zAAPJ48TQDRyjCjCicfS4ihGPo4ej6IKId+4EvFdMxV5k9eMMBkEQsOVnmqUlR+uJ17cCZtlFdFcFckaKWVriPLv9EWcDQRQRnXazyToSwzCMCz5bb2ExFAwq2HY6nae0ba6trcXv9w9qUBYWFmcfQRCYMGECEyZMMEsZGpsIbt6H1+0hrTBvUDXJZ0JvSUIw1U+66W2SoUdiRPdXIcY1DMV0NTySohNuaCGyuwLR7URK8eAYWQCiiGd2OdE9leiBMJLPjejzIXpdCHYbgtLjVOmaNALJ68KWm24qRmi6mQUvyzNt4MeXElrXU+YyEJdJRVF44YUX+iwvLy9n3rx5pKenU1FRwfvvv0/T0equ8gKDiG6w/PBO7r/hioSmtb0om7z/up/MB24YsO63oeu0v9g30LblZ+CZMx4pI4V4VSOhdbvQOsPowTAYXVlujwvP4hkElm8i3hBGwJz9CG87iKFpeC6bhGN0oRVMDRLBJuMYVYick07sSC16lzGQ2tKB2taJvSgbW0HWBTdzILocZr22bmBEFQTXuXlYt7AYzgwq2C4vL+fDDz9EUZR+1Qna29tZvXo1M2fOPOMBWlhYnH2cTif5xUWEajpM1YTouZft8nqTtZr379/PNddcA2A6+0kSejBsZgINg85gT+1xi0ckxeFAawugtQWI1zThGFPUFSgL2HLSiNe3mk6HXbXJx9Md1NiLc1CbO7rcKXuVT0jHBT0DUEzZtGlTnxrtT37ykyxYsCDxemR+EXPTCvnd3/7MrsMHEJ12RL+HLbt2sPf+7+PPSKfgh58n4zPXnfJ8xxPdU4nWlpwY8V8zG981sxNBsmtCGd4rp9Pyu9cIrt4OgB6M0PHqGuJVTQh2GcnvRo0p5uyHbhDZfpjI9sM4xhSR8elliG5LdWKwSD43rskjURvbUCrrzb873UA52kC8vg3HiLwz0nc/1whuB5jJ+mRXVguLS5hBPTLfe++91NXV8c///M80NDQkrTt27BgPP/wwgUCAe++9d0gGaWFhcW4QHObDsx5VzrkW8PEa3rW1tezZs8ccl03GUZaHa9JIPLPLId1HY6jT1AaXJQTZxtiyZK3nRPBckouU0iOxpgUjxBtakXzupO2je48mzuWaOhrnuBLsJWaphGEYxLrWd3P8/v2xbt26pNfl5eWJQNswDJTqJsLbDyLGVD6+7AbsaX7EFC/KsQZann+fda++g2vSiFOe50SE1u9Jem0ryEwKtLsR7TY8cycgSBJaR4h4bTNoOmpz20mPHztQRdNjL1j23GeIIAjYctJxzxhrKs103R8jphDde5TI7ooL5hr3fvCymiQtLEwGldlesmQJDzzwAE8++SRXXHEFLpepSztv3jza29sxDIMvfvGLzJs3b0gHa2FhcXYRnXbzR90wMGJxhHNYNzp+/HgyMzOTareffvppZFlm9uzZCUWSquZGdu7ZjaqbiikCkCs6WPq5e3Bn56CHowiSlAiG1fYAWiCC5HObmW1M6TUpK4V4XY+TY2j9brxXTEXOSEF02BAdPdnE8Po9PRrUXTgHUGZTX1+f9Pqyyy5L/Dt2sLpH0g9Iycxg0pQprHnizyhHG7CX5GD7yj2k37P0lOc5EWp9slOlZ+6ERKCtHGswg2pRxNBM/WfBaSN+rAHBYcNQNbTOMHK2CicpZYjXtdD6t+Vkfu76QY/TwkSQJRwj8rHlpBM7UpMoVdLaAoTbg9gKMrENsCn3fJGkSGLJ/1lYAGdgavPoo48yZ84c/vznP7Njxw4URUHXdRYsWMC9996bNE1qYWFxYdC7vtKIKXAOg21BEFiyZAnPPPNMYlksFuOpp57iH//4B8XFxbS1tVFTU8NEMUpmr32nxT3kp2Ui2m1JmsWGYdD5+jrQDUSPCwQBPRLDVpSNEVUIBXYh+dwYhoHW0smxz/8EW3Yaos+NYLchpXoRbBKxw7VJ2WBbfgb2srxTvidFSS7H6S2fqLX2BO9yfib2khyyDuUh+T34Fk/DXpKL7j6z62/0qkkHksoR4nUtXSY5GrGKOrNEp9vdMG7upwfCiG4nrmmjkVJd+NweYodriWzYi64o5uyBKNKwchMfhutosRsgiaSmpTF16lRGjBhxSdZ0RyIRNm7cyLFjx4hGozidToqKipg1a1ZSL8KJED1OXJNGojZ3EDtSa0ovGgbx6ibijW1oaW5ITT37b2QQHG9sY2FhcYYOkvPnz2f+/PlDNRYLC4vzjOjoZVMeUZDOcanookWL2Lt3L9u3b09a3tnZya5dPVrXNdlOMjtM7Webzc74ojIa/+fv+D82D9ekkQiyhFLVQOc7G4nuqkjsJ7qduGeONQNyuw1bfiaxg1WoDW2JwCBe1QiiiGCXe2rXJcnMNOekA+BbPH1AQaTb7U4y/KqsrGT0aNNt0TG6ELWlEyOmUPvor0i5dREVdRW4Z4xN2v9MEJwO6OypGVeqGxMqJo4R+Sg1TagtneihCLoSJ17fmqRKYyvIwn+9mY2PBYMgCDhHF2LLSaPt7ytoamygurGeUCRMzaFt7Mvu+kkRBN74y7Pk5+ZxzRVXMnP6dESHDcFmQ7DLCLJs/t8uX3ANgCejs7OTV155hfXr1/d50AJ4/vnnmTNnDjfeeOOABATkzBSkNC/x6iaUmiaz6TAWJ36ohkhExTGiAMl7AsfT84QgSQh2G4YSx7Ay2xYWwBkG2xYWFhcXvTPb3W6S5xJRFLn//vv5/e9/n2QrfzxtPplOt0yWJjNx4kScTidqcyetf3obRFOLuz/3R0EWSblpQcJR0jG6kMA7GzCUOIJdJuGOqB/XJKppKEdqMaIKaR9fgqtXQHwyRo4cSWtra+L1ypUrWbx4MbIsI6V6aXvmPeq//zRyViq1di1J97x7/zPBXpKTVKoSWrfLfFCQJeSsVOSsVMLbDyHYZULr95jv3mFLyGr7b5qPLTsNXYlDpEd9RfS52SEFCRztGW92QGdflpHQWTY0jZqaap76y584tGcvt121rN8HFEGWEGxdgXd3MG6Xu5bZzPX2ruXDOEteW1vLL3/5S9raTlznrigKq1evZufOnTzyyCPk5+ef8riCJGEvyUXOTiNWUZsoZ9I6QkS2H8KWm469JDchYTkcED1ONCWOoWroSvyicci0sBgsg0opvP/++zz88MN9miO7aWho4OGHH+aDDz44o8FZWFicW3pr+xrR/l0DzzY2m40HH3yQ++67j5KS/rWkU9PSKHzoNmZecXnf7G9X9q8PAqTdsxRbdhq2nHTkzBQC723CVpRtZuJiKv2ZtyRhGNjyMgYc9C1cuDDpdXNzM08++SRtFVUcuuar1P1/vyfjU8uQn/4af93+YdK2fr+fyZMnD+g8J8Izb2LSa60tSOuf307U0qotHeiBMHpHiPBHe8waeEkyg/HsNNJuvQLn2GIzo6+ZgbScncb7tQd5P1KH4DCDYGwyNlHC5nCYgbEkgdDz87Jq60ZeXb2i3zEaqoYeiaF1hFCb24nXNqNU1hM7WE10dwWR7YcIb9xLaM1OQh/tJrzlAJFdR4juP0asog6lq7RCbQ+gBc0M/blu7m1ra+MXv/jFSQPt3rS3t/Pzn/98wNuDWQvtGl+Gc3xpTy+FYRCvayG8aR/x+tZz/r5PRO+6bSu7bWExyMz2X/7yFxobG8nJ6d/UICcnh+rqav7617+yaNGiMxqghYXFuUNw2Hoc4M5DZjsxDkFg1qxZjB49mmAwyJEjRwiHw9jtdnJycigvL0eSJNSrO2n5/WvEa1tOfjyHjfR7rsY1qSdTHN64D9HlxIjFsZfmonWGMBQVOd2P6HNjxOKoTW1mk2CGv8tl0k3nGx/hnl0+oGxdbm4uuq5TXV0NmA8S0WiUXbt2URhvoPCrV1EntXPksV/02XfRokXI8plNPtpLc7EVZhE71kBrayuRaAT96FGkd9eQPncSaaIdpboJ5WiX5Bw9DxGO0h5jlUTtt2FQvecAL//tWdyCBIKAIIkIgMPhZPEN14BdZufOnTQ3N5vBn66DZvD+/h3MWXoVRTk5GIpq/hdXzXKDuJpwLT0ZhqqZdeZ9lRuTEYSujHhXdrxX5lzsnTnv+u9Mee655/qYuImiyMSJE8nLy6Ouro5du3ah6z3vsbOzk2effZYHH3zwtM4lp/uxTx6BPaSi1jSZUp2qRuxQNfH6FrO0xH9m5UdnSlKTZCiKlOI9ydYWFhc/g/qW2bdvH4sXLz7pNpMnT7bs2i0sLjAEUezK8irnRWu7PwoLCykqKup3nZzuJ/vRu4hsP0xozc6Ey2Q3UqoXz2UT8cydkCTVpwXCRLYfNIPJNB9aewDXlNH4l80GWUJO8WKoGqLLQbyuhY6Xe7LOeiRGZMsBPHMnnHDMtbW1vP322wmd7aqqKuKhCGpDK7acdDIL8mgtLOTo0f397l9aWsrSpYNXIekmGAyy3h8jsnG9WQrSiyO79+KW7ORnZZOdnZ0k2SY47YhuB3osjuiwIednILdlIQQVPty2CcPQSWuLY0Q1kCVGjhlNQVkJBffegyAI3HXXXaxZs4a//OUv6IIAkhnGr9mzjU/N/FS/YzU0rVcA3hWEq5r5f0U1nSwV080S/dQzEEbcPBahUzTpCUJPMN47IO8uY+kdmPdTqtHW1sbWrVuTlpWVlXH//feTkZGRWNbS0sLvfve7pFKhrVu30traSnp6+snHePyQRdE0vclJR6moQ21uB0x99MiOQ8g56dhLcs5b+UZSk6SV2bawGFyw3dHRccovh7S0tNOaIrOwsBgeiC47WkxJZBGHUy1ofwiShHv6GNzTx6B1BFHbAqDpiB4XcnZqvw14kW0HMVQzyyg67AiZqfiummGWPxiAIOCaNAJBknCOLSa27yjR/VWJ/cMb950w2N64cSN/+MMfEo6YHoeTEZqTPVVHzXpoUaClpYWWlhbKysooLEx2YSwpKeHhhx/u1zDsdKiuruaXv/wlHR0dpJU4mXhYReoKUg0DjLhKSFE5eKySNjXK2FFm46bgtOMsL8XQdIKrtuG/ehaCICAXZmFzONn0v4eQDIHidvP95aZmkG1zI6enYIRjCB4ngiBw+eWX09zcnGRVv2HDBu68806czr4mOIIkIbgkGIAJSiII7wrAdUUF1fy/EY8nZc5PaT5kGF0B/QDKpkQhUVcudgXoK1e/jxoMm021oojd6eALDz5ISi/lGYCMjAy++MUv8s1vfpNYLNZ1aoM1a9Zwww03nPrc/Q3HYcM5rhitI53Y4dpEk6/a0IrW0oGtKAdb/sDLnoYKwZL/s7BIYlDBdrfF8MmoqKggJeXCcb2ysLAw6Ta2AfOHciDmLcMFKcU7oCnreGNyIsA9bTSeWeOI7qnE0HS0tgCxA9UJ5Q73rPKkYPv4/bvZunUrv//97xO1s2prJ4EVW3BEFaZNn0GDU6elpSVRTlBRUYEgCBQWFuL3+1m0aBFLly4940C7sbGRn/3sZ4RCZlNjm9/G5nF+RtSEyegwM8aJ8nRJpLW9jX3HKhg/fQyCJGLEVOI1TTQ/8RKhD3fgvmwS+rh8avV23FGNSW0SLmRAJT8rGzBLVsJbDyBnpeIYU4QgCFx55ZVJwXY8HqeqqiqhyDJYBFka0EOgYRigal2Z8V5BuHpcGYuidl2TUwTmumHO+sQUugtCDm/fjdbZ0zw6c9I0pN1VhKQaMxvutGMvykZK8eLz+Zg9ezarV69ObH/48OHBXIIkpBQvrmmjide2EK9qSDwoKxW1qA2tOEbmn9NSDrGrsdVQNcvYxsKCQQbbs2bN4u2332bfvn19XN/ALDNZsWLFkEyDWlhYnFtEV+8mSQUuoGB7oByvP90dpDsnlJkBt6qhdQQxDANBEJDSfMn7d+lQd+tz6+EoYSXGn37/FIZhJPYTPS6c2WlMuu1anDnpHDx4kEAgQFNTE5FIBE3TUBSFW265hSVLlpxxjXb3mP7whz8kAu1uwi6J4JJJOCQngfc2QXsISTfQ/W4CKTYa0hT8pX6y3t2NHogk9ovXNtP59gZ0h424y8as+k5UWQCbhOx04M5IRXQ7E2YralO7qXSS7sfv9/eZ5Tzevv5sIggCdJWAiJzcUt7oLj05vpY8npxF7y5v6SYcSy5TKc41FUYMTcfQFIgqxDQd95RRgDlz0TvYjkQiDAWCIGAvyETOSkGprE+o0OjhKJGdR5AzU7GX5SXJe55NRLezqw8ifkHMkFlYnE0G9c1+//3388477/CJT3yCz372s8yfP5+cnBwaGhpYs2YNTz31FKIo8sADDwz1eC0sLM4yorPXFHBseNRtDzXicaUKyjFTWUnye3BOHEG8thk53Z/kttgbQRTofHs9oXW7Ey5/VdVVzKqop06Pcqi6EnXpdBZes4Sbf/ULfD4zWI9Go7z77ru89tprScdrbm4ekkAbzGx5fxKC9957L3l5eShH64nOXczW/Xt4dvVyVJcNDINRVREaD6wmN6c4Kdg2MTDCUYRAiMx2hQ6vTMQpoWoaQoaPnEfuxNAM1DrTkVL0mNrP8XicQCCQdKQzzdqfLQRBQOjSXz8VhmEkAm/3BzlIwXYMXQddp8OII6V4kspY5MzUxL69pSBh6K+HaLfhHFOElptB7EgNetC8l2pzO1pbJ7aibGz5mWdd31xwOaAr46+HY+e9adPC4nwyqG/3sWPH8tOf/pR//dd/5de//jW//vWvE+sMw8DtdvOzn/2s36y3hYXF8EY4ztjmYsRelgcfbEu8Vo42EKusw1Gah+R1IY3pacg0VI3QhzsSr9XGNrRA6LhrY1B7rJp4bTPpgQhzvZl4YqnccvudSL0Ce6fTyQ033EA0GmX58uWJ5evXr+e2227D5Tpzg5LjJVdTU1N55JFHcDgcpnFNbTOiKDJj/CR8k0fz26d+x8jqCIVNUSJAyGvDU5RtmvschyzLCAakBlQMQaDdJ3N4ZiFFuWYjoL0gM2n7DRs2oKrJswi5ubln/B7PN4IgmJ8Th43CkWUcPFaZWLe15gi3j/8cktQ3k6vrOh999FHSsrN1PSS/G9eUUagNbSiVdWZpiaabWe/6Vuwj8pHTT22sM1iSbdujVrBtcUkz6Efbq6++mvfee4+vfvWrLF26lHnz5rF06VK+9rWvsXz5cpYsWTKU47SwsDhHJGnknkf5v7OJa2IZ4nHlMa3/9xbK0fqkZVowQsv/vZkwEonXtxA7XIOcmdz8FjhSTWBfJUYkhi0/A1t+JuP92bT89mW0cJR4bTPx2uZELffVV1+d1LSmKMop+2AGyv79yQonixcvxuEw72m8qjEhsWfLy2Da7JmMtKdQ1NhTCtHR0Ym9MBv3vIm4ZoxFykiBriyoKAo4HE40yZSH3DrGx8sfrqC2NlkFBky/hRdffDFpWXl5eZJl/cXAvHnzkl63tbXx7LPP9tG8NgyDZ599tk9m+2y6MAuCgC03HffMcdjyMkxZT0CPKkT3VBLZU3HWGhhFT0/ZjtUkaXGpM6jM9ksvvURGRgYLFizgvvvuG+oxWVhYnEe6m88MVUM/T8Y2ZxtBkvDOn0jnWxsSy7T2II3/8xz20lzsxTloHUGzfjtu1udqnSGUijpEtwOxO0tnmEYvmtOG6HMhZ6V22Z0L+LxeonsqafzpM/gWTzfPa7chZ6aQmppKTk4O9fU9wX0wGByS93b8cXo3I3bX8QqSiK0wC0EQmBh30dFr+7imknrbIjzzJiBIEnooSmRvBY2vfohwpB5PNJPKIwdAEMhqj1PtCPPd736XuXPnMnXqVAB27tzJunXr+mS1r7jiiiF5j8OJkpISSktLqaysTCxbuXIl+/fvZ+HCheTn51NXV8eqVav6PJSUlJSc0LhpKBFkCcfIAuScdJQjtYmGTq01QLj9APaCLPPvoZ9s/GBJymyHTyG/aGFxkTOoYPub3/wmn/zkJ1mwYMFQj8fCwmIYIDjtGMGIqbyg62e9vvN84LtyBtE9lSjHkssllMp6lMr6PtvHa5pAFLGPLETAILqnknhDG2X/+B44dNZ/q5HcFoWS2ghSTCXW0IokCGh7j+KeMRY5zZcIQAzD6NPAOFQ125IkEY/3PCT1Po/odaF1hLCX5iHabWgdQeTKpqT9Q1NL8F7e41wpepy4Z4wjZUQO2rOrkfcfJb2jldbWFvKbYlTnONF1nbVr17J27doTjmvcuHFMmTJlSN7jcOOOO+7gpz/9aZJpTV1dHX//+99PuI8oitx+++3nVJZP8rpwTR5JvLENpbLelDvUDZSqRuINbThG5CNnDo2KmOCwmco2mo5hKZJYXOIM6hc0Kysr6cvcwsLi4qJ3k+RwMbcZagSbTMZ9N2Avzj7ltnpUQQuEcY4rBlWl842PCG/ch3/ZHOx56aSnp6PKIsd8sCFTR1dVmlq7XC0Ng3h1E66poxNT6/v37+/TOJiZmXn8aQdFVlZW0uuNGzcm/u2cOALP3AlmSQHQsa+Stl5lDZog4Jpn6ocbuo5yrIHYoWqUmib0tiCeuePBMBg3bhx+vx93TMMWP7XzY0lJCQ8++OA513s+V4waNYrPfOYziAN8KBVFkU9/+tOMGTPmLI+sf2zZabhnjDEVZLruiaHEie47SmTXEfRTGQENAEEQErbyeixuNpBaWFyiDCqVsmTJElavXo2iKMO2s9zCwmLw9Jb/02PxJHfBCxFD14nuqiC8ZT9qc4fpDul24BhVSNrHryay/SDBNbvQA31l6QRJRE7z4Zo0EqWilvDm/Uh+DyNe+WEiA2yrb2VsSja76vcStkGNX8RRX0tGViau9BTUpvZEVjsSifDss88mnSMvL++ELpmny+zZs6mq6tEE37BhA5dddhnl5eVmsNslwWYYBu+9/ia63kvGziMzY94cANTG9oQKi2EYxINBVJeLeEMbgihSXlBCBdXIgQgxV5futSQhiD0BtSiKzJ07l7vvvjtRN36xMnv2bHw+H3/9619pbOzbXNpNZmYmn/zkJykvLz+Ho+uLIEk4SvOwZacRq6hDazMf/rT2IOFtB7HlZWAvzjkjyT7R7TQDd8PAiCgIngv7e8TCYrAMKth+5JFH2LJlCw899BD/+q//esYGBRYWFsOL3sY2RiQGx+lMXwgYhkEsFkPZeojQ2xsSEn29USrqCSzfhGvySLK/fAdKVSOxQ9Vo7UGQROyF2Xhmj6dz+UZCq3eYutkTR5B+77JEoK3UNKNU1LJg0jR27d8LQHO6g+KYxvbD+ymIFpCpqwgNDezatYt33323j7vuokWLhizrO3/+fF5++eWkeulf/vKXzJ8/n3nz5pGamkpFRQXLly8nvGcfvUO+ovTshBmZ6HUlave76TYoMXQdQYcROfn8y22X89GRfew8tJ+OYBAESElLZfKESSyYP5+0nCzEmIouiOfNPvxcUV5ezne+8x327NnD6tWrqaqqIhqN4nQ6KSoq4vLLL2fChAnDKsMvup24JpShtnQQO1KHEVPM2ZjaZtSmduylucjZaYMa8/G27aIVbFtcogjG8S3TA+Cqq65CURSam5sBcDgcpKen9/kwCoKQJG9l0T+GYdDe3k5qauqw+hK+FLHuhYnWESSy09RqtuVn4hiRf87HMJh7oes6u3fv5oMPPmDv3r0UHQ1QUh/BZrORlZVNfn4eLldfCTLDMBAkAceoIpSK2kRTpKGqxA7XoLUHcc8qT9Suu2eOJf0e07RLOVqPUtWIYRj8+pVnOdJST0oMpu/v7BmXILBqev8qHFlZWfzHf/zHkGZ+X375Zd54441TbucPqolxiqLI1KlTKf36pxP329A09FAMLRKlo7EZYdNBgiu3ma6Muo4gSWTcf/2AG+sESURw2hGdDgRX1/+dNvP/Dtsl/ZkbKGfzO8rQdeLVTSjVjaD3hAaiz41jRP5pu8mqzR1E9x0FwF6cg704Z0jHe76xfi+GD8P9Xgwqs20YBjabjby8vD7LT/bawsLiwkC4AGu2q6ur+d3vfkddXR0A+U1RSupNQ494PE5tbQ21tTVkZ2czevRoRLGrnELViB2sMqfPNx/ANWkEgiwTr2smtHYXeiSGvSyPyNYDOMYUI/ncxA5WY2gagiRhK85BdDsRnHYenvYNfvKTn+DclGwqo0gklEt64/f7+dKXvjTkJRY33HADjY2NbNq06aTbdXokInYRl2Iwduw4PB4v7f9YSdZDt5rvSZKQ/G5Enwta24jtO9ajzWzouKaMxjVhBHo0hh5RMKIx9GjczI72g6HpGKFo/zXBooDosCeCcNFpR3B1/d9huyibdIcbgihiL85Bzk5DqahDbTF1avRAmMj2Q9hy07GX5CLYBhY6JCuSWE2SFpcug8psWwwtw/2J7FLCuhcmhmEQWrcLdAPR7cQ9/dw3cp3OvaisrOTnP/850agZxEmazmU7OpD05K+3TrdMQ4ad7NIibpu9iNjm/US2HEySJrMVZBKvaSZ2oAo5Jx3PZRMRJJHIjsMgCDjLS5FSPKTetihJtaObQH0Tqz/7LTrrG3FHNdwxnZhNpNMro4kCHV6Z2kwHnimjeODBB4esMfJ4dF3nxRdf5N133z1p4mNcQORqRx6pqT2Zd9HnxrdwCo5xxRixOOFtB2n7YAt2SQZ67kX2V+7sN1tp6DpGVEGPKr2CcAUjEkOPxc0Hj9Ohy91RdNnN4Nvp6Pq3mRkfSsm64c65/I5S2wMoh2uTdLIFWcJekouc23c2u89YdZ3Qut1gGKaqzbTz0xB6trB+L4YPw/1eDI3WlIWFxUWFIJhZRj0SQx/mxjaBQIDHHnssEWgD5LYofQLtA0VuarPNmtGacBNysJIbS/KIbDnQs5FhoDa2I3pduOdOwDmmKJGNFr0u9GCE6P5juKaOov3FVejBCN4FUxA9TrMJc+9Rgi+uYpwnk7AYI6SHiGpR2nxmMGhDZIw9hUWefDK0AnztUTg7sTaiKHLbbbdx5ZVXsnr1atatW5cwVBEEgZEjR7Jw4UKmTZhE6/88lzDuATOT2fH6Onh9XfeFwVB16BXTuqaMPGFZgCCKCG5nv421hmGYgXhMwYgoPUF4VDH/1vR+AnHDwIgpaDEFre9aMxB32s0SlUQQbkd0Oc6owe9SR071IU0bTby2hXhVgzkzoWrEDtcQr2/BMbIAye854f6CKCI6u75HIjGzXGsYBkIWFmebM85sq6pKZWUlgUAAr9dLWVnZkOnFXioM9yeySwnrXvQQ2VOB1moqFLhnl5/z5raB3ouXXnqJN998M2nZomMao1OzSUtNRVU1qp0aLxn1SZKlvpDK/e5RuJAIbzmA2tiG4LLjmjKa7H++Hff0MUQPVhN8bzNKVSNqayex/ccAs47dXtJlsy0KyFmp6IEwWiiKcqQ2YR4DIKV4sY0tAowuC++e9yJIIun/dC2uiSPO/IINAFVVURQFp9OZJFMXb2yj6bEX+lVjMTGIxRQcDjsgYC/LJfPBmxEdQ/s3YRgGhqKamfCIghEzM+N6NIYRVZKaNQeKIEuJchTRZdaGi66uYPwCbNg8X99RuhI3S0ua2pOWy1mp2MvyTngto3sqUVvNBzn3jLFJpSUXOtbvxfBhuN+LQUfFHR0d/OQnP+G1115Lyig5nU6uv/56Hn300YvOltfC4lJCdNgTWUQjqsAwDExUVeXDDz9MWjZm9Ggud9sRewW18++7nnEugR/81/eIdgbBMCjoFKl11FEsuBI27Z7JI7EXZKGHo2b5zJRRuCaW0fL714nuPYqel0G8roV4Yxu2omyzjlg3UBvM4FqtbU4KtAWHDceowhOWORiaTuuf3iL7y3diyz9LKe5eyLLcbzLElp1G9pfvoPXPb6NU9DX0SSAIuGeVk3b7FQOu2z0dBEFAcNjAYUPqx1vFiKtJwbceiWHE4ub/42rfHTBr8o1A+ISyjsc3bIouO4LDbjVsHodot+EcW4yWl0HscE2i7l5takdr7cRWlIMtP6NPbb3gdkCXlLseiV1UwbaFxUAZ1LdlR0cHd911F5WVlaSmpjJjxgyysrJobm5m165dPPfcc2zYsIG///3vpKamDvGQLSwszgW9myT1SOyk08Xni7179/Yxh/n4XXej/+xFwFTTMKIK8YZWUu02Fo6ZxNvrVoFhkNlkUNOwk/SoEzkrFef4UhxlpgqHHlVMfXGHWQ+cestC6vc+jb00F0SBeE0zWnuwp1mw61xKTY8bo+h24CgvwT2nHM+scqQ0H8rReoKrtxOvae7ZL67R+fZ6Mj5z3dm8VKdETveT9aXbUY7WE1qzk+i+Y+ihCAgCUooP55h8spfMxpaZet7GKNhkJJuM5O9HUUbTuurDleSGzYhiOiX2w6AbNp32SzYQl/weXFNHo9a3ohytNx9mNB2lsg61oRX7yHzk1B6p0D5NkunnY9QWFueXQQXbjz/+OJWVlTz44IN8/vOfx+VyJdZFo1F+85vf8Jvf/IYnnniCb3zjG0M2WAsLi3NHb2MbIzY8HWO75Ue7KSwsJK+wgFpZRA/HUNs6wYD4sQYcowqZWT6Rt9euwiHKSKKGKks4r5iK0B7Clmdmlg0ljnK0nvCmfTjHlyKn+ZCzUrEVZhGvbsJenIuc7kfOy8SIRM1aZswMH5qO6HZiy01Hzkol/bPX4Z4yKjE+W2467lnjaPvrcsKb9yeWR3ZVoHUEkVK8Z/+inQRBEHCU5uEoNZWmelcZtre3I6cOjZX32UCQJCSvC7yuPusG1bCpG2ZjYCSGRvID3aXesCkIAra8DOTMFJSj9cTrzdS1HokR3VWBnJFilpY47Ul1+70bLS0sLiUGFWwvX76cOXPm8JWvfKXPOqfTyZe//GW2bdvG8uXLrWDbwuICRexlbDNcfyR7G7cAeL1eMxAoyia6uxK6YqjwjsMcdMZZt/4jtnywBn9OJpO0HBw+J4LbgVHXiiCJ6DEFrT2AJyPFbMrrJXvY+3qIXje+K6fjmVWOcrQePRyl7fmVSH5Pl5GHgHNiWVKg3d0cJogiqbcuJLLrSM9DjG4Q3nwA35XTz9alGhTd2dsLXbTqvDRsdpWjXGgNm/F4nI0bN7Jr1y46OzsRBIG0tDSmT5/O5MmTk2r9BZuMY1Qhck46sSO1iVIdtaUDta0Te2E2cl5PKru36o+FxaXEoILtxsZGrr/++pNuM2XKFDZv3jyoQVlYWJx/hN6W7cNUa9vjSS5tqaysJBaL4ZkzAeWIqbdd39JM1dp17Hn7FVYd3kVAiKIoYSLxKHokRvVH2/A73cj1LYg2GcnnxlaYhZTmQ84x+070SAzlWHIts+R1IXqcOMeXAtD+8odJwVxvucTuJjHHmCJs2WmIbifO8lIi2w4mtunWNLY4twiCYJaHuByQmrzu+IZNs1Y8fsqGTUOJoylxoK9r6XBt2NQ0jTfeeIMVK1YQDvetb1+/fj1paWl87GMfY8GCBUllNJLPjWvySNTGNpTKerN+XjdQjjUQb2hL1Gobw/Sh3cLibDOoYNvn81FTU3PSbWpqavD5LjyLZwsLCxNBFBHsNgwlPmyNbcaOHYsgCInMazQaZdWqVSy5YjEdr67h0OFD1ByrRq1pojAW50p/MYVulYhokKpLFOgORFUn0BkgvG0PedMm4Jk0Alt2Oo4xhYlmr+AH2xKukgCIAo7RhcmDOS7w6nbb0zpDCTUGrT2ILTuta31yucNglDYszi6DadjUo2bd+JA2bDodCHb5rNWJK4rC448/zt69e0+6XVtbG3/5y184duwY99xzT9J4BEHAlpOOnJGCUtVIvLY5MQMQr28BBGz5GehK/IJUgbGwOBMGFWzPnj2bt956i1tvvZXLLrusz/p169bx1ltvsWTJkjMeoIWFxflDdNrRlDhGXE04Jg4nMjIymDBhArt27Uose+GFFxBFkUi6TqCuziwPsUmE3TIOLc6kuPlDr2MgyzKGroNuoEViHNt/kNmP3I5jbBGCIKCHowRXbafznQ1J53VNGtGnvlr0OJNmAGIVdThGFSbqWQGkVG/S+qT9+ylxsBjenLRhU9USgfeQNmw67cSVKPFsFdHtPOOGTcMweOqpp04ZaPdm9erVeL1ebr755j7rBFnCUZaHLTuNWEUtWnsQ0WFHbekgdjCCLTsN5/jSYfddYmFxNhlUsP3www/zwQcf8LnPfY5FixYxa9YsMjIyaGlpYcOGDaxatQqn08lDDz001OO1sLA4hwhOO3SaU+F6RDEb0IYZS5YsSQq2dV3nd//9c7asXsec0rHMiriIixpoBjabDafTCQhoqgaKCJqZFY9LAi1GjMO/fYG8tbsRnDbi1U3JGe0uvIum9VlmH1mQZAwTWrMTz/xJaF3lIYIsIWeY6iXRA1XEq5uS9neMKjjja2ExfBDks9OwaYSjaMEgsaDSE2ALgqmc4zz9hs0dO3awdevWPsvHjx/PhAkTUFWVrVu3UllZmbT+rbfeYt68eeTk9G9sJHqcuCaOQG3uQAuEoaUDDIPY4Vr0iIK9NDcxy2NhcbEzqGB71KhR/P73v+cb3/gGK1euZOXKlUlTucXFxfzgBz9g9OjRQzpYCwuLc0uyIonSb+BwvikvL+eqq67ivffew1DihDftp2LffjQnbFCaqJFdzNLcjPFlJpSTBEFgfMlICIRp3nuEkGwQ9NrBLlFXV3tSC3X/stk4yvL6LPdeNpHwhp7soNYRoukXz+GaPBIpxYucmQKiSHRPJa1/W560r5TqxVleMkRXxGK4M6CGzURW/LiGTa3/hk09qkD0FA2bTgei05bUsLly5cqkbV0uFw8//DCjRvU09y5btoyNGzfy1FNPoet6YpwffPABd95550nfq5yZgmfOePRQFLW53SxLU+LEDlSh1rdiH5E/LB/iLSyGkkG7EkyfPp233nqLzZs3s3fvXoLBIF6vl/LycmbMmHHJapBaWFxMCEmKJMOzbhvgjjvuIHqwmtd+8gS6Eqczx4utqya6ljgbiz3E83PIaVHwagLzRk8gMz0TW0EmLQ2jaX35feyCWZ/d3t5ONBrB6ewbAPiXzca3dHa/Y7AV52AvzUWp7GmkjO47RmTnEWx5GTjLS1D/vgK1uW8jpPfyyX3MQCwuTZIaNo/DMAz0WByloRGH3YXRraASUwbWsNmR3LDZ0tHO9vfXIMiimf2WJW667ibKsvP61FbPmjWLyspKli/veVBcu3Ytt912W5cz6okRvS5suelIaT70YE+tutYZIrL9ELbcdOwlucNeqcXCYrCckQWYIAjMnDmTmTNnDtV4LCwshhFiL2MbIzo8lQQMXUcQRe7+p0+Ru/kYa0e52P3qS0nb5OfnE0/zkH/NYhYVjSVN6npfosC8Wxbwet0+Mqs6yG+OYVMNgsFgT7AtCrgmjcR7xdSE/nR/CIJA2t1X0fSL583pflVN1OaqjW1E+5OQwywf8S6aeqaXweISQOgqFxH9Hmz92FKfsGEzEus3EK9prAdDx4jrGHEVh83OVH8OkR2HzfNJIlK6H8dos1l48eLFScF2JBKhubn5hKUk3Yh2G4IsIQKSLxPH6EKUwzVmNt4wiNe1oDa1Yy/NQ85Js5J1Fhcdgwq2//3f/52bb77ZCrItLC5yepeR6MPM2MYwDNqfXUHTr/7ByNf/G3tBJktf+B/Kq6o4Ul9DW1sb8XgcURR56KGHmDJlCnaNhNyeIEs4x5ci+T2kFeZRocepzHORFohTtqCc1PLxiB4XjlEFSH4Phq4T2XWE0Ee7iVc3oUcVRKcdW34mnrkTCOb62H/wAJHyVHzv7sQeipEiOxFF8YQW1Y7RhWR89joro2cxJJxuw2a8UgRRhK7SkMzUNGxyTzbb0HTUpnZs+ZlIPjeZmZlIkoSm9QTu0ejAtLNFtxOtM4ShxE2pwOljiNc2E69qNBtDVY3YoWri9S04RhT0+x4sLC5UBhVsP//88/zjH/8gLy+PG264gRtvvJGRI0cO9dgsLCzOM4JNRpBE88dwGGnkKlUNVH/lMYIrNpN6+xUYvbLGTqcTl8uV5Gw7YsQIXC4XhmEgZ6ZiqCr20jwkrwtVVWlqMpsVDVGgNcWObcYYvDOmJPaP7j1K2/Pvo7UmOwlqsTjNldXUPPcadcEODpS4zf0ljcL6FoqCAvmp6RSXj6F3uC1npeJdOAXPvAmWKoPFOaG/hk1/cCS21Wlmv5Wq0yZqCIVZyJqeCMxFjwuxa5+WlpakQBvA4ej/QbLP+V2OnmbrcAzJ7zZNb7LSUCrqUJvbzXXBCJEdh5Cz07CX5loygRYXBYMKtv/617/y8ssv8/bbb/Pb3/6WJ598kgkTJnDTTTdx3XXXkZ6efuqDWFhYXBAITrspRxaLJ1wQzyft//iA6q/8EsnnpvRv38J/zZyk9RkZGbjd7iRjjg8++IA77rgDQRBwjitO2n7Tpk1EIpGkZUVFRYl/hzbspe2Z5Qk3yh4Mjhw5kvAccAKTDgXZX+Kh1idyIFPicLpBttJJRtNBPnb1UvJHlmIvzcMxqmBQ11FtD6A2toOqIbgd2AuyEGxnVA1ocQnT/XcuCALYJOIYbK+t6FfSF+jTTOl0Ok/aTNyb3rM7eiSayFyLDhvOccVoHemmUkmXy6Ta2IbW2omtKAdbfsZ5/96xsDgTBvUtPX36dKZPn85//Md/sHLlSl555RU++OADvve97/GjH/2I+fPnc9NNN3HVVVcN+KnXwsJieCI6Habur2FgxOKmHOB5oDvQtxVkknrHYvK+9dl+p5pFUWTevHm89957iWUrVqxg5MiRTJ+ebId+9OhRnnvuuaRlo0ePJjs7G4DYoWra/v5eP4E2SYF2NwIw9miIcI5IiwyaKNCY66HZKVKxexVfXTaL0tLCvgc72fvWdSI7DhP6cCexw8edz2HDM7scz+WTLRk1i9MmMzOTcePGsW/fvsSy559/noKCAkpKktVxtm3bllSvDTBv3jxkeWBhhOjpUV7R+5klk1K8uKaNRq1rQTnWYJr/qBpKRS1qQyuOkfl9tO0tLC4UBMPoT9Dz9AkGg7z55pu88sorbNq0CTCtlLv/bXFiDMOgvb2d1H4aXizOLda96Eusoo54jVlm4ZxYhpx6bpxhu+9FisdL82MvEFy1jbIXvjcg1Y6Ghga+9a1vcfzXW3fAbbPZ2L17Nzt27Oizzf3338/MmTMxDIOmnz+LUtWYtN5WkMmxVInfvfQs7ohKaSdkqCKSJCFJMj6vlw4lwjtpEZAk5Kyev6XMzEy+853vnFK9oRstEKblqdeTFE7AIBQKEYvF0HUDu92G1+8n7aYFeBdNPSt/t9bnYvgw1Pdi69at/OY3v+mzfPLkyQmd7W3btnHw4ME+2/znf/4neXknbhrujR5VCG8yg3o53Y9zfOmJt1XiKEcbUBtak5bLmanYy/IQHScvLWlqaqKhoQFFUXC73RQXF+N2D30NuPW5GD4M93sxZPOPXq+XO+64g+uvv54//elP/OpXvyIUCp16RwsLi2GN6LRjxFW0YATlaAOCKJ2z5iVlZwWH/v33RPceJevh2zBUDcF+6mA7JyeHpUuX8vbbbyctP3z4MIcPHz7hfhMmTGDGjBkAxKsajwu0DTpGZbNKaOXPf/gLra2t3YuZq3hZljmCMWNGk+7yogXCzFoylZeP7WR/fXXiCM3NzWzfvr1Phr0/9FCUpsdeQG1sA0DTVOobGqirrSMSSbb6lmWZnCMVjGhupfD2q055bAuLbqZOncqkSZPYuXNn0vIdO3awY8eOE+63ZMmSAQfaYM7CIAqmOU/45E2Vot2Gc3QhWk46sSM16EGzzEttbkdr68RWmIWtICvpwVvXdTZt2sTKlSv7fMZlWWbmzJlceeWVfTL2FhbngiEJtg3DYM2aNbzyyissX748Uf84Z86cU+xpYWExXDEMg9iBKjrf3Uho7S4wDESPC8nnxpafgWf+JNzTxyKepbKShp/8jcb//ivO8aWMWv4/uKeMOvVOvbjlllsIBAKsXbt2QNuPGjWKBx54IJEVCW3sMajRdZ191ZX8I7SLSDTaE2gDCNA0LotwO+zdu5dUh5vRhSV4ajt4+NGv8MNf/Cyp3OSDDz4YULDd+szyRKAdDofYtWs3sVgUXRCI20QccT2xraqq1NRUU/ujJykzIsy54/oBvWcLC0EQuP/++3nsscc4cODAgPaZO3cut91222mfR3SZJWl6LJ6Q7DwZkt+Na8oo1IY2lMo6s7RE07uy3m3YR+Qjp/sJBAI8/vjjHDlypN/jqKrKRx99xEcffcS1117LTTfdNCyznxYXL2cUbO/atYtXXnmFN954g5aWFgzDYNSoUdx4443ceOON5ObmDtU4LSwsziFaIEzrH98kdqTW1OftLrXoUiKI17bQ/txKOt9cT/qnluEcfXp1yCej+0fYnptB+tfuJv/Ldw1KkUAQBD71qU9RXFzMG2+8QWdnZ7/bORwOFi1axI033ojN1nMetcEMdA3DYN++vWyxhUBw097ebv7ox1UEm4zN6SCvoIB6KUZJTZjWtjb2xuNMLcvDnuJl6dKl/OEPf0gc98CBA2iadtJSknh9K9FdFQCEw2G2b99OUNCpKPXQmGbHEAUcMY3ihigFTT31r4ahs+nxv6IVpJ+wyc3C4ngcDgePPPJIov/qRHJ+fr+fZcuWceWVVw4qWBVdzp7+j4iC4OnroHk8giBgy01HzkxBOVpPvL414ZgZ3VNJzCXzyxf+Sn1z04DG8Oabb6IoyimdLy0shpJBBdtPPPEEr776KhUVFRiGQWZmJp/+9Ke56aabKC8vH+oxWlhYnEO0YISmX/0DtakdAEHuyT4db4yhByO0/PZlMj53/RnbjWudIer+8ykQBAp/+jDp915Dqq6fUQZKEAQWL17MwoUL2bZtG5s3b6atrQ1d1/H7/UyYMIG5c+fidPZjmx1XAaiuqaalpYVYsVk6E4/HQdMQBQGHKOFNSUEURWI2UyIRoDMYZH9VJUXA2LFjk46r6zqRSASv98TNXsE15vS9YRjs2bOHqK6xdUIKsV4lNLaMFFrzs1F2VVNW26Omkh6I8/z//pGysrLTmua3uLSRZZlbb72Vj33sY2zYsIGdO3fS2dmJKIqkpqYyY8YMpk6dOuCGyP4QPQ5oNv+tR2JJTZOnQpAlHCMLkHPSUSpq0brcMP/y92eoOrAf0e1E9LoS3xcOh4OUlBSampr69GW89957jBw5MlEyZmFxthnUp+YXv/gFLpeL66+/nhtvvJH58+cjWlbDFhYXPIZh0PqntxKBtomQ0NpG0/vuo+m0/N+b5PzrJ5DT/YM6b+db66n56mNogTB5//nZxFgCgQB+/+CO2RtJkpgxY8Zp/biKLge6rlNTbZaA+EIaZJk/4mXFpWR7U5AkkbIpE1m05Ep2/OSPCKJgCpcIAocaark8Gk2SIOw9npPRndVuaWkhEglTk+tMBNpFBQXcsux6ymdORRRFGmpq2fHQj2iurk3sn94a47333uOTn/zkgN+vhQWYcn4LFy5k4cKFQ35s0dVLkSQcBVJO+xiS14Vr0kjUpnaqt+xm2/495vFCEfRIjMyiAu781D1MmzYNSZIIBAKsWLGCt956C13v+f56++23rWDb4pwxqAj5hz/8IWvWrOHHP/4xCxYssAJtC4uLBKWijtjB6qRlos+N75rZZHzuejIevImMz16HY0R+0jZGLE7wg22nfT5D1zn2wH9T+Ylv45xQxpi1T5Dx2esS63v/OJ5r7GV5tLS0EI8rAGS3KtgVnU9+8pMUFBYiSeb3XlVlJeOKy7iqYCyCJCK47AhOO60ugfXr17Nx48ak47rd7n4z6d0YhoHWZf5RV1cHQEuKWRefnZ3NF6+8iRJFJrbvKIauk1OQz/RbriU3tyeLbY/rrF+/vt9A38LifJGktR0+M5MsOSuVTZ21iB4XpugmOCSZh665hQmONISo6Xjr8/m46aab+PjHP560/9GjR6msrDyjMVhYDJRBRck333zzWZHRsbCwOL8EP0xWHxC9LnK+ehfeeRMRnXYEScRekkvmQ7fgmjwiadvwhr0DtnQ3DMPUzRZF7MU5FP32a5T+/dvYC7OH7L2cKZ7Z5bS09TRCSobBFe0Orp23AI+/pwTEEYix9ms/xetwkp7eZb4hQH2mg9WrVyfpfQPMnj17QKUxmqbR3t6etOxjH/sYDrsZeGutAWL7qxJT5CUlxXQHHQCKorB///7TfdsWFmcNwWWHrr99PTIwm/eTsWPnTiSfGzkzBcFh57Ip08lISUXrCBHedtDsOel6YL/88stJS0vWoj+Z2oqFxVBy0aWkN27cyI9+9CPuvfdeZsyYwdixY/n6179+vodlYTHsMTSN6K7kbn7fldORUrwIzl4ZqWgMQRRJufHy3rEdelQhduBY0v66rqOqatIypbqJyrv/k5bfvwZA7r9/mrQ7Fg87dQApxUtLRrIpV77kpu2nz3KdmsHoZo2pNXHmHgwTqahh69atiKKApmnUuA321x7j9ddfR1GUpGMsWrTopOcVBAHJ7zFrw7vcdDI6zGNMnjwZ59giU0INUFs6UOtaiB04ht3uSNSBd5ecdHR0nPF1sLAYKgRRTKgX6ZFYn1rq06W76VmQJeQ0H1OXLERwdKkjGQbx2maUYw2AaXY1ceLEpP2tz4fFuWJANdvjxo1DFEVef/11ysrKGDdu3IB+GAVBYM+ePWc8yNPhH//4By+++CIul4u8vDyCweA5Pb+FxYWKHopixJMbIF1dcnu95f2MmBn4yRkp2AuzUaoaMeIqalMbbc+soHH5Bg5VVrC3uYYDchRn3KCkTaNU9pId0HHsqUZ02nHPHIseip5Wk9S5pnF8Lt6D1Ti7ZPYMwwADRsp+2sISakyDrnKSUChEY2MTdYE2Xgp3EBZ1fL5kA6BZs2aRn5/f5zzH45o4glB9c+J1QWOM2iyzhlxK8eEsLyW6txJ0g+CanYkp+e7gpSXFVFWxSvwshhuiy2E6SOoGRlRBcA3eZfr4OET0e3CXjyFe02Rq5OsGgtTzGdA07aT7W1icLQYUbM+aNQsAl8uV9Ho4cs899/C5z32OESNGsHPnTu66667zPSQLiwsCo5/6aKFLeUD0uROGFEIveTxD04gdrEJt6cTQdWrr6jgW7gAMclSDsQEVXYQOp0hzQyWNkRjezDQmLppNvLaFuv/8Pb6rZuK7ZmClFecaX24W28b4mHIwgFPRaWlpobi4GIfDwYSpk9m1Yye9r1prPMIb7k7CornUbu95SBkxYgT33nvvgM7rmT+JzlXbMKcODGTdYPq+ADv+9hqXfeYO5DQf9tI8Au9tJrLF1EaORqOEQiFa/TYiTrMBMyXl9BvQLCzOJoLbAV3VWXokllTHfbqkpqYm9SVs27aNCRMmYC/KQc5Jx4gqSH4PYGpt79q1q8/+FhbnggEF208//fRJXw8nJk2adL6HYGFxQSJ5XN2xXYLo/mN4Zo1DdNhwTRyJEVOQMs0ALna4ho7X1mHEFAzDoK2tjSa7Bk4JW9wgo0NB6DpWZlynSbahFqWguh3s2LObSZMm4ff76Xx7A/HGNtI/uXRAVuznkmnTprFu3To2l/spqYuS2xykqamJrKwsUlPTmDJtKnv37iMUj3HYGeflQD1RsecCZmZmAmaC4t5778XhGFhgYctNxzNlFOl799La2gKAI67T8H+vc3R3A3a/N+GqZ2JQUVEBGBzLMWcKnE4n48aNG5LrYGExVPRpkkwf/LGmTZtGbW2PCs/atWtZvHgx+fn5pjZ/L33+d999t4/W/kDMpSwshoLh9ctmYWFx3hBsMo5RyeY0gfc2JfSmJb8bOSsVQRDQOoLUfeupRElJZ2cnMSVGzC4i6gbpnXFQdfRgGEPVEA3Itruxd/346brG7t27URSz/CGy9SCdb350Dt/twJg0aRLp6enEZZFDRW7WTk7l5VgVexxRmFBM3rWXc9l/PkTbnXNYrjcR66Xo53K5uO222/jWt77FfffdN+BAu5u0u68if1KyRncsFmPr5i00VBztUmox6OzsZNeuXTQ3N3GkwEW737zGl1122Wmf08LibCO6e8n/Rc5MkeR4NTRVVfnxj3/MihUrEk7WDQ0N/PnPf+all15K2nf06NEDKumysBgKhsSu/WLiTBs2zuSc5+PcFslc6vfCc9lEYgerEq/VhlaaHn+RlFsWYi8ylUKU9gB7Hvkp0Q17UFUNXdeIRCIoNpE2QSItLhCPRPHGdFx2J7b0NOJ2iUY9SsCpc7DYQ06rQnarQlVVNSNHmqomgRVb8Fw+BclvKh0Nh3shCALXXHMNf/3rXwHQRKhNs/F860HYcBCn05lw2xs/fnyiIVQURW699Vauu+66Qb8HweVg3P93P7s/dQC9uqd+OxKJsHfvPgQBBEFE13UMAQ4XuKjOcYJhYLPZuPLKK4fs2g2He2FhcqHfi2ONdbz71qtU1lYTMzTchTnk5eVx2WWXMWnSpNPqM0hNTWXu3LmsWbMmsSwUCvHMM8/wzDPP4HA4iMX6D+iXLVt2xtfwQr8XFxPn814MpARyQMH2N77xjUEP4Pvf//6g9j1fdHR0nLcPjtUZPXy4VO+FUZiO6nWitfRMt8b2HyXww6cR03zUtTRSs3kXGQ1hU4jEAEGJ49QMjgkhwtUBimI20kQHrvR0RJ8L0evCPbEMvwDxvfvYasSpK7CR4RMQjtWSl5eXMHlpfG8DrsVTk8Z0vu/F5MmT2bt3L+vXr++z7nilkW4mTpzIvHnz+kj3DYZZP/0qf/n2j0mtbCM9mKzsEpd0ajNsVGfYiThEUBQEQeDee+9FluUhOX9vzve9sOjhQrsXdXV1PPvss1RWVqI1d4CugyAgGQpVVVVs2LCB1NRUbrnlFiZPnjzg4y5btoyKiop+NbNP9Pn82Mc+RkFBwZB9Pi60e3Excz7uxfGSkv0hGAOILE9U9ycIQr+BafdyQRDYu3fvAIaazJw5c07rQ/CnP/2JOXPm9Fm+bds27rrrLm655RZ++MMfDuhY5yuz3dHRQUpKyrBsEruUsO4FxGubafrVPxIlIt0cPXaMo5VH8UY0/CEV0QCHoqPF4xyWozTJGn5NpEix4fR6yMjMRLLJCKKAvSALW2E20WiEVyp3sr/L+nxcZYjF2SPIysoCQMpMJfffzCbC4XQvdF3nhRde4N133z3ltgsWLODjH//4KV0iT4eWlhYef/xxGo8cwxUzy3JUSSDkktDFnmvjcrm47777+kicnSnD6V5c6lyI9+LgwYM89thjiVkgrS2A0aXJL2enwnHZ7DvvvJOrrrpqwMePRqP8/ve/P6VutiiK3H777ad17JNxId6Li5XzeS+GLLN9vCmDrut873vfY/v27XzqU59i5syZZGRk0NLSwsaNG3n66aeZOnUq//Zv/zaogV9//fWEQqEBb9/dhDQUnM8PjCAI1gd2mHAp3wt7QRZZD91C8/++hh4wO/0bGuo5dvQoggA2VUcwwBHTEIAWFOojQUSPEzsiNo8LA2htayUzJxvJ7UQ5Wo8RU7D5PRSqNg50XduGTEfXD7D5WmsxsxK9r/1wuBeSJHHHHXdw2WWXsXLlStavX580PW2z2Zg1axZXXHEFJSUlQ37+zMxMvvnNb7J161ZWrlzJwYMHE+uErvWLFi1i/vz5eDyeIT9/4lzD4F5YmFwo96KpqYknnniCWCyWGK8gSxhKlwGWpiMc92D63HPPkZ6ePuAGRpfLxUMPPcT+/ftZuXIl27dvT3Kf9Xg8XH755SxcuHBI44VuLpR7cSkwXO/FgILtgoKCpNdPPvkkO3bs4OWXXyY7u8fxbcSIEcyaNYvbbruNm2++mbfeeov777//tAf1H//xH6e9j4WFxdBhL8oh9//dQ3DtTjpXb+fIuorEOlE3lTGwyaDphJQYHoedmCgS1Q3iItg1HU3XaQ10kpuegqZ0oBxtwF6ai1MjMfMVs4no0V6zSQagauaxhyEFBQXcc8893HnnnTQ0NBCJRHA6nWRnZ5/1ZkRJkpg5cyYzZ86ko6ODtrY2NE3D5/ORlZU1LH9gLCxefvnlJHk+gNT0dOZMHU1RTh5Bn431+3Zx7FiyIdbf//53pk6dOuAabkEQGDduHOPGjSMcDtPU1EQ8HsftdpOTkzOkM00WFqfLoH7Rnn/+ea699tqkQLs3OTk5XHvttTz33HODCrYtLCzOP6LHif/qWexyKWw8tBanYkcwYAwhMgUbtrYIYOBLS6Wj1E9llkTH9oOIhgO3y45XAU8giBIMga4jCALx5g7apCiCYOpPpwRVbL0Ca8EmgTz8fxRtNhuFhYWn3vAskZKSYmloWwx7Ojs72bJlS9KySZMmcd/d96DuMxuxbXkZXHXrjbz55pu8/PLLie3a29vZvn0706ZNO+3zut3uszLDZGExWAYl/VdfX59k1tAfDoeD+vr6QQ3KwsJi+LD2o3V0+Gw0ZDioy7CTmpaGx+czy0ZK8/D7fOzIEgioMdxFOYSjEXRRJOAUCYo6kbrmRNY13N5J0NaVgTUMChujpKSkJs5lL8u3MrQWFhcJ69evT3JttNls/NM//RN2vzexTI+Y5SXXXnstpaWlSfuvXbv2XA3VwuKsMqjMdm5uLsuXL+fLX/5yv1OnkUiEd999l9zc3DMe4OmyadMmnn/+eQBaW02bqs2bN/P1r38dMEtdHnjggXM+LguLC5Xa2loMwyB2oIrYgWryLr8BIdCCLS8DQ9dxp6Uy+lg9u3JtxNLddMhtiIEOfA43kiFCKIou2VBEg0A4RNTuxabqjD4WJt/mSaox9s63TKksLC4WehvOAEyZMgWv1wy0BVnCUDXT2AazDGT+/PlJqiLH729hcaEyqGD79ttv52c/+xkf//jH+eIXv8iMGTNIS0ujra2NzZs38+tf/5qamhoeffTRoR7vKTl27Bgvvvhin2Xd9WCzZ8+2gm0Li9Mg0tRKYNVW4vVteEYX4XQ5kdJ8aG2dGNE4qQX5FFa0kFoHNU6FTodAcatOSjiKLMko2NDbOtAFEGWBvKYYeS1xRMMgv3xk4jxSug/nxLLz+E4tLCyGkuOl97pVhwBErwutPWhKAHZxfPPiiTSyLSwuNAYVbN93331UVlbywgsv8KUvfQkwJXW6u38Nw+DWW2/lvvvuG7qRDpBbb72VW2+99Zyf18LiYqTlj28SeXENulPEf81sHNnphIIRvCW5RDpDCHYZ0WGjfPIkdu7dTWlbnJaAgRMJe5fhii7oGIKAYIAhCPgjOkG3QHZ2DlldP66CLJL+iauHnV27hYXF4HG5XEmvjx49mvi3vTSP+LEG5KzUxLLjmySP39/C4kJlUMG2KIp8//vf5+abb+bFF19k//79BINBvF4v48aN4+abb2b27NlDPVYLC4tzRLdaiC03nTELZlOZ70KQJXTDoKqpgdzcPJxjS4juO4qhaqTkZTJx4kS2btxMXNeokTQKdAG/ISELZgAds4noooAmQnZ2DmPGjAYEBLtM+qeX4RhZcPJBWVhYXFCMGDGC1atXJ17v3buXuro608jK60IaX5pYp6oqq1at6rO/hcXFwBnpa82ePdsKqi0sLiL0qELjT/5G9EAVJf/3TfzL5nBDwdd57LHHzA0EgQqbQsqBA4waNQrXxBEoVQ3oUQVR0bAJIi6Hk6gSo0aK49ZlNFlElQR0UcBmt1MyaSxZuTkIsoRr8ih8S2dhy0k/v2/cwsJiyJkxYwZ///vfE2Y2hmHw29/+li984Qvk5OQktguHwzz99NO0tLQk7b9w4cJzOl4Li7PF8BSztbCwOOeEPtpN9SO/QKmsJ/urd5u1lJLEyJEj0TQtoS4UE23k1kdobW0hIyMTh8tO+86d1Afa0CQDW5oPt5CCHIkj+FPR8rNwxA18gg3/uFK8C6YgZ6bgmjIKyec+z+/awsLibOFwOJg/f36SMV5dXR3f+ta3mDBhAqWlpTQ3N7N169Y+9dlFRUVWZtviosEKti0sLKj99/+l+fEXcc8cx+iVv8JZXkJjYyPvvvsu69evJxgMUlFRga7rHAZSIn7GyX4ikShSlxGNs/tgNhlRlvDkpjFpypSEmYRgk8j+6t1WFtvC4hLi+uuvZ9euXTQ0NCSWGYbBrl272LVrV7/72O127r33XksG1OKiwepGsrC4hDEM073RlptB/vcfYOSbP8ZZXsLWrVv5zne+w6pVq4jFYqSkpFBeXp5wc3vfGaA6FqS5sZFwMNhzQJuMaJPweDxMnDixx7VNFEj/5DVWoG1hcYnhdrt55JFHkspGTobD4eCLX/yiZUpjcVEhGN2/thbnDcMwaG9vJzU11XqSP89cKvdCbemg9ptPYi/KJvebn05at2PHDh5//HH6+2oIBoNUVlbS1taGFFO5MuKjWLPj9/jw+LzYXA5yc3MpLi5GksyJM9HtIFu5UgcAAGJbSURBVP2epTh7NUMNhEvlXlwIWPdi+HCh3otwOMyrr77KmjVr+pX0EwSBKVOmcPPNN5OXl3ceRnj6XKj34mJkuN8Lq4zEwuISwjAMOl5cRc3XfwNxjfwfPJi0PhgM8tRTT/UJtAVBoKSkBEmSSElJobOhiYbqWjbHYlQqKhNElevGjKIoPx9RNLPZttx0PPMn4Z45DtF5csdZCwuLixu3281dd93FTTfdxMaNGzly5AiRSAS73U5eXh5z584lLS3tfA/TwuKsYAXbFhaXCHoszrHP/oDONz8i5cbLyf/R5/uUdaxZs4ZIJJK0bM6cOdxyyy2JH8LmHQd47YUXWaVuBEDye2hxO6m5Yjpzrr4WQ9UQPU6r+dHCwqIPTqeTBQsWsGDBgvM9FAuLc4YVbFtYXOR0Z6lFhw1bQSYl//dNUm6Y3+92x+vcTpw4kc985jOJabnYkVqcnVFuX3Itiqqy8ehBRLcDgLXrP+Lm227Fbrey2BYWFhYWFt1YDZIWFhcxsSO1HLn5G3S8aAbRBf/9xX4DbYDGxkaam5uTll133XVJgXa8tmf9DR+/MxFoA0QikSSHOAsLCwsLCwsrs21hcVFiqBrNT7xE/Q+expaTjpx96lrIYG9VEcBms1FWVgaAFowkBdqO0YV4c9LJzMxMCtADgcAQvYOBo0cVwpv3EztwDD0YBUlETvfjmjYax5iiYdksY2FhYWFx6WAF2xYWFxnx2mYq7/0uke2Hyfz8TeR+415Ej/OU+yVk+rpQVRVN05BlGcEuI0gihmHgGFmALScdwzD61Hcff4yziR6L0/nmR4Q+2o0RiyetiwGh9XuQs1LxXzsH97Qx52xcFhYWFhYWvbGCbQuLiwTDMBAEASkzBXtpHgU/+gLumeMGvH96enKzpGEYbN68mTlz5iDabbhnlYNhINjMr439+/cTCoVOeoyzhR6K0vzkyyjHGk+6ndrUTuuf3kZtaMO/bM45GZuFhYWFhUVvrJptC4uLgND6PRxc+DCR3RWIdhslv//6aQXaAH6/n7FjxyYte/nllxPlJYIsJQLtWCzG888/n7Rtbm4uhYWFZ/AuBoahaTT//rVTBtq96Xx7A8HV28/iqCwsLCwsLPrHCrYtLC5gtGCEmq//hsMf+xqi054IhgfLFVdckfS6paWF7373u7z//vu0tbXR2dnJmjVr+K//+i+qqqr67Hsu6qND6/egVNQlLxTAObGMlJsX4F82Gzmnb416x6tr0ALhsz4+CwsLCwuL3lhlJBYWFyjhbQc5+unvobZ0kPdf95P5wA0IZ1gzPXXqVIqLizl27FhiWXt7O8888wzPPPPMCffLyMjgsssuO6NzDwTDMAit3pG0TErxkHH/jdgLMhPLfEtnE1q9nfYXV/fsG9cIb9iL76oZZ32cFhYWFhYW3ViZbQuLC4xu3WxbXgbuqaMZ8+HjZH3h5jMOtAFEUeSLX/ziadVeezwevvSlL+FwOE698RkSP9ZAvL41aVnqHYuTAm0wHS+9C6fimjo6aXnoo/+/vTuPj+l6Hzj+mZnse0hiDwmS2PfEEhURa1FbFa0uqkpLW1p7F9oqWks1tLS0lFJKUvu3tLYqCbVFS+xbgiSy78vM/f2RX4YxQWiSCXner5cXc+6Ze587NzLPnHnuOf+WeIxCCCHEnSTZFuIxoSgKSb/+ybn2b5KXkIJ5pQrUXDEVy1pVivU4zs7OTJw4EU9Pzwf2rVq1KhMnTqRKleKN4V5youIMHmuc7LCqXwvInwIw85+LZF+8rt9u166hQf+8W8nosnJKPE4hhBCigJSRCPEYyL0RT/SEr0nZehCHnm1BqyvR4zk5OTFhwgTOnDnD3r17iYiIIC8vD8gf/a5Xrx4BAQE0bNgQtbr0PrMrdyXK5pUr6OvE824loU1KQ5uUhqaCPWZO9phXcTHeR3YOWMkql0IIIUqHJNtClHHJWw5wbfR81FYW1Fw+Bcfe/qVyXJVKhY+PDz4+PuTl5ZGWloaiKNjZ2WFubl4qMRjFZGl43NzYRP2Uh2qr22Us2vgUzJzsyY1JuHsXqCxME7sQQojySZJtIcqogiTSvHIFHJ9uQ5VPX8PM2d4ksZiZmeHk5GSSY9/JvJqrwWNtQirZkVexqlcTjbMdqFWgU8iLT8GydjXSD/xj0N+sogMqGdUWolhotVpyc3Mf3PEJpSgKOTk5ZGVlyUq1Jlbc18Lc3LxYF2mTZFuIMkbRarn1zUZSfgvHM/QzbFr6PPSc2U8qi1qVMXNzJi82Ud+W+MsuXEb2wdzNGY2THdqEVJScXFJ2HSHjyBmD59v41Zc3RSH+I0VRuHnzJklJSaYOxeR0Oh0JCcbfoInSV9zXwsnJicqVKxfLe4Yk20KUIZmnLhH11gIyj53DZURvlDwtKrPSWwK9rFOpVNj5NyIpZJ++TZuYRszsn7BuXAezig5kX7pO9rlolMws1HY2t59rpsbWr4EpwhbiiVKQaLu5uWFjY1NuP8AqioJWq0Wj0ZTb16CsKM5roSgKGRkZxMbmL5xWHBMASLItRBkRF7yBG58sx9KzKrW3z8HWt56pQyqTbNs0JOPvSMMVJHUKmcfPoeh0+lFvlZnGINl26N4GjYPN3bsTQjwErVarT7QrVqxo6nBMSpLtsqO4r4W1tTUAsbGxuLm5/eeSEpn6TwgTK5g3W+PiiNvY56i7d6Ek2vehMtNQcXgvzKsav9Gr1Gr9KppKnhYlTwuAfcdm2HVsVqpxCvEkKqjRtrGRD67iyVbwM14c9yXIyLYQJqJLz+LmjB/RpmZQI/gdKgwOMnVIjw2NvQ2uYwaQvPkvMg6fRsnV6reprSzQ5uZPU6iyMsd5QEds/eqbKlQhnkgykiuedMX5My7JthAmkLrnGFHvfEVeXBKVpwzVzzwiik5tZYHzsx1x7NGG9EOnyD57DV16FopWizY1A8u6NbBu5InNXatICiHKHkVRyM7ORqvVYm1tXarz9wtR0iTZFqIUKYpC1NsLSFy1A9v2jfEM/QxLj9JZffFJpba1wr5jc+w7Nte3ZRw5gy4zOz/5zs3Tl5YIIcqW69evs2fPHv7++2/S09MB0Gg0+Pj40KFDBxo1aiSJt3jsyTuQEKXk9rzZFan25VtUGNpVRrNLiKaiA7qoOFAU/dL2QoiyIzs7mx9//JG///7baJtWq+Xff//l33//pVKlSowYMYLq1aubIEohiod8XBSihOXeTODyi59y65tfAag8ZSgVX+wmiXYJMqvgqP+3Nj7FhJEIIe6WnZ3N/PnzC0207xYTE8MXX3zBpUuXSiGyogkJCcHb25uTJ0+aOpRSN3ToUIYOHVqkvikpKfj5+bF169aHOsZPP/1ESEhIkfuHh4fj4+PDoUOH9G3jx4/njTfeeKjjliRJtoUoIYqikPDTDs62GUlG+CksariZOqRyQ21vrS8dyUtKRdFqH/AMIURpWb58+UMlz1lZWSxatIiUFPng/DhZuHAhbm5u9OjR46Get2bNGkJDQ//TsceMGcPevXs5ePDgf9pPcZEyEiFKgDYlgysvfUra3uM4Dw6iyifDMavgYOqwyg2VSoVZRQdybsQTfeMmcTtvorUyx8rKipo1axbLIgVCiId39epVjh49atBmaWlJp06daNGiBdbW1kRGRrJz505u3Lih75OamsquXbvo06dPKUdctmVmZurnhC5LkpKSWLt2LZMnTzbJt7ju7u60b9+e7777jjZt2pT68e8mybYQxaigLlttb415VRc8fvkE+04tTB3WE0FRFLIjr5J16jLa1AxQqdA42WHdpDYWNQ2X1NVqtYSdO80fIRuJir2J2toSjaOdfnvt2rUJCAigVatWUs4jRCnau3evwWMrKysmTZpk8AG4Xbt2+Pr68tVXX3H27Fl9+/79++nZsydmZiWXuvz9998EBwcTERGBTqejXr16jBw5koCAAKO+KSkpTJ06ld27d5OTk0Pr1q2ZOnUqNWrU0Pc5deoUCxYsICIigtTUVJycnKhfvz4ff/wxlStXBvJ/t61evZp169Zx6dIlLC0tadOmDePHjzfY19ChQ0lMTOSjjz5i7ty5nD59msDAQLKzszl9+jR//PGH0c2kzz77LHl5efqR4qIeS1EUli5dyurVq7l16xZ16tThnXfeKfLrGBoailarNRrVvnbtGvPmzePw4cMkJSXh4OBA3bp1mTRpEvXq1SMwMJDo6GgAvL29AahWrRq7du0C4MKFC3z22Wf8/fffWFlZ0bVr10KvDUDv3r0ZN24cV69exd3dvcixlwRJtoUoJlmnLhP19gIqTX0R+4Bm1Fg0ztQhPREURSH94D+k7TpKXiH112l7jmFezQWHLr5YN65Neno6ixYt4vz58+TF5a8mqcvKRe1we3rFCxcucOHCBcLCwhgxYgRWVlalek5ClEc6nY7Dhw8btHXu3LnQb5rMzc0ZPHgw06dP17elpqYSGRlJw4YNSyS+Q4cOMWzYMLy8vJgxYwYWFhasWbOGkSNHMm/ePKPE8f3336dNmzbMmTOHmzdv8uWXXzJ06FA2bdqEg4MDGRkZvPLKK1SvXp0PP/wQFxcX4uLiCA8P18+8AvDhhx8SGhrK0KFDee+990hOTmbRokUMGjSIjRs34uLiou8bFxfH+PHjGT58OGPHjkWtVpOSksIbb7xBWFgYbdu21fe9cOECERERvP/++w99rIULF7Jw4UIGDBhA165duXnzJh988AE6nQ4PD48HvpZ79uyhXr16ODgYfqP72muvodPpGD9+PFWrViUxMZFjx47pS4QWLlzIW2+9hb29PR999BEAFhYWANy6dYuhQ4diZmbGRx99RMWKFdm8eTOffPJJoTH4+fmhKAp79+4tcp15SZFkW4j/SJeTS9z8dcTOW4tFrSpo7MreV3qPK0WrI/GnHWQePXfffrnRt4j/YRtWAU1YcnIfV69dy/+GwcIcXXYOKDrIzQMLc4Pn/fvvvyxatIi33367REfLhBCQlpZGdna2QZuvr+89+1etWpXq1asTFRWlb7t161aJxTd37lwcHBxYuXIltra2AHTs2JE+ffowe/ZsunfvbvBNWMOGDfnkk0/0S4TXqVOHwYMH89NPPzFq1CguXrxIUlISM2bMICjo9qJldybtx48fZ926dUyaNIlXXnlF396yZUu6du3KDz/8wPjx4/XtSUlJfPnllwalEXl5ebi4uLBhwwaDZDskJARzc3N69uz5UMdKSUnhu+++o3PnzsyYMUPfr+D8ipJsnzhxgmeeecagLTExkUuXLjFlyhSDbV26dNH/u379+lhZWWFnZ0fTpk0Nnr98+XISEhL49ddf8fHxAaBDhw4MGzaM69evG8VQsWJFKlWqxNGjR02ebMsNkkL8B9kXr3O+41vEzP0Z17f6U3dvMDYtfUwd1hMjY/MBMo+evW8frTaP1NQUkpISORy8ktyw0/ptKqv8ERF7Gzs8KlXTv4He6ezZsw99t7wQ4uFpC7lR+UHLvt+9PS8vr1hjKpCRkcGJEyfo2rWrwe8JjUZD7969uXnzJhcvXjR4TkESW6B58+ZUq1aN8PBwAGrWrImjoyNz5sxhzZo1nD9/3ui4u3fvRqVS0bt3b/Ly8vR/XFxcjGbYAHB0dDSqQTYzM6N3797s3LmT1NRUIP+13rhxI506dcLZ2fmhjnXs2DGys7Pp1atXoef3ICkpKWRmZlKxYkWDdicnJ9zd3Vm2bBk//PADp06dQqfTPXB/BcLDw6lbt64+0S5w93W4U8WKFYmJiSnyMUqKDOUI8QgKarPN3JyxqF2NGkvGY93Q09RhPVGyz0WRffgMlpYWBu3mVSpi5eNOXEwsF3f+ReLlKHQ6HTqdjpjYWOwVhfAENQ41quBeowZ9A5+moWddNNZWWDWvy5EjR/j5558Nvsbds2cPPXr0wNzc/O4whBDFpLDE+uzZszRv3ryQ3vlTBF65csWgzc7OrtC+/1VKSgqKouDq6mq0zc0tfyappKQkg/bC+rq4uOj72dvbs3LlShYvXsz8+fNJTk7G1dWVgQMHMmrUKMzNzYmPj0dRFIMR6TvdWUd9r2MC9O/fn++//56tW7cyaNAg9u/fT1xcHP369dP3KeqxCuK/s3zlzvN7kKysLCD/xtc7qVQqli9fzqJFi1i6dCmzZs3CycmJXr168c477zzw2iYlJRU63/r9YrK0tNTHY0qSbAvxkFL3HufGlCXUWv0RFjUrU+vH9x/8JPHQ0vZHGDxWmWtwfr4Llg092LBhA3/8/Qc4KVSvakWdqAwyMjJBUVABbjfSOZx0klatWtGwSWPU6dko2TmQmYOvry8uLi7Mnj1bv++MjAwOHz58zzchIcR/Z2lpiaenp8EI8W+//UbTpk0LXSVyz549BmUnKpUKLy+vEonNwcEBtVpNXFyc0bbY2FgA/QhxgcL63rp1y+BmPG9vb+bPn4+iKJw5c4aQkBAWLVqElZUVI0aMwNnZGZVKxU8//aSvTb7T3W33uqG7Tp06NG7cmJCQEAYNGsSGDRtwc3PD399f36eox3JyctKfS2Hn96DR7YLn3/3hBPJvdvzss88AuHTpEtu3b2fhwoXk5OTw8ccfP3C/94rpXpKSkoo0Gl/SpIxEiCLSJqdx7a0vudR3ChqZxq9EaVMyyPrH8Ctbh26tsW5cm1WrVvHHH3/kN6pURFWy4rqLJdk5t9+UvXOtcHNx5dy5cyzdvF7/9bU2If8mHE9PT+rVq2ew/1OnTpXgGQkhIL/G9k6XL1/m22+/JSEhQd+Wm5vLzp07+fXXXw36NmrUiAoVSmY1WBsbG5o0acLOnTsNRkJ1Oh2bNm2icuXKRrXKW7ZsMXh89OhRoqOjC61DV6lU+Pj4MGXKFBwcHPj3338BCAgIQFEUYmJiaNSokdGfghk5iqJfv36cOHGCv//+m927d9O3b180Go1+e1GP1bRpUywtLdm8eXOh5/cgFhYW1KhRg2vXrt23n4eHB2+88QZeXl4Gv38tLCwKHY328/Pj3LlzREZGGrTffR0K5OXlcfPmTerUqfPAmEuajGwLUQRpB05ydfhsdOlZVJs3hgovdkVVyEiMKB45UTGgKPrHKjM1tm0b8ueff/LX/r/QpWaACtR21qjUaqIqWVHnrApQAQpWioqqtvmrSEZevczWv/bQ+6lOaJPTgEoA1KtXj9Onb9d3F9Q6CiFKTosWLQgNDTUY9Tx27BjHjx/H09MTa2trLl68SEZGhtFz77zJsCSMGzeOYcOG8eKLLzJs2DDMzc1ZvXo1586dY968eUajyv/88w8ffvgh3bp1IyYmhvnz51OpUiWGDBkC5NdIr169mqCgIGrUqIGiKOzYsYOUlBTatWsH5L8ezz33HFOmTOGff/6hVatWWFtbExcXx5EjR/Dy8tLv70F69uzJrFmzePfdd8nJyaFv374G24t6LEdHR4YNG8Y333zD1KlT6datGzdv3iQ4OPieZSx38/X1Zd++fQZtkZGRfPLJJ3Tr1o2aNWtibm5OWFgYZ86cYcSIEfp+Xl5ebN26lW3btlG9enUsLS3x9vbmpZdeYsOGDYwYMYJ33nlHPxvJ3bX0Bc6cOUNmZiZ+fn5FirkkSbItxH0U1GabV66IrV99qnw6AotqD65ZE/+Nkplj8NjMxQkszPjf//6Hkp2DLjN/1EOVq6VH/z4EPt2dPX3GkpqUTEZGBmlpqahz80ezVRo1+09H0MXPH3vb29fu7lkRCvsaWwhRvMzNzRk+fDhffvmlwc2OiqJw4cKFez6vS5cuDzXK+yh8fX1Zvnw5wcHBTJ48GZ1Oh4+PD9988w0dO3Y06v/pp5+yceNGfXLr5+fH1KlT9WUUNWvWxMHBgaVLlxIbG4u5uTkeHh7MmjXLIBH++OOPadKkCWvXrmXNmjXodDrc3Nxo3rw5jRs3LnL89vb2BAUFsWXLFpo3b17orCFFPdbbb7+NjY0Nq1evZuPGjXh6ejJ9+nS+//77IsXSq1cvNmzYQEREhH6/rq6uuLu7s3r1am7evAnk14lPnDjRYLaQMWPGEBcXx/vvv096erp+nm1XV1dWrVrFjBkzmDZtGtbW1gQFBfHBBx8UujT777//jrOzs0EpjamoFOWO4SNhEoqikJSUhJOTkyywYWKKopCXl4eZmRmJP/9B/NLN1N40G7WtzMNcmjJPXiD++61kZ+dgaWmB2sqSW8+1ZtE3X6NodeTdSgZFx8u9+tO8XkM0zvb8OXYW8fHxAOTk5LLaIoZaLfJ/ySuKwqB+A+jYtTMqlQpFUZg+fbrBCnX+/v4mnx6qrJLfUWWHqa9FVlYWly5dwsPD4z/NT3/q1CmWLFlSpJvXunTpQr9+/crcz56iKGi1Wv3Uf8JQr169aN68ucFc6SXl7muh1Wrp3LkzvXr1YuzYsY+0z+L6WQep2RbCiHIjgUsDPiDqzXlY1q2OUkJTTYl7M6tkWJepy8rh7NbdQP5ItZmLIzXc3WnmXR8UhdQdh6hgaYOiyx87MLO0IMtSo7+BSaVSERF5Sv+GuHfvXoNEG6BVq1YlfVpCiP9Xv359PvjgAwICAoxmrSjQoEED3n77bfr37y/J7GNo/PjxhIaG6kexS9OmTZvIyMjg1VdfLfVjF0bKSIS4Q9LaXUSPX4TGyZ5aa6fj0FkSMFMwd3PGolYVss/cnvbLKuwc1hW0ZFppUGnUtOgcgGWtyqSHnybjyBkqWNthrkAeEFPBAierikRGRpKcnEyVKlVISEjg8uXL7Nmzh4MHDxocr1KlSiX+FbUQwpCLiwuDBw+mb9++nDx5koSEBLRaLXZ2dtSrV6/I9cGibHrqqaeYMGECUVFR+qXpS4tOp2POnDlGK1iaiiTbQnDHvNkujjgPDqLyBy+jsb//YguPMyU3j4xj58g8eoa8+BQUnQ6NnTWWXjWwbdMQszIw24pt24ak3pFsm2Xl0epUCjEVLIh3NMfyUhypCUfIOBwJOgWVWk31ylW5HHeD666WkJqKoihcv36d69evExkZec/FDXr16iUjZ0KYiJWVlXyz9IR64YUXTHLc/v37m+S49yLJtijXdDm5xC34hYxj56j104fYB7XEPqglT+qtDIqikLb3OKk7D6PLMLxBUJuQSs7VWFL/OIJ149o49Q8w6QcO6+ZemO0+AjfypwSzsLBArShUic+mSnw2ObF/kdmsGSoLc8xcHNHl5lHdzZmEOi6k5kSTcCXBYH+FzSsL0K1bN3mjF0IIUWKkZluUWxlHz3I+8G1iPl+Ndf1aoNWhKMoTOwWcoigk/bKb5I37jRJtw46QeeICcQt+Ie//56U2BZVajd3znTCrmj+DyN1L/6alpXLr1v8vKqFWo7a0wLp+LbrPm0LLli31N0sWuPv5Go2GAQMG0KdPnxI7ByGEEEJGtkW5dHPGj8TOX4d1I0/q7lqAdaPawO3ZSJ5EqTsOkX7w3yL3z4tP4da3m3Ab+xxqS9MsY662scJ1dH+Sf/0TDp/G0tLSYMq+yMgzuLtnUNW9Bs6BLbEIbMre/X/q55C9ceMGMTExaLVa/ZLLTk5OtG/fHn9/f/0UXUIIIURJkWRblCt31mZX/vAlXN/oh8pM8+AnljJdTm7+wi1K/sItaqvCSyCKSpucRsqOw0btll41sGlWF7WNFdnnokg/fBolO1e/PS8mkfT9Edh3avGfjv9fqK0sqDA4CMceran0nTX/bPoDizwdANkWas5p44hJTcHurxskb1uFTpe/zcrKCg8PD2rVqoW/vz9du3bF2toae3v7ItVn63Q6/vnnH8LDw4mLiyM3NxdbW1vq1q1L+/btS2wlOyGEEE8WSbZFuaBNTuPGR9+jcbSlyvRXcXn9GVOHZERRFLJPXyHtr5NkRV4B3e26ccva1bBt1xDrRrUf6cNB+sF/DfaHCiq81B2bJreXsbVuXBv7oBbEff0rebGJ+va0Ayex69jM5CtmahztaPvuq5ypoCYsPNxoe2JiYiHPyl8pcsiQIZiZFf3X3eHDhwkNDTUqRQE4d+4c27dvp1mzZgwePLjM3O0uhBCibJJkWzzxkrcdJHr81+hSM6jy8XBTh1OovKRUEr7fRs612EK3Z1+IJvtCNGYujlQc9jTmVSoW2q8wiqKQHn7KoM3Wt75Bol1A42iH83OBxAVv0LdpE1LJPh+NlVeNIh+zpKhUKl5++WWsra3Zs2fPA/s3b96cV1555aES7W3btrFx48b79lEUhaNHj3L58mXGjh2rL1ERQjwcRVHIuRBNxrFzaBNSULQ61LbWWHnXwLq5F2oL05SwCVGcJNkWTywlN4+rr39B8q9/Yt+lFdXmjMaietmbtzUvMZW4r9ajTUp7cN9bycR9tR6XN/sV+VyU7Fyjfdu0rp+/TVHIPnMNXXomlt7uaOyssfCogpmrE3lxSbePezMeykCyDfnLqg8ePJjWrVuze/dujhw5YlBnr1KpaNKkCQEBAfj4+DzUlH779+9/YKJ9p4SEBL766iumTJmCjc2TO1WkECUh48R5UraHkRdj/K1U5vFzJG/6C9t2DXHo4ovKXNIV8fiSn17xxCmYtk9lboaZmzM1vh2PU/+AMjmPsqLVEr90c5ES7QK6rBzil22h0oQhqK0LX3nN4Bg5xjd8mlV0BECblEberaT8fyemoLGz1te035ls6+6o4y4rPDw88PDwYNCgQURHR5OVlYWlpSVVqlTB3t7+ofeXnZ3NL7/8YtReo0YNWrdujb29PefPnyc8PNzgJs24uDh27Nghs5oI8RBSfgsn5X+H7ttHl5lN6u9HyL4QjctrvYv0++5xtHjxYurUqUNQUFCx7zsqKopOnToxc+ZM+vXrV+z7F0UjybZ4ouRciyF63EKcBgTg/Fwnqs0aaeqQ7ivzn0vkXjesC9Y42+HQuRVWjWqjUqvIirxK6s7D5N68PW+0NimN9PBT2Ac0e+AxVFbGX8PmRsWhqVfTIMlXW+W/kSk6HbnXbxn0L8tvcjY2NtStW/c/7yc8PJysrCyDtoEDBxIYGKj/oObn50evXr1YsGABUVFR+n779++nZ8+eD1WuIkR5lfbniQcm2nfKuXST+B+24TLyGZPfO1ISlixZQteuXUsk2XZzc2Pt2rW4u7sX+75F0T15P7WiXFJ0Om4t3czZdm+QdfoKZi5Opg6pSNL3Rxg8NqvoQKV3B2PbpiEaO2vUNlbYNPfCbdxzWNSsZPjcv04WafEdtYU55pUNZ85I+//japNuzymucbIDIPPkRbTJ6Qb97z72k+ivv/4yeNywYUM6depk9I2Ig4MDr7zyikFbamoqJ0+eLPEYhXjcaVMzSN78l1G7masT9p1b4tirHVY+xolh9rmo/NViRZFotVpycnKwsLCgadOmxTZ7UlZW1hO76FtJkmEY8djLi0vi8oufkhF+iorDnqbyh6+gcSj79bPa1Ayyz0cbtDl080NtawWAkqdFm5aRv0EB26eakrV0s75vTlQcmScvYFH1/2u37/gFqP9l+P9/W/rUJPvidf32jL8jiTc3Q+1gA2o1GhsrcmMSyblyk8RfdqEULHqjKJhVqYiiU8i5GnOPY2BwrDv7FPxbuW+fwrcpikJOagpZ9klG+yvs+Xefc9GOcfu5l46cJE97u+SmpWNV0sNuz0uusjDHsm51NPY2VK9eHQ8PDy5duqTfHhUVRbNmD/6mQYjyLCP8FEqu1qDN8Rl/7Do01X+wtQ9sTs61GG59uxldWqa+X9r+CGx865VYSWBwcDALFy4kNDSUr7/+mgMHDqBSqejYsSNTpkwxSFh1Oh3Lli1jw4YNREVFYW9vT/v27Rk3bhyVK1fW9zt16hQLFiwgIiKC1NRUnJycqF+/Ph9//DGVK1fG29sbgNDQUEJDQwHw9fVl5cqVQH6ZWnBwMHv27CEhIQE3Nzf69evHyJEj9d+kFZSKvPfee+Tm5rJ+/Xpu3rzJ4sWL8fT0LLSM5O+//yY4OJiIiAh0Oh316tVj5MiRBAQE6PuEhIQwefJkli1bxtatW9m9ezeJiYlERERgaWn8bWd4eDgvvvgic+bMITIyko0bN5Keno6fnx+ffvopVlZWzJ49mx07dgAQGBjI+++/j62trX4fiqKwevVq1q1bx6VLl7C0tKRNmzaMHz+eGjVu3zf0119/sWrVKv79918SExOpXLkyfn5+jBs3zuA6FVzTLVu28M0337B3714sLS3p0KEDU6ZMeaSSw0chybZ4bBXMma1xtse8SkU8t8zGrm0jU4dVZHeOKhewbppfDqHLySXzyBkUrU6/TVEUlOxcdBm3Sx0yj51Dl5LxwGOp7azRZWWTkZJGYmoKuXm58G8kGrUat7q1sK/iRsr2MHJvGk91Z1OjErn3mCWlJCmKgi4tjbxcSrzeXqfTkZebY9Dm6uCEknc7KVDytOTFJemXsK9UqZJBsn13CYoQwpCiKAYfYCH/d15h5XAWNSrhNCCAhOXb9W25UXHkRt8q8RvdR48eTbdu3Rg0aBDnz59nwYIFXLhwgXXr1mFunl+WN23aNNauXcuQIUPo2LEj169fZ8GCBRw6dIiQkBAqVKhARkYGr7zyCtWrV+fDDz/ExcWFuLg4wsPDSU/P//Zw7dq1vPTSS/j5+fHGG28AYGeX/y1jXFwczz77LGq1mjfffBN3d3eOHTvGN998Q3R0NDNnzjSIe+XKldSqVYuJEydiZ2dHzZo1Cz2/Q4cOMWzYMLy8vJgxYwYWFhasWbOGkSNHMm/ePHr06GHQf8qUKQQEBPD555+TmZn5wHK5+fPn4+fnx8yZM4mOjmb27NmMGzcOMzMzvL29mTdvHqdOnWL+/PnY2try/vvv65/74YcfEhoaytChQ3nvvfdITk5m0aJFDBo0iI0bN+Likr+i8NWrV2nWrBnPPvss9vb2REVF8cMPPzBkyBA2b96sv04FxowZQ48ePRgwYABnz55l7ty5AEavYUmRZFs8ljKOnyN6XDDV5o7GppkXNb+fbOqQHp7urq/i1CrQ/H9lV67WINGG/ITTaI7tu/dxD6ejLnMk+zqOZ27XGSt5eShaHVeio3BxcaFG1arYWFkbPM+ihhuW3mVjFpIiuzMxVxU0qYy33dFfA5hbWOZ/CPn/PjeSE6havZq+j8rSsBznzpptAGtrw9dOCGFIycwmLz7FoM3O/94DJNaNPFHb2+Qv8PX/cq/FlHiy3blzZyZMmACAv78/FStW5L333mP79u307t2bCxcu6BPtqVOnotFoUKlU1K9fn2effZYVK1YwduxYLl68SFJSEjNmzDCox74zmW3atClqtZoKFSrQtGlTgziCg4NJTk5m69atVK1aFYA2bdroR4hfffVV6tS5PYWrpaUly5YtM0g07/49BTB37lwcHBxYuXKlflS5Y8eO9OnTh9mzZ9O9e3eDAY42bdrw8ccfF/n18/LyMkhiL168yIoVKxg6dCgTJ04EoF27dhw/fpzNmzfrk+3jx4+zbt06Jk2aZFCq17JlS7p27coPP/zA+PHjARg8eLB+u6IoNG3alBYtWtC5c2f27dtHp06dDGIaMGAAw4fnT/3btm1brly5woYNG/jss89KZfIESbbFY0WXmU3M7J+IWxiCVYNaqB7jOVjVdnclZ7r8+WYt61RHbWuFVQMPdCn/XzutUpGXkAI6HZqC56lUWNatjkWtKvrHBQr+qQAbtmxi15/7wByq1bSj7o0sVOTXuatUalBBQnY6iVcu4FW7Dq4u+W9klp5VcH6hC2pLi9s7vDOPNUpgjfsUbFMV8nzufv5dfRRFITc5GVsnp9s3Ranuem5hx3hEdf2ace7cOf3jsNjL+L84oND9XrhwwehN7F6jSEKIfIXNamRe1eWe/VVqNeZVKpJ9R7Kty8q5Z//i0qtXL4PH3bt3Z9KkSYSHh9O7d2/C/39Rrb59+xr0a9y4MbVr1+bgwYOMHTuWmjVr4ujoyJw5c4iLi6NVq1YGyfGD7NmzBz8/P9zc3AymN33qqaeYPXs2hw4dMthfYGCg0Yju3TIyMjhx4gSDBw82KN/QaDT07t2bOXPmcPHiRWrXrq3f1qVLlyLHDPmJ+50K9nVniUpB+++//056ejq2trbs3r0blUpF7969Dc7XxcUFHx8fDh26fVNtfHw8CxYsYO/evcTGxupXDob83893J9uBgYEGj729vcnOziY+Pl4/Wl6SJNkWj43MU5e48uIMcqPjqDx1KK6j+z/Wc69qKjjkT7F3K1nflrLzb1xqV8uffs/ZHpxv15Ol/XUStd3tWnS1lQU2vvXuu+jDhg0b2HMkHLVNfn3dDXdLspysqBmVjkPBlIBqtX7E/Oyli5i5OOLRLwj7js1NupS9oiiozM3y/5TCyIO/v79Bsn3+/HlCQ0Pp06cP6jtmQLhx4wbff/+9wXOdnZ1p0KBBiccoxOOssN9VeXFJWLgXfgO2oijkxRnOwa2yLPkBFldXw5FzMzMznJycSEpKAtD/fXc/yJ/94/r1/Ptj7O3tWblyJYsXL2b+/PkkJyfj6urKwIEDGTVq1AMT4/j4eHbv3n3P3y13r5pbWDx3S0lJQVGUe8Z+5/k9zH7v5OjoaPC44Dzv1Z6dnY2trS3x8fEoikLbtm0L3W9BzbZOp2PYsGHExsbyxhtv4OXlhbW1NXl5eQwePNhgatYCTk5OBo8tLCyA0iv/e3wzlUJkZGSwc+dOdu3aRWRkJDdu3MDCwgIfHx8GDRpEz549TR2ieAQFtdnmbhWw8nGn1pppWNWtbuqw/jOVSoVtu0Ykb9yvb8s+e42E5dtw7NkOM1cnIH+p+ZQdh8k4dNrg+Q9KtM+fP6+/EeVOedUqoDRtQML5aDLOXMECDRoLc3LNVCTam3PYIoZP2zUwaaJtCi1atGD9+vWkpt6upf/tt984dOgQLVu2xMHBgfPnzxMREWF0N36HDh0MEnIhhDGVjSUaJzuDKUfTD/xzz2Q7+/QVtImGaxDcbyS8uMTFxVGp0u2Y8vLySEpK0idsBX/HxcUZJaKxsbE4OzvrH3t7ezN//nwUReHMmTOEhISwaNEirKysGDFixH3jcHZ2xtvbm3feeafQ7XevXFuUQQkHBwfUajVxcXFG22JjY/XHfdj9FgdnZ2dUKhU//fSTPhm+U0Hb2bNniYyMZNasWfpvFxRF4eLFi6US56N4opLtv//+mwkTJuDk5ESbNm3o0qUL8fHx7Ny5k3fffZdjx47xwQcfmDpM8RBS/hfOzc9W4rnhU8xcnai16kNTh1SsbH3rkbrzMLqM25/EMyMukhlxEfMqFVGZaciJjjOqzVaZqbFr3+S++/7jjz8MHqvVagYMGECHDh3IOxtFXkIK6ZkZbL/0DwePHL7dMSuT8PBwo68Cn3Tm5uY8//zzLFmyxCCZTkxMZOfOnfd8Xo0aNYy+shRCGFOpVNj61Sflt9vlAOmHTmFZpxo2LX0M+ubFJZG4YY9Bm1klZyxqVqakbd68mYYNG+ofb9++nby8PHx9fQFo3bo1AJs2baJ+/fr6fhEREVy4cIGRI43Xd1CpVPj4+DBlyhRCQ0P599/bN4paWFgUOsIaEBDA3r17cXd3NxoVflQ2NjY0adKEnTt3MnHiRKys8me/0ul0bNq0icqVK+Ph4VEsx3pYAQEBfPvtt8TExBjdpHmnguT/7oS8sEXJyoonKtl2c3Njzpw5dOvWzeDrmXHjxjFw4EBWrVrFM888Q+PGjU0YpSiKvLgkoicvITlkL/ZBLQ1mhXiSqG2sqPBiN259u8kooc69YTwzSAGnZwMxc7n3L9/k5GSOHz9u0NarVy86deqUv0R7cv5okZ29PS8OH0ZyZjqnTp3S9927d2+5S7YBmjVrxvPPP89PP/1UpLlkq1WrxpgxYwodhRFCGLNpXZ+UnYdv/75TIOGnnaQdOIlN07qoLC3IPhdF5vFzRjeJ2/k3LpVR1p07d6LRaGjXrh3nzp1jwYIF+Pj40L17dwA8PT157rnnWLVqFZD/zVbBbCRVqlTh5ZdfBmD37t2sXr2aoKAgatSogaIo7Nixg5SUFNq1a6c/npeXF4cOHWLXrl24urpia2uLp6cnb731FgcOHGDQoEEMHToUDw8PcnJyiIqKYt++fUyfPt1gmsGiGjduHMOGDePFF19k2LBhmJubs3r1as6dO8e8efNMttpyixYteO6555gyZQr//PMPrVq1wtramri4OI4cOYKXlxdDhgzB09MTd3d35s6di6IoODo6smvXLg4cOGCSuIviiUq2fXx88PHxMWp3cXHhueeeY968eRw+fFiS7TIuZedhro3Kn5anxuL3cHq2Y5lcar24WHm74/JqT+J//B/Kg5ZFV6twHhiIrW+9+3a7cOGCwQ0j5ubm+uRZl5qhfxPTONmjVqvp0qWLQbJ948YNUlNTS20O0rKkffv2uLq6EhoayuXLlwvtY2lpSdu2bXnmmWdkFhIhHoKZkz0O3fxI2RZm0J5z6SY5l27e83kW7m7Yti6d+yKCg4MJDg5mzZo1qFQqAgMDmTJlisGH6mnTplGjRg3Wr1/Pzz//jJ2dHe3bt+fdd9/Vl2HUrFkTBwcHli5dSmxsLObm5nh4eBiUPwBMnTqV6dOnM27cODIzM/XzbLu5ubF+/Xq+/vprli1bRkxMDLa2tlSrVo327dvj4ODwSOfn6+vL8uXLCQ4OZvLkyeh0Onx8fPjmm29MPsjy8ccf06RJE9auXcuaNWvQ6XS4ubnRvHlzfe5mbm7O4sWLmTFjBh9++CFmZma0adOGpUuXlsgqnMVBpZSTpYCWLVvG559/zuTJk/WfOgtjipdDURSSk5NxdHR8opPKolCpVGRGXCA2eD1VZ4zQ1y2XFlNei7zEVNL3HSf90GmUTMMbPFTmZli38MbuqaZGq0EW5s8//9SPugDUqlWLyZPzp0fMvX5Lv8CNZZ3qmFeuQF5eHm+++abBPh511KS4lIX/F1euXCE8PJy4uDhyc3OxtbWlbt26tG7dWv/1a3lQFq6FyGfqa5GVlcXly5epVavWI/8fUBSF5NB9Rivo3otZlYq4vN6nxBcrCw4OZtGiRRw8eNCobvletFotGk35ur+lrCrua1HUn/Wi/D98oka270Wr1fLrr7+iUqnueZdrgeTkZJMtRZqcnPzgTk8QtVqNra0tGrWa+B+2kRyyF89fZ2LduDY1v5tISkoK2rvuii4tJrkWKqBDI6zb1CP30nWUlAwURUFtZ42ZRxVU1pakAxThNcnMzCQn5/YUWbdu3SIxMRGVSoVOl0tuViaYacg1U1AlJZGcnGzQH/JvOL77rnRTMOX/C0dHx0KnvcrKyiqXi9iUt99RZZmprkVOTg46nQ6tVotW++jlfXa926F2cyJtx2G091iYS2WmwbqFNw692oK15X86XlEUvPc/7LmVdFyi6IrzWmi1WnQ6HSkpKff9fV+UD2blItlesGABZ8+epX///nh5ed23b3HdhPAwTD1SYUrZ56O5/PYCMsL+pcJL3VFy8uD/Z8EwRQlDmbkWbv/tjntPT0+DrzzT0tJISEjIn+/UyQmlaqXbc1cDYWFhBv3Nzc1xd3d/4EphJanMXAsh16IMMfW1yMrKIiEhAY1G859HER38m2DfpiFZJy+Scewc2sRUFJ0Oja0Vlt7u2LSqp1+xtTQUvJ4Pc24ysl12FPe10Gg0qNVqHBwc/vM3mWUy2fbz83uoEbUff/wRPz+/QretXbuWJUuWUL9+faZOnfrAfZnyjUSlUpWrN7JbSzdz44OlmFdzxXPTLOz8y04t/eN+LWrXro2rqyu3bt3St/3888+8++67WFtbo7rjF9KNGzf43//+Z3C+LVu2fOAcsKXlcb8WTxK5FmWHqa5FwTGL6/gqMzNsmnlh0+z+A2Gl4a233uKtt94qcv87vwWX/xemVRLXojh/1stkst2zZ0/S09OL3P9eq/9s2LCBjz76CC8vL77//nuD1ZKE6RTMm61xtsdlRG8qTXwetU35qX8tDWq1mqeeeoqQkBB927Vr15g2bRpBQUHUr1+f7Oxsjhw5wt69e8nNNbwx8+6VvoQQQgjxaMpksl0cc2GvX7+eDz74gDp16rBixYoi3+wgSo4uM5uYL1aTdzOBGl+/i3P/AOgfYOqwnlgdOnRg7969xMffnkIwKSmJ9evX3/d5zZo1o1atWiUcnRBCCFE+PJFLnq1fv573338fT09PVqxYQYUKD569QZSs9IP/cLbDaG59HYpF7Womuwm1PLGysmLMmDEPVfvu4eHBK6+8Il+JCiGEEMXkiUu2f/nlF4NEu2LFiqYOqVxTFIXoSYu58PQEzCo4UHfvQiq9O0iSuVJSpUoVJk2aVKSRaj8/P8aOHYulpWXJByaEEEKUE2WyjORRHTx4kA8++ABFUWjZsiVr1qwx6lOvXr0yO+n5k6agNtusggNVZ4+i4qtPG8yAIUqHi4sLkyZN4vz58+zdu5d///2XjIz8qbacnJxo2bIlHTp0wM3NzcSRCiGEEE+eJyrZvnHjhr48Ye3atYX26du3ryTbJSzvVjLXpyzBqn4t3N4ZSKUJQ0wdUrmnUqmoW7cudevWBfKnSFKpVKjlw48QQghRop6oZLtfv37069fP1GGUW4qikBSyl+uTFoNOwb5LK1OHJO5B5oUVQgghSocMa4lioUvP4vKQ6Vx77XPs2jfB6+BinAd0NHVYQgghRLEJCQnB29ubkydPmjoU8Rh5oka2RekrqMtW2VhiVtGRmqs+wLFHG1OHJYQQQghRJsjItnhk2eejuNhrIik7DqFSqaixcKwk2kIIIYQQd5BkWzw0JU9L7Fe/cPap0eRev4XaztrUIQkhhBDF4sKFC4wbN462bdvSsGFDAgICmDBhAjk5Ofo+6enpTJs2jXbt2uHn58fo0aOJiYkx2M+2bdsYNmwY/v7+NG7cmO7duzNnzhz9bFAFJk2aRLNmzbhy5QqvvfYazZo1o0OHDsyaNcvgmAA3b97krbfeolmzZrRs2ZJ3332XiIgIvL29DVYMBjh58iQjR47E19eXRo0a0adPH7Zt21bMr5YoCikjEQ8l51oMV16cQebJi7iM6kPlyS/IUutCCFHO5d1KJufKTRStztShoNKosahZGTMXx4d+bmRkJIMHD8bZ2Zm33nqLmjVrEhcXx65duwwS3/fff58OHTrw+eefExsbyxdffMH48eP58ccf9X0uX77MU089xUsvvYS1tTUXL17ku+++IyIiwqAfQG5uLqNGjWLAgAEMGzaMw4cP8/XXX2NnZ8fo0aMByMjI4MUXXyQ5OZn33nuPmjVr8ueffzJ27Fij8wgLC2P48OE0adKEadOmYW9vz7Zt2xg7dixZWVkymUQpk2RbFIl+zuyKjphXc6HanDexaeFt6rCEEEKUATlRsegys00dBgAKkBMd90jJ9syZMzEzM2P9+vUGq0/37t3boF/79u15//330Wq1aDQakpOT+eKLL4iLi8PV1RWAN95443ZMikLz5s2pXbs2L7zwApGRkfj4+Oi35+bmMmbMGLp37w5AmzZt+Oeff9iyZYs+2Q4NDeXKlSt89913PPXUUwD4+/uTmZlpNN3x9OnTqVu3LitWrMDMzEwfc2JiIvPmzaNPnz4y9WspkldaPFB62L+cCxhD9oVo1DZW1Fr1oSTaQggh9Cyqu6G2tkRlYW7yP2prSyyquT70OWRmZnL48GG6d+9ukGgXJjAw0OCxt3f+e+L169f1bdeuXePdd9+lXbt21KtXjwYNGvDCCy8AcPHiRYPnq1SqQvd55/4OHz6Mra2tPtEu0LNnT4PHV65c4eLFi/Tq1QuAvLw8/Z+nnnqKuLg4Ll26dN/zE8VLRrbFPWlTM7j5yXLil27BpqUP/P+CQUIIIcSdzFwcH2kkuSxJSUlBq9VSqVKlB/Z1cnIyeGxhYQFAVlYWkF/TPWTIECwtLXnnnXeoVasWVlZW3Lx5k9GjR+v7FbC2tsbS0tJon9nZt78tSEpKwsXFxSiWihUrGjy+desWALNnz2b27NmFxp+YmPjAcxTFR5JtUaj0w5FcHTaTvMQUqs58nYrDe6KShVCEEEI8oRwdHdFoNEY3Oj6KsLAwYmNjWblyJb6+vvr21NTUR96nk5MTERERRu0FyXUBZ2dnAF5//XU6d+5c6L48PDweOQ7x8KSMRBgoWO7evJIz1k3r4P3XN7i8/owk2kIIIZ5oVlZWtGrViv/9738kJCT8p32pVCrg9oh3gZ9//vmR99mqVSvS09PZu3evQfvWrVsNHnt6elKrVi0iIyNp1KhRoX/s7OweOQ7x8CTZFsDtpdbPdx6LNjUDC/dK1Fr5ARY1K5s6NCGEEKJUTJ48mdzcXAYOHMi6desICwtj69atvPvuu6SlpRV5P82aNcPR0ZGPPvqInTt3snv3bsaNG8eZM2ceOba+fftSs2ZNJkyYwOrVq/nrr7+YOXMm+/fvBzC44XH69OkcPHiQV199lS1btnD48GF+//13lixZwltvvfXIMYhHI8m2IPf6La688AlXh8/GorobSm6eqUMSQgghSp2Pjw/r16+nQYMGzJ07l+HDhzNnzhwsLCyMRqnvx9nZmSVLlmBtbc348eOZMmUKNjY2zJ8//5Fjs7GxYcWKFfj6+vLFF18wZswYbty4wUcffQSAvb29vm/r1q355ZdfsLe357PPPuOVV15h2rRpHDhwgLZt2z5yDOLRqBRF7nozNUVRSEpKwsnJSf/VU2lJCt1H1DtfobaxpNoXb+LYs3z/JzTltRCG5FqUHXItyg5TX4usrCwuXbqEh4cHVlble40FRVH0U/+Z8v/F4sWL+fLLL9mzZw+VK5fPb6NL4loU58+63CBZTunnzXZxxLG3P1U+eRUzJ/sHP1EIIYQQJrFq1Sogvy47NzeXsLAwVq5cSe/evcttov04kGS7nFHytNz65lfS9kdQ6+dp2LVvgl37JqYOSwghhBAPYGVlxYoVK4iKiiI3N5cqVarw2muvMWrUKFOHJu5Dku1yJPOfi0S99SWZERdxGfkMSm4eKgtzU4clhBBCiCIYMGAAAwYMMHUY4iFJsl1OxM5fy82Zq7CsU506/5uTv0iNEEIIIYQoUZJsP+EKarPVDrZUencQrmMHopbRbCGEEEKIUiHJ9hNKm5bJzU9XoFKrqfrZCFxe7WnqkIQQQgghyh2ZZ/sJlPrHEc62HUnCqt+wcHczdThCCCGEEOWWjGw/QRStlqi3FpC45nfsOjTFc9MsLGtVMXVYQgghhBDlliTbT4CCdYlUGg0aJzuqf/UOzs93lsUnhBBCCCFMTJLtx1zujXiiJ3yNfedWVHyxG1VnjDB1SEIIIYQQ4v9JzfZjSlEU4n/8H2fajCTjcCRmLo6mDkkIIYQQD2nx4sX8/vvvJbLvqKgovL29CQkJKZH93ykmJobg4GBOnz5d4sd6FCEhIXh7exMVFVXqx5Zk+zGUl5jKxT6TiX7nKxyfboPXwcU49mhj6rCEEEII8ZCWLFlSYsm2m5sba9euJSAgoET2f6fY2FgWLlxYZpNtU5IyksdIwZzZGgcbzFyc8Fj/KfaBzU0dlhBCCCHKEK1Wi1arxcLCgqZNmxbbfrOysrC0tCyWe8IyMzOxtrYuhqjKPhnZfkxknbrMha7vkn7oNCqNhprLJkmiLYQQQhST4OBgvL29OXXqFKNHj6Z58+a0aNGC9957j4SEBIO+Op2OpUuX0rNnTxo1akSbNm2YMGECN2/eNOh36tQpXn/9ddq0aUPDhg3x9/dnxIgR+n7e3t5kZGQQGhqKt7c33t7eDB06VP/8uLg4PvzwQ5566ikaNmxIYGAgCxcuJC8vT9+noFTku+++4+uvvyYwMJBGjRoRFhZ2zzKSv//+m5deeolmzZrRpEkTBg0axJ49ewz6FJRd7N+/n8mTJ9O6dWuaNGlCTk6O0WsXHh6uX0Z+8uTJ+nMJDg4GYNKkSTRr1owzZ84wbNgwmjVrxssvvwxATk4OX3/9Nd26daNhw4a0bt2ayZMnG73mgYGBvP766+zbt4++ffvSuHFjunXrxvr1643iOX78OIMGDaJRo0b4+/szd+5cg9estMnIdhmny84ldv5a4uavw8KzKipzjalDEkIIIZ5Yo0ePplu3bgwaNIjz58+zYMECLly4wLp16zA3z1+Bedq0aaxdu5YhQ4bQsWNHrl+/zoIFCzh06BAhISFUqFCBjIwMXnnlFapXr86HH36Ii4sLcXFxhIeHk56eDsDatWt56aWX8PPz44033gDAzs4OyE+0n332WdRqNW+++Sbu7u4cO3aMb775hujoaGbOnGkQ98qVK6lVqxYTJ07Ezs6OmjVrFnp+hw4dYtiwYXh5eTFjxgwsLCxYs2YNI0eOZN68efTo0cOg/5QpUwgICODzzz8nMzMTMzPj1LFBgwbMnDmTyZMnM2rUKH3ZSuXKlfV9cnNzGTVqFIMGDeK1115Dq9Wi0+l44403OHLkCK+++irNmzcnOjqa4OBgIiIi2LBhA1ZWVvp9REZGMnv2bF577TVcXFz45ZdfmDp1Ku7u7jRvnj8Aef78eV5++WWqVavGrFmzsLKyYvXq1WzZsqXIPwPFTZLtMizrXBRXXppB9vko3MY+h9u451BbylLrQgghyp7cmwnkxhiORpo52WFRszK6rByyzlw1eo5NkzpA/vudLiPLYJuFeyXMnO3Ju5VMTnScwTaNnTWWtauhaLVk/nPJYJt5pQqYV67wyOfRuXNnJkyYAIC/vz8VK1bkvffeY/v27fTu3ZsLFy7oE+2pU6ei0WhQqVTUr1+fZ599lhUrVjB27FguXrxIUlISM2bMICgoSL//O5PZpk2bolarqVChglG5R3BwMMnJyWzdupWqVasC0KZNG6ysrJg9ezavvvoqderU0fe3tLRk2bJl+g8EQKE3A86dOxcHBwdWrlyJra0tAB07dqRPnz7Mnj2b7t27G5SJtGnTho8//vi+r5mdnR1169YFwN3dvdDSldzcXN5880369++vb9u6dSt//vknwcHBdOnSRd/u4+PDgAEDCAkJYciQIfr2xMRE1qxZo389WrVqRVhYGFu2bNEn24sWLUJRFFasWIGLiwsAAQEB9OxpupW0Jdkugwpqs81cHbGoWQn3pROwru9h6rCEEEKIe4pfvo3Yz1cbtDk92xH3JePJvX6L8x3fMnpO44RtAES9OY+MvyMNttVY/B7OAwNJ+nUf1yd8Y7DNrmNzPDd8ii4922i/bhOGUHnSC498Hr169TJ43L17dyZNmkR4eDi9e/cmPDwcgL59+xqeS+PG1K5dm4MHDzJ27Fhq1qyJo6Mjc+bMIS4ujlatWhkkxw+yZ88e/Pz8cHNzMyiBeOqpp5g9ezaHDh0y2F9gYKBBol2YjIwMTpw4weDBg/WJNoBGo6F3797MmTOHixcvUrt2bf22O5Pg/6pr164Gj3fv3o2DgwMdO3Y0OMd69erh6urKoUOHDJLtevXq6RNtyP+AUatWLa5fv65vCw8Pp02bNvpEu+D8evTowcKFC4vtXB6GJNtlhI2NDSqVitTdR7kx/Qc8fp6OeeUKeKyZZurQhBBCiAeq+HIPHLq3Nmgzc8oviTCv6kKd3V/d87nVF40rdGQbwKnPU9i0qmewTWOXf2Od2tbSaL/mlR59VBvA1dXV4LGZmRlOTk4kJSUB6P++ux/kz/5RkPjZ29uzcuVKFi9ezPz580lOTsbV1ZWBAwcyatSoBybG8fHx7N69mwYNGhS6PTEx8b5xFyYlJQVFUe4Z+53n9zD7LQpra2t9iUyB+Ph4UlJSaNiwYaHPufscnZycjPpYWFiQlXX7ZycpKckg0S5QWFtpkWS7jNBk5nDt3a9JXL0T2/aNUUxYyC+EEEI8LPPK9y7fUFtZ6EtGCmNVt/o9t5m5ON5zLQmVRnPf/T6KuLg4KlWqpH+cl5dHUlKSPtEr+DsuLs4oEY2NjcXZ2Vn/2Nvbm/nz56MoCmfOnCEkJIRFixZhZWXFiBH3X4TO2dkZb29v3nnnnUK3FyTHBYoyQ4iDgwNqtZq4uDijbbGxsfrjPux+i6Kw/Tg7O+Pk5MTSpUsLfc6do+9F5eTkxK1bt4zaC2srLZJslwFp+05wbeQX6DJzqL7gbZxf6CJLrQshhBAmsHnzZoOR1u3bt5OXl4evry8ArVvnj95v2rSJ+vXr6/tFRERw4cIFRo4cabRPlUqFj48PU6ZMITQ0lH///Ve/7e6R2QIBAQHs3bsXd3d3HB2LZ+E6GxsbmjRpws6dO5k4caL+5kOdTsemTZuoXLkyHh6PVrZqYWEBUOi53EtAQABbt25Fp9PRpEmTRzru3fz8/Ni1axe3bt3Sj2ZrtVq2bdtWLPt/FJJslwFmro7Y+NWn2syRmFepaOpwhBBCiHJr586daDQa2rVrx7lz51iwYAE+Pj50794dAE9PT5577jlWrVoFQIcOHfSzkVSpUkU/pd3u3btZvXo1QUFB1KhRA0VR2LFjBykpKbRr105/PC8vLw4dOsSuXbtwdXXF1tYWT09P3nrrLQ4cOMCgQYMYOnQoHh4e5OTkEBUVxb59+5g+fbrBbB9FNW7cOIYNG8aLL77IsGHDMDc3Z/Xq1Zw7d4558+Y98mCfu7s7VlZWbN68mdq1a2NjY4Obm5vBtwR3e/rpp9m8eTMjRoxg6NChNG7cGHNzc27evEl4eDidOnWic+fODxXHqFGj2LVrFy+99BJvvvkmVlZW/PTTT2RmZj7SeRUHSbbLAKt6taj0zTjM7pjeRgghhBClLzg4mODgYNasWYNKpSIwMJApU6boR24hf+q/GjVqsH79en7++Wfs7Oxo37497777rr4Mo2bNmjg4OLB06VJiY2MxNzfHw8ODWbNmGdxcOXXqVKZPn864cePIzMzE19eXlStX4ubmxvr16/n6669ZtmwZMTEx2NraUq1aNdq3b4+Dg8MjnZ+vry/Lly8nODiYyZMno9Pp8PHx4ZtvvqFjx46P/LpZW1vz2WefsXDhQl599VVyc3MZPXo0Y8aMuedzNBoN33zzDT/++CMbN27k22+/RaPRULlyZVq1aoWXl9dDx+Hl5cUPP/zA7NmzmThxIo6OjvTu3ZuuXbvywQcfPPL5/RcqRVEUkxxZ6CmKoq8Hk/IR05JrUXbItSg75FqUHaa+FllZWVy6dAkPDw+D+Y+fBMHBwSxcuJCDBw9SocKDb7JUFAWtVquf+k+YTklci+L8WZcVJIUQQgghhCghkmwLIYQQQghRQiTZFkIIIUS5N2bMGM6cOVOkEhIhHoYk20IIIYQQQpQQSbaFEEIIIYQoIZJsCyGEEOKhyERm4klXnD/jkmwLIYQQokjMzc0ByMjIMHEkQpSsgp/xgp/5/0IWtRFCCCFEkWg0GpycnIiNjQXyl/8ur3NMyzzbZUdxXgtFUcjIyCA2NhYnJyc0Gs1/jk+SbSGEEEIUWcES4QUJd3mm0+lQq6VIoCwo7mvh5OSk/1n/ryTZFkIIIUSRqVQqqlSpgpubG7m5uaYOx2QURSElJQUHBwcZ2Tax4r4W5ubmxTKiXUCSbSGEEEI8NI1GU6wJyeNGURSysrKwsrKSZNvEyvq1kO8+hBBCCCGEKCGSbAshhBBCCFFCJNkWQgghhBCihEiyLYQQQgghRAmRZFsIIYQQQogSIsm2EEIIIYQQJUSlFOfi70IIIYQQQgg9GdkWQgghhBCihEiyLYQQQgghRAmRZFsIIYQQQogSIsm2EEIIIYQQJUSSbSGEEEIIIUqImakDEMa+/fZbwsLCuHDhAomJiVhbW1OtWjV69erFoEGDsLa2NnWI5UJGRgY7d+5k165dREZGcuPGDSwsLPDx8WHQoEH07NnT1CGWK4cPH2bXrl38888/nDp1irS0NPr27cusWbNMHdoTKyIiguDgYI4fP05ubi516tThpZdeolevXqYOrVzZuHEjR44c4Z9//uHs2bPk5uYyc+ZM+vXrZ+rQypWYmBi2b9/Ovn37uHjxIrdu3cLR0ZHmzZszfPhwmjRpYuoQy42UlBS++uorTp48SVRUFMnJyTg7O+Ph4cHzzz9Ply5dUKlUpg5TT6b+K4MCAwNxdnbGy8uLihUrkpGRwaFDhzh37hw+Pj78/PPPknCXgn379vHaa6/h5OREmzZtqFGjBvHx8ezcuZOUlBReeOEFPvjgA1OHWW5MmjSJ0NBQrK2tqVKlChcvXpRkuwSFh4fz6quvYm5uztNPP429vT07duwgKiqKsWPHMnLkSFOHWG4EBgYSHR2Ns7MzNjY2REdHS7JtAnPmzOG7777D3d2dVq1aUbFiRa5cucLvv/+OoijMnTuXHj16mDrMcuHKlSv06dOHJk2a4O7ujpOTE/Hx8ezevZv4+HgGDhzIJ598Yuowb1NEmZOVlVVo+/jx4xUvLy9l1apVpRxR+XT69Gll06ZNSk5OjkF7XFyc0rFjR8XLy0s5ceKEiaIrfyIiIpSzZ88qeXl5yrFjxxQvLy9l4sSJpg7riZSbm6sEBQUpDRs2VP799199e2pqqvL0008r9evXVy5dumS6AMuZv/76S4mKilIURVGWLFmieHl5KRs2bDBxVOXPb7/9phw+fNio/fDhw0qDBg0UX19fJTs72wSRlT95eXlKbm6uUXtqaqrSo0cPxcvLSzl79qwJIiuc1GyXQZaWloW2d+3aFcj/RCdKno+PD7169cLc3Nyg3cXFheeeew7IL20QpaNRo0bUrVsXjUZj6lCeeGFhYVy9epWePXtSv359fbudnR1vvPEGeXl5hISEmDDC8qVt27ZUq1bN1GGUe126dKFly5ZG7S1btsTPz4+kpCTOnDljgsjKH41Gg5mZcSW0nZ0d/v7+QNnKlSTZfozs3bsXgLp165o4ElHwn1wSP/EkOnToEID+TetO7dq1M+gjhLj9nlBYAihKT3Z2NmFhYahUKurUqWPqcPTkp6IMW758OampqaSkpHD06FH++ecf/P396dOnj6lDK9e0Wi2//vorKpWKtm3bmjocIYrd5cuXAahZs6bRNkdHR5ydncvUqJEQpnT9+nUOHDiAq6srXl5epg6nXElJSWHFihXodDri4+PZt28fN27cYPTo0dSqVcvU4elJsl2G/fjjj0RHR+sf9+7dm2nTphmVNYjStWDBAs6ePUv//v3lF6t4IqWlpQFgb29f6HY7Oztu3rxZmiEJUSbl5uYyYcIEcnJyeO+99+TbzlKWkpLCwoUL9Y/Nzc2ZMGECw4YNM2FUxiTZLiEF9VtF9eOPP+Ln52fQtmvXLgDi4uIIDw/niy++YODAgSxbtozKlSsXZ7hPtOK4FgXWrl3LkiVLqF+/PlOnTi2mCMuP4rwWQghhSjqdjilTpnD48GEGDhwo3zqbQPXq1Tlz5gxarZYbN26wbds25s+fz7Fjx/jyyy/LTFlP2YjiCdSzZ0/S09OL3N/FxeWe21xdXenZsyfu7u48++yzzJo1iy+//LIYoiwfiutabNiwgY8++ggvLy++//57bG1tiyvEcqM4/1+IkmNnZwdAampqodvT0tLuOeotRHmgKArvv/8+mzZtonfv3kyfPt3UIZVrGo2G6tWrM2LECNRqNV988QXr1q1jyJAhpg4NkGS7xJTE/MuNGzfG0dFRbkx6SMVxLdavX88HH3xAnTp1WLFiBc7OzsUQWfkj85I/HgpqHa9cuULDhg0NtiUnJ5OYmEizZs1MEJkQpqfT6Zg6dSohISH07NmTWbNmoVbLfBNlhb+/P1988QWHDh0qM8m2/HQ8RtLT00lNTZWasFK2fv163n//fTw9PVmxYgUVKlQwdUhClKhWrVoBsH//fqNtf/31FwC+vr6lGpMQZcGdiXaPHj34/PPP5T25jImJiQHK1mxhkmyXMdHR0URFRRm15+bm8tlnn6HT6XjqqadMEFn59Msvvxgk2hUrVjR1SEKUuIIVU7ds2cLp06f17WlpaXz99deYmZnRt29fE0YoROm7M9Hu1q0bX3zxRZlK6MqT06dPF1rmlpSUxPz58wHKVK4ky7WXMb///jtjxoyhZcuW1KxZE2dnZ27dusXBgwe5ceMGHh4erFq1SmpZS8HBgwd55ZVXUBSF5557DldXV6M+9erVIygoyATRlT9///0369evByAhIYG9e/fi7u5OixYtAPD09GTEiBGmDPGJEhYWxvDhwzE3N6dnz57Y2dnpl2t/5513GDVqlKlDLDd++eUXjhw5AsDZs2f5999/ad68uX5qxqCgIPk9VAqCg4NZuHAhNjY2vPjii4XefBcUFES9evVMEF35MmPGDNavX4+fnx9Vq1bF2tqa69evs2fPHjIyMujatStffvllmSnvkZrtMqZ+/fq8+OKLHD58mJ07d5KamoqNjQ21a9fm+eef5/nnn8fGxsbUYZYLN27coOCz6Nq1awvt07dvX3mTKyVXr14lNDTUqO3q1atAflmDJNvFp3Xr1qxevZqvvvqK7du3k5ubS506dXj77bfp3bu3qcMrV44cOWL0s3/06FGOHj0KQLVq1eT3UCkomIo3IyODxYsXF9qnWrVqkmyXgq5du5KWlsbx48c5fPgwWVlZODo60qJFC/r06cPTTz+NSqUydZh6MrIthBBCCCFECSkb4+tCCCGEEEI8gSTZFkIIIYQQooRIsi2EEEIIIUQJkWRbCCGEEEKIEiLJthBCCCGEECVEkm0hhBBCCCFKiCTbQgghhBBClBBJtoUQQgghhCghkmwLIYQQQghRQiTZFkKIUhYcHIy3tzfh4eGmDqVc+vjjj2ndujXp6emletxJkybh7e1NVFSUvi0sLAxvb2/27t1bqrEIIUqPJNtCCCFMaujQoXh7e5fKsS5dusTatWsZPnw4tra2D/38kJAQvL29CQkJKZZ4Wrduja+vL59//jlarbZY9imEKFsk2RZCiFL2/PPPs23bNho3bmzqUMqdhQsXYmFhweDBg00dit6wYcM4f/48W7ZsMXUoQogSIMm2EEKUsgoVKlC7dm2sra1NHUq5kpCQwI4dOwgKCnqkUe2S0r59eypUqMDPP/9s6lCEECVAkm0hxGMpPDwcb29vgoODOXr0KEOHDqVZs2a0bt2aadOmkZWVBcC+ffsYNGgQTZs2pW3btnzxxRdGX9enpqby7bff8sILL+Dv70/Dhg3x9/dnwoQJXL161ejYd9Zch4aG0q9fP5o0acLQoUOB22UROTk5LFiwgM6dO9OgQQOCg4ONnn+n9evXM2rUKAIDA2nUqBG+vr68+uqrhIWFFfoa5OXlsWTJEoKCgmjUqBGdO3dmyZIlXLt2DW9vbyZNmmT0nPj4eD777DM6d+5Mw4YN8fPzY8yYMZw9e7bIr/2Dzu/SpUt8/vnn9O3bFz8/Pxo1akTXrl2ZM2eOUZ20t7c3hw4d0v+74M/dsUdGRjJ27Fj99enYsSOffPIJiYmJRY5769at5OTk0K1bN6Nt2dnZfP/99/Tu3ZsWLVrQrFkzgoKCGDduHGfOnAHya64nT54MwOTJkw3ivdO5c+d4/fXXadasGS1atOC111677+trZmZGUFAQR48e5fLly0U+HyHE48HM1AEIIcR/ceLECb777jv8/f0ZNGgQ4eHhrFmzhrS0NDp16sSkSZMIDAykSZMm7Nmzh6VLl2JnZ8eoUaP0+7hw4QJfffUVfn5+dO7cGWtray5evMiWLVvYu3cvISEhVKtWzejYy5YtIzw8nMDAQNq2bYtGozHYPnr0aCIjI/H398fR0ZEaNWrc91w+/vhjfHx8aNOmDRUqVCAmJobff/+dV155heDgYIKCggz6T5kyhY0bN+Lu7s7zzz9PTk4OK1as4NixY4Xu/+rVqwwdOpSYmBjatWtHUFAQ8fHx7Nixg/3797N8+XKaNGlS1Jf+nue3c+dONmzYgJ+fH76+vuh0Ov11Onz4MKtWrcLc3Fy/j9DQUKKjoxk9erR+3/Xq1dP/+48//uCdd95Bo9EQGBhI5cqVuXDhAqtWrWL//v2sW7cOR0fHB8Z78OBBAJo2bWq0beLEiWzfvh1vb2/69euHhYUFN27cIDw8HH9/f7y9vQkKCiIlJYU//viDTp06GcRY4OzZswwePJiMjAw6d+5MrVq1iIiIYPDgwfj4+NwztqZNm7Ju3TrCwsKoVavWA89FCPEYUYQQ4jEUFhameHl5KV5eXsrOnTv17Tk5OUqvXr0Ub29vxc/PTzlx4oR+W2pqqtKmTRvF19dXyc3N1benpKQoiYmJRsc4ePCg4uPjo0ydOtWg/auvvlK8vLyUpk2bKpGRkUbPe+GFFxQvLy/lmWeeKXS/Bc8PCwszaL969apR35iYGMXf31/p0qWLQfuBAwcULy8vpV+/fkpmZqa+PTY2VmnXrp3i5eWlTJw40eA5zz33nFK/fn1l//79Bu0XL15UmjVrpvTs2dPo+IV50PndvHlTyc7ONmoPDg5WvLy8lI0bNxa6v8IkJCQozZs3V5566iklOjraYNvmzZsVLy8v5eOPPy5S3K1bt1bat29v1J6SkqJ4e3sr/fr1U/Ly8gy25eXlKcnJyfrHGzZsULy8vJQNGzYUeoyCc7n7HOfOnav/eb127ZrR806fPq14eXkpEyZMKNK5CCEeH1JGIoR4rPn6+hqM+Jqbm9O1a1cURaFjx44GNyHa2dkREBBAUlISN2/e1Lfb29vj5ORktO/WrVtTp04dDhw4UOixBw4ceN9ZNMaMGVPofu+lsJFvNzc3unbtyuXLl4mOjta3b9q0CYA33ngDKysrfburqysvvvii0X5OnTrFsWPH6NOnD+3atTPY5uHhwcCBAzl79uxDlZPc6/wqVaqEhYWFUfsLL7wA3B5hLoqNGzeSlpbGuHHjqFq1qsG2nj170qBBA7Zu3frA/eTk5JCQkICLi4vRNpVKhaIoWFhYGH07odFocHBwKFKs169f59ChQ3h7e9O7d2+Dba+//vp991MQ150/l0KIJ4OUkQghHmv169c3anNzcwMo9Gt+V1dXAGJiYqhevbq+PTw8nBUrVhAREUFiYiJ5eXn6bQUlD3d70GwiDzvbyLVr11iyZAlhYWHExMSQk5NjsD02NlZfzhIZGQlAs2bNjPZTWNvx48cBuHXrlr62+k4XL17U/+3l5VWkeO91foqisGHDBkJDQzl37hypqanodDqD8yiqgrhPnDhRaP18dnY2iYmJJCQkUKFChXvuJykpCaDQhNfOzo727dvz559/0rdvX7p27UrLli1p3LhxoR8a7qXgmrRo0cJom62tLT4+Pvr69LsVlME8TA26EOLxIMm2EOKxZmdnZ9RWMDpZ2DYzs/xfe3cm09u3b2fs2LHY2Njg7+9PtWrVsLa2RqVS6euJC1OxYsX7xlbYKOq9XLlyhWeffZa0tDT8/Pzo2LEjdnZ2qNVqDh06xKFDhwyS77S0NNRqNc7OzkWKKzk5GYA9e/awZ8+ee8aRmZlZ5JjvdX6ffvopq1atokqVKgQGBuLq6qpPWhcuXGj0IeJ+CuL+6aef7tvvQXEXjP4X3Dh7t6+++oolS5awZcsW5s+fD+QnyP3792fcuHFFmjkmNTUVuPfPxf1+HrKzswFkhhohnkCSbAshyr2FCxdiaWlJSEiI0c1p9ytRUKlU993vg7bfafny5SQnJ/PFF18YlSB8+OGHRiOidnZ26HQ6EhMTjUZ04+PjjfZf8MHjgw8+0Jdz/FeFnV98fDw//fQT3t7erF271iB5jIuLY+HChQ91jIK4N2/eXOQR98I4ODhgbm6uT97vZmNjw9ixYxk7dizXrl0jPDycn3/+mR9//JHs7Gw+/vjjBx7D3t4eKPz1h/xvFe6lYOS9sA9PQojHm9RsCyHKvatXr1K7dm2jRDsmJoZr166VWgwAgYGBBu06na7Q2UUKZrYobFthbQWzjNxrppLicu3aNRRFoW3btkajtH///Xehz1Gr89+KCltBsaBUpaCc5L+oW7cu0dHR5Obm3rdfjRo1GDBgAKtWrcLGxoZdu3YVKdaCa3LkyBGjbenp6foyk8JcunQJoNRW0hRClB5JtoUQ5V7VqlW5cuWKwchjdnY206ZNMyg3KUkFtdh3J2rfffddoTct9urVC4Cvv/5aX4IA+aPHP/74o1H/xo0b06RJE7Zu3cq2bduMtut0unvWEz+MgpsYjx07ZlCnffPmTebOnVvocwrqlQu7ObB///7Y2toyf/58zp07Z7Q9MzOzyIl4q1atyM7ONno9ExISiIiIMOqfnJxMbm4ulpaW+raCG0JjYmKM+letWpVWrVpx5swZ/Q2sBZYsWUJKSso9Yztx4oQ+RiHEk0XKSIQQ5d7QoUP55JNP6NOnD926dSMvL48DBw6gKAo+Pj73HZEsLoMGDSIkJIQxY8bQo0cPnJycOH78OKdOnSIgIMCozrpt27b06tWLzZs306tXLzp16kROTg7bt2+ncePG7N6926jMY+7cubz00kuMHTuWFStW0KBBAywtLbl+/TrHjx8nISGBkydP/qfzKJg95bfffqN///60bt2a+Ph49uzZQ+vWrQv9pqB169b89ttvvP3223To0AFLS0u8vLwICAigQoUKzJs3j7fffptnnnmG9u3b4+npSXZ2tn72j2bNmrFs2bIHxhYUFMSKFSs4cOAADRo00LfHxMTw7LPPUrduXerXr0+lSpVISkrijz/+IDc3l+HDh+v7Nm3aFCsrK1asWEFaWpq+hGfEiBFAfsnP4MGDmThxIr///ju1atXi5MmTRERE0LJly3uO7h84cABHR0dJtoV4AsnIthCi3Hv++eeZPn06Tk5OrFu3jt9//51WrVrx888/F3nat/+qfv36LFu2jAYNGrBjxw42bNiAg4MDa9asoWHDhoU+Z9asWbz99ttotVpWrlzJ3r17eemll3jjjTcA4xtEa9SoQWhoKKNGjSIjI4MNGzbw888/ExkZScuWLZk3b16xnMvMmTMZNmwYycnJrFq1ihMnTvDyyy/fc2R74MCBDB8+nPj4eBYvXszcuXP53//+p98eEBBAaGgoffv25dy5c6xcuZItW7YQHR1Nv379ePvtt4sUl6+vL56enkajztWqVdNPY3jgwAF++OEH9uzZo78mgwcP1vd1cnLiq6++ombNmqxZs4a5c+canJeXlxdr1qzRz26yatUqzMzMWLNmzT0XNYqOjubo0aP06dPHYBRdCPFkUCmKopg6CCGEEMXnl19+4f333+ejjz5iyJAhpg6nTFm7di0ffvgh69ate6jVMkvSggUL+O6779i2bRvu7u6mDkcIUcxkZFsIIR5TcXFx3D1eEhMTwzfffINGo6Fjx44miqzsGjBgALVr137oWVFKSkpKCitXrmTQoEGSaAvxhJKabSGEeEx9++237N27lxYtWlCxYkVu3LjB7t27SU9PZ8yYMVSpUsXUIZY5Go2GmTNn8ueff5Keno6tra1J44mOjuall14qtukYhRBlj5SRCCHEY2rfvn0sX76cyMhIUlJSsLCwwNvbmyFDhuhnKxFCCGFakmwLIYQQQghRQqRmWwghhBBCiBIiybYQQgghhBAlRJJtIYQQQgghSogk20IIIYQQQpQQSbaFEEIIIYQoIZJsCyGEEEIIUUIk2RZCCCGEEKKESLIthBBCCCFECfk/dgkVOuIyuw0AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"D_true = measured_divorce_marriage_inference.posterior.mean(dim=(\"chain\", \"draw\"))[\"D\"].values\n",
"M_true = measured_divorce_marriage_inference.posterior.mean(dim=(\"chain\", \"draw\"))[\"M\"].values\n",
"\n",
"# Observations\n",
"utils.plot_scatter(MARRIAGE, DIVORCE, color=\"k\", label=\"observed (std)\", zorder=100)\n",
"\n",
"# Posterior Means\n",
"utils.plot_scatter(M_true, D_true, color=\"C0\", label=\"posterior mean\", zorder=100)\n",
"\n",
"# Change from modeling measurement error\n",
"plot_change_xy(MARRIAGE, DIVORCE, M_true, D_true)\n",
"\n",
"# Add trendline\n",
"trend_slope = np.linalg.lstsq(M_true[:, None], D_true)[0]\n",
"xs = np.linspace(-3, 3, 10)\n",
"ys = xs * trend_slope\n",
"utils.plot_line(xs=xs, ys=ys, color=\"C0\", linestyle=\"--\", linewidth=1, label=\"posterior trend\")\n",
"\n",
"plt.xlabel(\"marriage rate (std)\")\n",
"plt.ylabel(\"divorce rate (std)\")\n",
"plt.legend();"
]
},
{
"cell_type": "markdown",
"id": "60a2e6ac-7c2f-433f-a2a0-37974c95ac52",
"metadata": {},
"source": [
"- When modeling measurement error for both Marriage and Divorce, we get estimates that move in multiple dimensions\n",
"- Shrinkage (thin pink line) is toward the posterior trend (dashed red line)\n",
" - the direction of movement is proporitonal to the uncertainty along the respective dimension\n",
" - the degree of the movement is inversely proportional to the \"quality\" (in terms of std dev) of the data points\n",
"- Again, we get this all for free by writing down joint distribution and leaning on the axioms of probability"
]
},
{
"cell_type": "markdown",
"id": "287f9897-f5e6-49f8-9348-1b2f656992e1",
"metadata": {},
"source": [
"## Compare causal effects for models that do and do not model measurement error"
]
},
{
"cell_type": "markdown",
"id": "e4e87b5c-654a-4d72-bd3a-6cc3f2d2adc2",
"metadata": {},
"source": [
"### Fit model that considers no measurement error"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3c1921ca-68ae-46c7-965f-78da14ab4817",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [sigma, alpha, beta_A, beta_M]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "723101abaf79481cb7619afa505a2c97",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.\n"
]
}
],
"source": [
"with pm.Model(coords=coords) as no_measurement_error_model:\n",
"\n",
" # Divorce Model\n",
" ## Priors\n",
" sigma = pm.Exponential(\"sigma\", 1)\n",
" alpha = pm.Normal(\"alpha\", 0, 0.2)\n",
" beta_A = pm.Normal(\"beta_A\", 0, 0.5)\n",
" beta_M = pm.Normal(\"beta_M\", 0, 0.5)\n",
"\n",
" # Likelihood\n",
" mu = alpha + beta_A * AGE + beta_M * MARRIAGE\n",
" pm.Normal(\"D\", mu, sigma, observed=DIVORCE)\n",
"\n",
" no_measurement_error_model = pm.sample(target_accept=0.95)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "ecd5d750-31c2-493a-8eef-fed7413e7cf8",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAH/CAYAAAAboY3xAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNX6wPHvbnpPgCQkoQZIaKETiiCKiIBSVUSvIChWQEW9Cpar+LNgAQvYu9iwIKBgQ0Wk995JCBBIz6Ynm+zO7484a5a0TbI1eT/Pc58rW2benezOmXfOOe/RKIqiIIQQQgghhBBCCJehdXQAQgghhBBCCCGEqBtJ5oUQQgghhBBCCBcjybwQQgghhBBCCOFiJJkXQgghhBBCCCFcjCTzQgghhBBCCCGEi5FkXgghhBBCCCGEcDGSzAshhBBCCCGEEC5GknkhhBBCCCGEEMLFSDIvhBBCCCGEEEK4GEnmhcWOHj3KnXfeSXx8PJ07dyY2NpZt27aZnt+2bRtTp06lT58+xMbGEhsby7lz5xwYsf2cO3eOuXPnMmjQINOxWbFihaPDEvU0derUSt9vIYSwJWljqydtLAwfPrxJ/c1d1bZt24iNjWXq1KmODkU0Ee6ODkDY1/Dhw0lOTq71dc8//zyTJk0y/TszM5Np06aRk5NDeHg40dHRaDQaAgICADhx4gS33XYbpaWltGrVitjYWAC8vLxs80GqcO7cOb7//nuioqLMYrc1vV7PLbfcwrlz52jWrBk9e/ZEq9XSvHnzOm/rrrvu4s8//wTg559/pn379tYOt9G7+Duu0Wjw9fUlICCA6OhoevTowdixY+nYsaMDo2w81N96Rd7e3rRs2ZIBAwYwffp0oqOjrba/devWceTIEUaMGEGXLl2stl0hrEHaWOtrSBs7depUtm/fDsDIkSNZsmRJta9dt24ds2bNMv37999/p1WrVg3/AMJlrFixgvnz55s95uHhQUBAAC1atKBr164MHjyYUaNG2fW311gtWbKEpUuXmj2m1WoJDAwkJiaGsWPHct1116HVWqfvOTc3l08++YSAgACmT59ulW06A0nmm6h27drRrFmzap+/uJFcs2YNOTk5XHHFFSxdurTSD+vbb7+ltLSUqVOn8vjjj9sk5tokJyezdOlS4uPj7Xqh8ffff3Pu3Dm6d+/Ol19+iaenZ722k5WVxd9//2369+rVq7nvvvusFWaTU/E7XlJSgk6nY/PmzWzevJm3336bq666igULFhASElLpvREREbRv3x4fHx97h+2yYmJi8Pf3ByA7O5tz586xfPlyVq1axdtvv82gQYOssp9169aZEgpJ5oWzkjbWeqzVxv7555/k5OQQFBRU5fOrV69uSJg217p1azw9PfHw8HB0KI2ep6cn3bt3B0BRFPLz8zl37hzHjx9n5cqVLFy4kKeeeoqrrrqq0nt9fHxo3749ERER9g7bZfn7+xMTEwNAWVkZ586dY/v27Wzfvp1169bx5ptv4u7e8JQ1NzeXpUuXEhUVJcm8cH133nlnnRrjhIQEAIYMGVLlHTL1+aFDh1onQBeifvaBAwfW+yIDyi/mysrKCAwMJDc3l9WrV3Pvvfei0WisFWqTUtV3PCsrix9++IG33nqLX375hRMnTvD111+ber9UL774oj1DbRQef/xxBgwYYPp3amoqDz74IDt27OCxxx7j119/tUpjLIQrkDbWeqzRxrZv357ExER++uknpkyZUun5vLw81q9fT5s2bUhOTsZgMDQoZlv45JNPHB1CkxEaGsqXX35p9pjBYGD//v28++67/PHHH9x7770sWLCg0vepR48e/Pzzz/YM1+V17dqVZcuWmT22cuVK5s+fz19//cWKFSuYPHmyg6JzfjJnXlikpKQEKB8+W5Xi4uIan2/Majs2llq1ahUA999/P0FBQZw7d45du3Y1OD7xr2bNmnHLLbfw3XffERoaSkJCAs8995yjw2qUwsPDTcc2OTmZQ4cOOTgiIZyXtLHVs0YbO3bsWDQaTbW97z///DMlJSWMHz++3vsQjZubmxu9e/fmrbfe4q677gLgmWee4fTp044NrJGaMGEC11xzDQC//vqrg6NxbpLMixotWbLErNDM/PnzTYV3pk6dyrx584iNjTXNSZs2bZrp+Xnz5pltS6fT8corr3DNNdfQq1cvevfuzeTJk/n6668xGo3VxrB//34eeughLrvsMrp3787gwYOZMmUK7733Hnl5eUD5vLhp06YBsH37dlMMsbGxDB8+vE6fef369dx2220MGDCA7t27M3z4cJ566ikuXLhg9roVK1YQGxtrmoO3dOnSeu8zISGBAwcO4OHhwdixY01Dt2ob9qfX601DxuPi4hg6dCj/+9//yMrKMv3tqpsjeOrUKebPn8/w4cPp3r07AwYM4I477mDLli11il1VWlrKsmXLuO666+jTpw+9evVi3LhxvPXWWxQVFVV6/blz58yO1apVq5g0aRI9e/YkPj6ee++9l7Nnz9YrltpERUXx1FNPAeXH+OK/bVUF8CZNmkRsbGyNd9yXLVtGbGwss2fPrvScpd8rVcViR1u3bmXmzJkMGDCgUlxFRUV88MEHTJ48mX79+tGzZ09GjhzJf//7X9PvsiJFUVizZg0zZswwxXLFFVfwzDPPkJ6eXuNxq6s2bdqYhrRePI/YYDCwbt065s+fz9VXX03fvn3p2bMno0eP5sUXXyQrK8vs9er35fvvvwfMz0VVfc/Lysr48ssvufHGG+nXrx9xcXGMGjWKV155hfz8fKt+TiHqS9pY+7SxrVq1onfv3uzevbvKdkW9mT5u3Lhqt5Gens6yZcu47bbbGD58OHFxcfTv35+bb76ZlStXVvmei9u5r7/+mmuvvZbevXub6h5ULJhWVlbGe++9x9ixY+nZs6fZ56yuAF594lIdPnyYu+66i/79+5u+L2obpx7rqtji/HrixAn++9//cumll5q+h3PmzGHv3r1Vvl79baxYsYLU1FTmz5/PkCFDiIuL4+qrr+bzzz+vVxyWuO++++jatSulpaV8+OGHZs9VVQDvzz//JDY21pScVsVgMDB48GBiY2M5evSo2XPZ2dm8+OKLXHXVVfTo0YP+/fszdepUVq9ejaIolbal/nbmzZtHYWEhixcvNl0nXlyYz5Lff0UpKSk888wzplj69evH1KlTbTIaIS4uDqh8/QBw9uxZ3n33XaZOncqwYcPo3r07AwcO5LbbbmP9+vWVXj9v3jyuuOIK0/YqnsOq+p5b+xrZlmTMo6hRREQEffr0ISkpiczMTLN5gDExMYSGhtKnTx+OHz9Ofn6+2bzZdu3ambajFu9JTU3Fw8ODtm3botfr2b9/P/v27WPjxo289tprlYaUv/feeyxatAhFUUxzavLy8jh48CB79uyhR48eDBgwgJiYGHQ6HcePHzebewPlw6UstWjRIt59910AWrZsSVRUFAkJCXz55ZesXbuWDz74wHRyad68OX369OHChQtcuHCBiIgI0xypuuwT/r2QuPTSSwkMDGTs2LF8/fXX/PTTTzz++ONVDi0sKyvj7rvvZuPGjUD5MEJvb2++++47Nm7cWOPFztq1a3n44YcpLS3Fz8+Pjh07kpGRwV9//cWGDRt47LHH6lSJtbi4mDvvvJOtW7cC0KFDB9zd3Tlx4gTHjh3jl19+4aOPPqpyfjr8e9yjoqJo164dCQkJ/PLLL+zevZvVq1fXOPe0voYPH05YWBhpaWls3LiR66+/vsbXjx07lkOHDrFmzRpGjRpV5WvWrFkDwNVXX232eF2+V1Vt89VXXyUgIIA2bdqY9U6dP3+emTNncurUKaD8N+fn50dycjKrV68mJSXFbOhaaWkpDz30kKnRDQsLo2XLliQlJbFs2TJ+/vlnli1bZrXCi4qiVNurlp6ezqxZs0yFrNq2bUtRURHJycl88MEH/Pzzz3z99de0aNECKC/0Vd25CDCbn5ifn89dd93Fjh070Gq1RERE4OfnR2JiIm+//Ta//fYby5Ytq1eRSiGsSdpY+7SxAOPHj2f37t388MMP3HPPPabHz58/z86dO+nduzdt2rSp9v3ffPMNr732Gt7e3oSFhRETE0NWVhY7duxgx44d7NmzhwULFlT7/ieffJKvvvqKiIgIoqOjOXPmjNnziqIwa9Ys03D/Dh06oNfra/1c9Y1r8+bN3Hnnnej1evz9/YmOjub8+fPcd999lYrAVWSL8+vvv//O/fffj16vJzAwkNjYWM6fP8+vv/7KunXrWLBgQbXDrM+fP8+1115Lbm4uHTt2RKPRcPLkSZ5++mlyc3O5++67LY7DUlqtlsmTJ/PUU0/x119/1fr6IUOGEBwcbLomqip53LJlC5mZmXTs2JHOnTubHk9KSuKWW27hwoULeHh4EBMTQ25urmlO+aZNm1i4cGGVUzKLi4u5+eabOXz4MNHR0XTs2NHsetLS379q+/bt3HPPPeTl5eHt7U3btm3Jy8szxXLrrbfyyCOP1PVwVksdkVRV/aK3336bb7/9Fl9fX8LCwoiNjSU1NZWNGzeyceNGHnzwQe644w7T69u1a0f37t05ePCgWU2Eqlj7GtnmFNGkXH755UpMTIzy3Xff1el9jzzySI3vu/nmm5WYmBhl69atlZ4rKChQRowYocTExCj/93//p+Tl5ZmeO3HihHL11VcrMTExymeffWb2vt9++02JiYlRunTponz44YeKXq83PVdYWKgsX75cOXnypOmxrVu3KjExMcrNN99cp8+m+uOPP5SYmBila9euyqpVq0yP5+XlKbNmzVJiYmKUyy+/XCkqKjJ73+uvv67ExMQor7/+er32azQaTX+XtWvXmh4bNmyYEhMTo/z8889Vvu/9999XYmJilPj4eGXXrl2mx8+fP69MmDBB6datW5VxHTlyROnevbsSFxenLF++XDEYDKbnfv/9d6VPnz5Kly5dlCNHjlj8GRYuXKjExMQoQ4YMUQ4ePGh6/PTp08qoUaOUmJgY5b777jN7z9mzZ03Hu0+fPsr69etNz6WlpSljx45VYmJilJdeesniOBSlbt/xOXPmKDExMcoTTzxh9nhV3+eUlBSlc+fOSlxcnNl3uOLniY2NVXr37m32Hanv90r9HF26dFGWLFmilJaWKopS/t0oKSlRysrKlIkTJyoxMTHKpEmTzH4LiqIohw8fVj7//HOzx15++WUlJiZGmTBhgnL48GHT40VFRcpTTz1l2lZdxMTEVPvb37JlixITE6N07txZOXfunNlzubm5yooVK5Ts7Gyzx3NycpSnn35aiYmJUebNm1dpm7WdixRFUebOnavExMQot9xyi3LmzBnT4zqdTpk9e7YSExOjzJkzp06fUwhLSBtbPUe0sepxW7lypaLT6ZRu3bopI0eONHvNW2+9pcTExJjOl126dFFiYmKUs2fPmr1ux44dypYtW5SysjKzx48cOaKMHj1aiYmJUbZt22b2nNrOdenSRenVq5eybt0603Pq51SPa5cuXZRBgwYpu3fvNr2muLjY9N/qd8saceXl5SmXXHKJ6TyrxmI0GpXPPvtM6d69u+ncfjFrn19TUlKUPn36KDExMcozzzyjlJSUKIqiKAaDwfS36datW6VrEvU3061bN2XOnDlKTk6O6bnPP/9ciYmJUeLi4swer813331n+h7W5tixY6ZjlJaWZnq8ut/JE088ocTExCiLFi2qcnvz5s1TYmJilDfffNP0mNFoVCZNmmTaXnp6uum5v/76S+nVq5fZd/fiz9GlSxdl5MiRZr9j9TtV199/SkqKEh8fr8TGxipvv/226e+kKIqya9cuZejQoUpMTIzyxx9/1HrsVOpvu7pzivr7nT9/fqXn1q9fr+zdu1cxGo1mj+/YsUO55JJLlC5duihJSUlmz6m/x5r+vra4RrY1GWbfRF08RPXi/+Xm5lptX9999x1nzpzhyiuv5PHHHzf1KgB07NiRl19+GY1Gw0cffWT2vldeeQWAWbNmMWPGDLMKrj4+PkyePJkOHTpYLU61t+Cmm24yG2rn7+/PSy+9REhICMnJyfz4449W2yfAjh07SE5Oxs/Pj8svvxwoX05tzJgxwL+99hUZjUZTMZzHHnuMPn36mJ6LiIjg1VdfrXZY5RtvvIFer+ehhx5i8uTJZsWWhg8fzty5czEYDHz66acWxZ+fn28qFPPkk0/SrVs303Nt27blhRdeAMrnJF7cEwHlIwxmz57NsGHDTI+FhoZy//33A7BhwwaL4qiPli1bAlQa0l2V8PBw+vfvT0lJCb/99lul59euXYuiKIwYMcKsF7qh36tLL72U2bNnm4rHaTQaPD09+fXXXzl06BDNmzfn/fffr/Rb6NKlCzfddJPp31lZWXz88cf4+/vz1ltvmVWC9/b25oknniAuLo6DBw+yc+fOWo9HTbKzs/n1119Nd+ivvvpqoqKizF4TEBDAxIkTCQ4ONns8MDCQJ554goiICH766SfKysrqtO+jR4+yZs0aoqKiWLp0Ka1btzY9FxQUxIsvvkhERAS//vqrRUuICVEf0sZW5qg2VhUUFMRll13G6dOn2b9/v+nx1atX4+HhwejRo2t8f79+/Rg4cCBubm5mj3fu3JknnngCgB9++KHK9xoMBu69917TMF+oPFrJYDDw1FNP0bt3b9Njlix/Vp+4fvzxR9LT04mOjub//u//TLFoNBr+85//VBpdprLF+fWLL74gPz+fLl268Nhjj5l6jrVaLXfddRfDhg2rcji7Kjg4mIULFxIYGGh67KabbqJbt26UlJSYTUuzpoqjwTIzM2t9/dixY4F/R/BVpNfrTdcVFY/9li1bTD3JixcvNo1Ug/JrA3Upxffff7/K4fYGg4HFixeb/Y7V71Rdf/8fffQROp2OW265hTvvvNOsh79Pnz6m0R8ff/xxrceiJqWlpSQkJPDYY4+xfft2vLy8uOWWWyq9btiwYfTs2bPSiIR+/fpx3333YTAYWLt2bZ33b+1rZHuQYfZNVG3L5lzcKDSEWriiumHMnTt3JioqirNnz5KSkmIa9nvy5Ek8PDyq/BFbW0FBgWleVlVDZ9QT2zvvvMOmTZu47rrrrLZvNVm/8sorzRr3cePG8cEHH7Bhwways7PNhqifPHmS1NRUfH19qxzy3bZtW/r27VtpzrRer+evv/7Czc2t2krLw4cP5//+7//YsWOHRfHv2rWLoqIiIiMjzS5UVD169KB3797s2bOHTZs2VTmMsarjqQ61tNW8efh36FZBQYFFrx87dizbtm3jxx9/ZOLEiWbPqRegFefEWeN7NWHChCpj+f333wG49tprq52+UNFff/2FXq9n+PDhppsYFWm1Wi677DIOHDjA9u3b6devX63brEidT1uRp6cnU6ZM4bHHHqv2fVu2bOHPP//k9OnTFBQUmG5C5eXlUVRURFJSUp0SinXr1gEwatQos6RG5ePjw6BBg1ixYgU7d+6sdJNBCGuQNtacI9vYisaPH89vv/3G6tWr6dGjBwcPHuTUqVNcccUVFp1H8/PzWbt2Lbt27SI9PZ3i4mIURTENh794rvPF+65JQEBAlW2oJeoa1+bNm00xVbXKyKRJk0z1SSqyxfl106ZNAPznP/+p8vlp06bx119/mV53sauvvhpfX99Kj3fv3p1Dhw7Z7Bqi4tBvS64h+vXrR0REBOfOnWPv3r306tXL9Nxff/1FXl4ePXv2NLtGUqdRjho1qsqpJVOmTOG1114jOTmZhISESm1lp06dzDpYVPX5/dd2nhk6dCgeHh7s2bOHsrKyOq1eo9bhuFjHjh15/PHHq63doK5QtH//fjIzM03T+tS6DTX9Hqtii2tke5Bkvomq67I5DXH8+HEAXnvtNd5+++0qX5OdnQ2UL2fVsmVL0xzgjh07VtlgWNuZM2cwGo14enqa3WmuqGPHjgBWrVxaUlLCL7/8AlCpMErnzp3p1KkTJ06cYO3atWYNXVJSElA+T766pXoqFk1SnT59mpKSEjw8PLj99turfJ96dzc1NdWiz5CYmAhAdHR0tcvodezYkT179lR57EJCQiotDQf/rsNcWFhoURz1oW7b0u+Yujb91q1bycrKMl2snzx5kmPHjtGsWTMGDx5ser01vlfVJbLqck09e/a0KHb1d7hv3z5uvPHGKl+j9i5Y+revSJ3LqygKFy5cICUlBS8vL/r161fld1Sv1zN37lzTxWF1dDpdneJQP+e6devYs2dPla85f/48UL/PKYQlpI0156g29mLDhg0jKCiINWvWMG/ePIsK36kOHz7MnXfeSVpaWrWvycnJqfLxkJCQWmu/tG3btl43eeoTl3qMq0uSqnvcFudXNRb173+xTp06AZCRkUF+fn6l72t1dQ5sfQ1RcbuW/IbUEZcffPABP/74o1kyr3YGXDwiorZj4+/vT0REBElJSZw+fbrS9UJ0dHSV76vr77+goMA00kId7VGdkpISdDqd2SiC2lSsw1FQUGC6Vg0PD6/yZgSU3+i4//77qyzSp6ru91gdW1wj24Mk88Lm1DtklixNpRa7UN9TVZJnC+pd1WbNmlWbkKonJkt7cS3x+++/k5eXR/Pmzc2SQNXYsWNZvHgxq1evNkvm1UbEz8+v2m1X9Zx60istLWX37t01xqbe4ayNGktNFypqo1rVsavqjjpQ5VrL1qZWT7a0wF5gYCCXXnopv//+Oz/99JPpb6I2xKNGjTK7G22N71VVhV/g399IxaGFNVH/9moxqZpY+rev6OJ15tetW8cDDzzAww8/THh4OPHx8Wavf/fdd1m3bh2hoaE89NBD9O/fn9DQUFPif+ONN7J79+46D7NXP2dSUpLppld16vM5hXA20sZaztPTk1GjRrF8+XLWr1/P2rVrCQwMrLU6vsFg4P777yctLY1hw4Zx++2307FjRwIDA3FzcyMpKYmRI0dWe76qrp2r62usFZe6wkx11xDVPW6L86t6DVFdwbyKjxcUFFRKPqtrI9VriKqGn1uDetMCqo/9YmPHjjUVeJ0/fz5ubm4UFBSwfv16tFqtaXqlytLrq6SkpDpdX9X1919xhYLarh3h3/OMpS5eZz4rK4tHH32UP//8k/vuu48PP/zQ7LyRm5vLAw88QF5eHhMmTOCmm26iffv2+Pv7o9Vq2bx5MzNmzKj39YM1r5HtQZJ5YXO+vr7k5uby66+/0rZtW4veozYkNd1xsyZ1f1lZWSiKUuXFRkZGhtlrrUHtFcjMzKRr167Vvm7v3r2cPn3aVL1YPUHXdMe5qhO7Gnt4eLjV5qKrsdQ071zt8bXmsWsoo9FoGvbZo0cPi993zTXX8Pvvv7NmzRpTMq/Oy7r4rrotv1fq6y2de6v+ne666y7mzp1bp33Vx4gRI3jggQd4/vnn+d///seaNWvMep3UOZzPP/88Q4cOrfT+lJSUeu1X/ZzPPPNMrSsUCNEYSBtbN+PHj2f58uU8++yzZGRkMHny5GpHuKn2799PUlKSaa74xa+v7QaprdQ3LjUBru4aorobKrY4v/r6+pKXl0dmZmaVvewV56M70zXErl27AIiMjLS4F7pLly506NCBU6dOsX37dgYNGsS6desoLi5m0KBBlYbS2+r6qq6//4o3BQ4ePGg2v94WmjVrxqJFixg9ejSbN29m9erVZtNUNmzYQE5ODr17966ykn99f4+2uEa2BymAJ2xOHfZz4sQJi9+jDqs6efKkxWuWVne33xJt2rRBq9Wi1+urnV918uRJwHw5oIbIysoyzYdq3rw5LVq0qPJ/6jz6imvOqzEkJCRQWlpa5fbV4XAVtW3bFg8PD9LT0+s8fLk66jJmp06dqvYOuLWPnTWsW7eO9PR0PDw8GDJkiMXvGz58OL6+vuzevZvz58+bLqYiIyPp27ev2Wtt+b1Sh93t27evTq+vy++woW666SYiIyNJTEysVMhRHbJXsdiTKjs7u9ohbLX9ztXPWdX3X4jGSNrYuunbty+tWrUy9axaMsRePV9169atysS/rnNzraW+canH+NixY1U+X9350xbnVzUW9e9/MfV73aJFC7tMCbGE0Wjk66+/BjAr3msJ9aa/ekO7qno7qtqOTX5+vilxrcvvpq6//4CAAMLCwmqMxdr8/PxMS0guXboUg8Fgek793vfq1avK81J13/vazmG2uEa2B0nmhc2NHDkSgE8//dTi4U5t2rQhJiaG0tJSs6E3NVGT3roO74Hyk4aaVFS1v+LiYr755huAOiV+Nfnxxx8pKysjKiqKTZs2Vfu/Rx99FDBP5jt06EB4eDiFhYWmOfcVnT171nTXuCIfHx+GDBmC0Wi0+LjWpm/fvvj4+HDhwgVTUbaKDhw4wJ49e9BoNFxyySVW2WdDJScn8/TTTwPlvTTh4eEWv9fb25sRI0agKApr1qwxNcRjxoyp1FDY8ns1YsQIoLyStSWNzrBhw/Dw8GDDhg02nZNakaenJ9OnTwfKh9VXXGFB/b1WVQX4o48+Mmu4K1Ir8Vb3O1ePy+rVq03zhIVozKSNrbuZM2cyaNAgRo4caVGxT/Wzq6MHKiotLXVYZev6xqW2xatXr67yXLtixYoq32eL86v69/7888+rfF79vtjje2Gp1157jaNHj+Lh4cGtt95ap/eqVe1/++03UlNT2bx5M56enqbfcUXqqLWff/6Z9PT0Ss8vX74cvV5PVFRUtfPjq1Kf378an7qSkj1MmjSJ0NBQzpw5Y7YKgHodUNX3Pjs7m2+//bbK7dV2DrPFNbI9SDIvbO6GG26gdevWbNu2jYceeqhSkZaCggLWrl3L888/b/b4fffdB5Tfkfv000/NeqCLior45ptvTEU8AFq1agWU3zW0ZKmxi6nFLr788kuzZVzy8/N5+OGHycrKIioqqtolW+qqYuGdmu4Wjh49Gk9PT7MEXavVmiqQPvPMM6bh4lA+PPm+++6rdpv33Xcfnp6evPXWW7z77ruVTmppaWl88sknpuXmauPv728qqPb0009z+PBh03Nnzpxh3rx5ps9RXaEae8nKyuLTTz/l2muvJT09nY4dOzJ//vw6b0e9g/7DDz/w008/Af820Bez1fdqxIgRdO/enczMTO644w5TQTzV0aNH+eKLL0z/Dg8P55ZbbqG0tJTbbrut0nI9iqKwf/9+nnzySatW/73++usJDg4mMTHR7MaTOoph4cKFpiGdiqKwcuVKPvzww2qXZFKLZ+3cubPKxCUuLo7Ro0ej0+m49dZbzb6PUD7HdNu2bTz44IOmSs9CuDJpY+vuxhtv5OOPP2bJkiUWjTjo2bMn7u7u7N69m5UrV5oez8vL46GHHqoyqbCH+sZ19dVXExoaysmTJ3nyySdN838VReGLL76odnlAW5xfb7zxRvz9/Tly5AjPPfec6X1Go5H33nuP9evX4+HhwYwZMyzanq0YjUb27NnD3XffbSo0+eSTT9b5uqZNmzb06NGD3NxcHnvsMcrKyrj00kurrH8zcOBA4uLi0Ov1PPDAA2Y3vzdu3MjSpUuB8t9WXUfO1PX3f/vttxMcHMz333/P888/X2mKn06n49tvv+XNN9+sUxw18fT0NK2U8+6775rafPUG3M8//2xamQHKr1/vvffeajsDmjVrhp+fH5mZmWafrSJrXyPbg8yZb6Leeecd013wqowePbrKpabqw8/Pj3feeYc77riDH3/8kbVr15oKVeTk5HD27FkMBkOlqtwjRozgwQcfZPHixTz77LO8/vrrtG3blvz8fJKTk013ndUhhs2aNWPgwIFs3bqVESNG0LFjR7y8vGjRooVpPc2aXH755dxxxx28++67PPTQQyxatIjmzZuTkJBAYWEhQUFBvPrqq5XWhq2PU6dOcfDgQaD2IX6BgYEMGzaM3377jVWrVpmSoFtuuYXNmzezceNGbrjhBqKjo/H29ub48eOEh4czZcoUli1bVqmQXJcuXVi8eDH//e9/WbRoEUuXLiU6Oto0tEgdslVdJc+q3HfffRw6dIht27YxceJEOnbsiLu7OydOnMBgMNC5c2f+97//1eUQNVjF77heryc7O9ts3dtRo0axYMGCeg3bu+SSS2jWrJlpiGKHDh3o3Llzla+11ffKzc2NJUuWcOutt7Jv3z5Gjx5Nu3bt8PPzIzk5GZ1OR3x8vNla83PnziUtLY3Vq1czbdo0QkNDiYiIMA19VZNqa/32oXyu3U033cSbb77JO++8Y1rLec6cOWzevJk//viDSy+9lLZt25Kenk5aWhrjx4/nwoULlVZjgPIlHF955RXWrFnD3r17iYiIQKvVMnHiRFP18GeffZbc3Fw2bdrExIkTiYyMJDQ0lKKiIs6cOWNqnJ977jmrfU4hKpI2tjJ7trHWFhoayrRp0/jwww955JFHeO211wgJCeHUqVMYDAYee+wxnnrqKZeJy9/fnxdffJE77riDb775hp9//pl27dqRmppKWloa8+bNY+HChVUWorX2+TU8PJwXX3yR++67j08++YSVK1fSpk0bzp8/T2ZmJlqtlieeeKLaNtYW0tPTTZ0UiqKYqrlXLOT49NNPc+WVV9Zr+9dccw379+/n77//BirX21FpNBoWLVrEtGnT2L59O5dddhmdOnUiPz/fVIBw/PjxTJkypc4x1PX337JlS958801mzZrFxx9/zOeff0779u3x8fEhKyuLc+fOoShKpSJ+DXXjjTfy9ttvc+LECX7//XdTR8ZVV13FL7/8wowZM2jbti2+vr6cOHECLy8vHnzwwSq/fxqNhlGjRvHdd98xceJEOnXqZKoHoPbE2+Ia2dYkmW+iTp8+XeNQ2+7du1t1fx06dGDVqlV88cUXrFu3jlOnTnH27FlCQ0Pp378/w4YNq3KI0R133EF8fDwff/wxO3fu5NixYwQFBdG9e3euvPLKSktWLFq0iEWLFrFp0yYOHTpkGsZuqQcffJA+ffqwbNkyDh48SEZGBmFhYYwbN4677rqLiIiIBh8L+HfIfFxcnEVDo8aNG8dvv/3Gzz//zOOPP46npyfu7u689dZbfPDBB6xcuZKzZ88SHBzMhAkTeOCBB3j//feBqouiXHnllaxZs4aPP/6YjRs3kpiYiFarJTw8nCuvvJIRI0bUWt23Im9vbz744AO+/PJLVq1aRUJCAkajkQ4dOjBmzBimT59ebcVZW6n4Hff19SUwMJDBgwfTo0cPxo0bV6e1yy/m7u7OqFGjTD3fVc11q8hW36vIyEhWrFjBZ599xs8//0xiYiKKohAeHs7ll19eaa1md3d3XnrpJa655hq+/vpr9u3bx5EjRwgMDKRdu3b07t2bq666ylQHwVqmTp3Khx9+yJEjR/jrr78YNmwY3bt35/PPP+fVV19lz549JCYm0rZtW+644w5uvvnmahOdNm3a8Pbbb/POO+9w+PBhzp8/j6IoZtXy/fz8eP/991mzZg0rV67k0KFDHD58mODgYGJjY4mPj2fkyJHV9v4L0VDSxlbNXm2sLTz88MO0bNmSr776irNnz1JUVMSgQYO4++67La5m7kxxDR48mOXLl/P666+za9cuTp06RYcOHZg3bx6XX345CxcurPL6wRbn1yuuuIIVK1bw7rvvsnXrVo4ePUpAQABXXnklt912W5W1VWxJr9ebqpl7eHjg7+9PVFQUXbt2ZfDgwaYRk/U1ZswYXnjhBQwGA76+vjVeb7Vt25bvv/+e9957jz/++IMTJ07g6elJ//79uf7662sd3VmTuv7++/bty9q1a/nkk09Yv369acnJ8PBwhg4dyuWXX17leaYhAgICuOGGG/jwww95++23TVM9Xn75ZdN57/z58wQHB3PVVVcxe/bsKqckqB577DH8/Pz4/fffOXbsWJV1p6x9jWxrGsVWazYIIRzqrrvu4s8//+SNN94wnfyEEEIIIWpy8OBBrr32Wjp37lypeKkQwrnInHkhGqGUlBQ2bdqEm5tbpaGVQgghhBDVUQvg9enTx8GRCCFqI8m8EC7szTffrDSUMyEhgXvuuQe9Xs8VV1xRad1SIYQQQjRtW7duZc2aNWaF6kpLS/noo4/48ssv0Wq1TJ482YERCiEsIXPmhXBh3377rangTVRUFPn5+abkvnXr1jz++OOODVAIIYQQTuf8+fPMnz8fDw8PoqKi8Pf35/Tp06Z1xx988EG6dOni4CiFELWROfNCuDC1Cu2JEyfQ6XRotVpatWrFFVdcwa233kpQUJCjQxRCCCGEkzlz5gyffPIJ27ZtIy0tjYKCAoKCgujRowc333yzU63rLoSoniTzQgghhBBCCCGEi5E580IIIYQQQgghhIuRZF4IIYQQQgghhHAxkswLu1IUBZ1Oh8zuaHzkb9s4FRQUoNFo0Gg0psJIQgjXJOdp+5Lzp/3Jd9z+5Jg7liTzwu7kx954yd9WCCGcm5ynRWMn33H7k2PuOJLMCyGEEEIIIYQQLkaSeSGEEEIIIYQQwsW4OzoAIYQQzsvDw4MXXniBoqIiPDw8HB2OEEK4DDl/CiFsTdaZF3alFskIDg5Go9E4OhxhRfK3bbzkbytE4yC/ZfuTY25fcrztT465Y8kweyGEEEIIIYQQwsXIMHshRJOlKAoGg4GysjJHh+K0DAYDhw4doqCggP79++PuLs2GvXl4eODm5uboMIQQdWQwGNi1axd5eXkMGzZMzp82pigKZWVl6PV6iouLpZfYThRFkWNeB9Zu0+WsIoRoctQhYenp6RgMBkeH49SMRiNZWVkAJCUlodXKgC5HCA4OpmXLlnKhJIQLKS4uZsCAAQDk5eXh7+/v4Igap4vb9IrtlrAPOeZ1Y802XZJ5IUSTk5KSgk6nIzAwkMDAQNzd3SVJqobBYKCoqAiAdu3aSQ+xnSmKQmFhIWlpaQBEREQ4OCIhhHAuFdv0gIAAtFotbm5u0q7biTrKUY557WzRpksyL4RoUgwGAzk5OYSGhtKiRQtHh+P0Ko5c8Pb2lmTeAXx8fABIS0sjLCxM/gZCCPGPi9t0SSztT4553Vi7TZfxkkKIJqW0tBRFUfDz83N0KEJYzNfXFyj//gohhCgnbbpwRdZs0yWZF0I0SXL3WLgS+b4KIUT15BwpXIk1v6+SzAshhBBCCCGEEC5GknkhhBBCCCGEEMLFSDIvhBCNyIoVK4iNjeXcuXNW2Z5GoyEiIsImy6LNmzeP4cOHW3WbQgjhLDw8PPjf//7Hww8/jIeHh6PDES7I2m26LUmb7hgaRVEURwchmg51LdDg4GCZ39TIuMrftri4mMTERNq3b4+3t7ejw7G6rKwszpw5Q9euXfH09LTKNm1VqfbMmTPk5+fTtWtXq22zsWrs31thH65ynm5M5Jjb1sXnxsZWWd0Wbbq1qcc8OTmZgoICadMtYM02XZamE6IJSE5O5sCBA/j5+dG3b19TFU3R+DRr1oxmzZo5OowaFRUV4ePjQ5s2bRwdSr2o8VeluLi4QQ1zaWkpGo0Gd3dpnoVwJhkZGezZswd3d3fi4+OlerqwC1dp0z09PWnTpo1L3kBx9TZdhtkL0cht3bqVDz74gG3btvHHH3/w1ltvkZGR4eiwhI1UNSRPURTefvttLr/8cuLi4pg0aRKbNm1i6tSpTJ061fS6bdu2ERsby48//sgrr7zCkCFD6NOnD7fccgtHjx6ttK9vv/2WcePGERcXR3x8PLNmzeLUqVNmr5k3bx69e/fm2LFj3HrrrfTu3Zvp06ebnrt4SF5sbCxPP/00K1euZPTo0fTs2ZNx48bx559/Vtr/unXrGDt2LN27d+eKK67gk08+YcmSJcTGxlp0rDZv3swtt9xCnz596NmzJ1OmTGHLli1mr1G3d+jQIe6991769+/PlVdeCcDw4cO58847+fXXX5kwYQJxcXEsXboUgOPHj3P33XfTv39/4uLiGD9+PN9//73ZttXjvXLlShYuXMjQoUOJi4sjKSnJoviFEPaRkpLCe++9x+bNm9mwYQPvvvsuOp2u1vcZjUYOHTrEkSNHMBqNtg9UNDq2aNOnT59OQkJCpX1Jm+6abbrc+heiEUtKSuKXX34BICYmhszMTDIzM/n666+5/fbbZQ7fRRRFcYp1vD08PKx6d/uVV17hnXfe4YYbbuDKK68kJSWFxx9/nNLSUtq3b1/p9YsXL6ZPnz48++yz5Obm8vzzzzNr1ix+++030zC/d955h8WLF3PNNdfw4IMPkp2dzdKlS7nhhhv49ttvadeunWl7paWl3H333UyZMoXbb78dg8FQY7zr16/nwIED3Hvvvfj6+vL+++8ze/Zsfv75Z1q3bg3Ahg0bmDNnDv369ePVV1+lrKyMDz/80OIbVatWreKRRx7hiiuu4IUXXsDd3Z3ly5dz22238cEHHzBo0CCz18+ZM4cxY8YwZcoUCgsLTY8fOnSIU6dOcffdd9OqVSt8fHxISEhgypQpNG/enMcee4yQkBBWr17NvHnzyMjI4Pbbb690vHv16sWCBQvQarU0b97cos8ghLC9srIyli9fjl6vJyIiAr1eT2ZmJqtXr2bq1Kk1nquLioqIi4sDIC8vD39/f3uFLZA2XVWxTc/Pz+fll1/m7rvvZu3atbi5uQENa9PLyspqjFfadNu26ZLMC9FIKYrCH3/8AUCvXr0YP348BQUFvP3226Snp/P7778zatQoB0fpPBRF4aOPPuLs2bOODoXWrVszY8YMqzT+OTk5fPTRR4wZM4ann37a9HinTp244YYbqmz4O3bsyMsvvwyAwWDgzJkzvP766xw8eJA+ffqQm5vLm2++ybBhw1i0aJHpfQMGDGDkyJEsWbLE7PHS0lJmzZrFtddea1HMJSUlfPTRR6YL327dujF06FB++ukn7rjjDgBef/11wsPD+eCDD0w3GIYOHWpR8Z2ioiKee+45LrvsMt544w3T48OGDWPixIksXryYb775xuw9EyZM4N577620raysLNasWWN2HB944AFKS0v59NNPiYiIMG07NzeXN954gylTphAQEGB6fZs2bXj99dctOjZCCPvas2cPOp2OgIAApk6dSlFREW+99RaJiYkcOnSI7t27OzpEUQVFUfj444+lTce8TQfQarXcf//9HDhwgF69ejW4TVfnzFdH2nTbkmH2QjRSiYmJnDlzBjc3N9PJ0M/Pj3HjxgGwc+dOi4YJCte2d+9e9Ho9o0ePNnu8V69eREVFVfmeixtP9c75+fPngfKL2+LiYiZOnGj2uoiICAYOHMjWrVsrbfOqq66yOOYBAwaY9WC1aNGC5s2bk5ycDEBhYSEHDx5kxIgRZgWB/Pz8LGr41YvziRMnUlZWZvqf0Whk6NChHDhwwOxOPcDIkSOr3FZsbGyli6etW7cyaNAgU6OvmjhxIkVFRezZs8eibTcGqampfPzxx9x6661cdtlldO/enUsuuYQ5c+awb98+i7ejDl+s7n979+613YcQTZaiKGzatAmAIUOG4OPjQ7NmzRgyZAgAmzZtQupIC3uyRpuuDluXNr0yV2zTpWdeiEZq586dAPTp08fsjmHHjh1p3749iYmJbNiwwZTcN3UajYYZM2Y0uiF56g2bqoZ5tWjRosr3BAcHV4oHygvBVNxmaGhopfeGhYWxefNms8d8fHzqNLz04v0DeHp6UlJSAkBubi6KolT5mSwZzqYO26vqrrwqJyfHrFBkWFhYla+r6hjodLpqj436fG3baCyWLVvGe++9R5s2bRg8eDDNmzcnKSmJdevWsW7dOhYtWsSYMWMs3l58fDzx8fGVHm/ZsqU1wxYCgNOnT5OTk4OXlxe9e/c2PR4fH8+mTZtISUnh9OnTVfaGCseSNv1fF7epasIsbXplrtimSzIvRCNUXFzM8ePHgfJkviKNRsPll19OYmIi+/fv54orrpCqvP/QaDROu/RLfamNaGZmZqXnMjIyqr2Tb8k209PTKz2XlpZGSEiI2WPWrm4bGBiIRqOp9jPVRo3viSeeoGfPnlW+xtI5blV9tuDg4GqPTcX917SNxqJHjx58/vnn9OvXz+zxnTt3Mn36dBYsWFCpN6Ym8fHxzJkzxxahClGJOuKje/fuZjVmfHx8iIuLY/fu3ezbt0+SeSclbXrdtiltumu26TLMXohG6PDhwxgMBsLCwggPD6/0fKtWrYiMjMRgMLB7924HRCjspWfPnnh6erJ27Vqzx/fu3Wsa4lZXvXv3xtvbm9WrV5s9npKSwtatWxk4cGC947WEr68v3bt3Z926dej1etPjBQUFVVbIvVifPn0IDAzk5MmTxMXFVfm/hlwADho0iK1bt5Kammr2+KpVq/Dx8aFXr1713rarGTlyZKVEHqBfv34MGDAAnU7HsWPHHBCZEDUzGo2m72ZVCYL6Oz58+LDZeUgIW5I2vbKm3qY7Xc98amoqP/30Exs2bCAhIYGMjAyCgoLo06cPM2fOrPaOy8W2bdvGtGnTqn1++fLlDj/4QtiKuoxY9+7dq7xDqNFoiI+PZ+XKlezevZshQ4Y06t7Bpiw4OJgZM2bwzjvvEBgYaKp8+8YbbxAaGlqvv3tgYCD33HMPixcv5uGHH+bqq69Gp9Pxxhtv4OXlxezZs23wSczde++93Hnnndx2223ccsstGAwGPvjgA/z8/MjJyanxvX5+fjz++OPMmzePnJwcrrrqKpo3b05WVhZHjx4lKyuLBQsW1Du2WbNm8eeffzJt2jRmzZpFUFAQP/zwA+vXr+e///2v2bSXpkxdd7cu6++ePn2aTz/9lOLiYiIjIxk8eLBFazDLvOZy6nGQ41G7M2fOUFJSgq+vL5GRkZWOWVRUFCEhIWRnZ3PixAm6du1aaRsV36Moihx3G6j4nb74+DaG433x5wsKCmL69Om8++67BAYGMmLECFJTU83a9It/5xcfm4sfDwgI4O677+aVV16psk2fNWtWldusLt6q/g7VPaY+XrFNnzZtGgaDgQ8//BBfX19ycnJq/Fv6+vqatekjR440tenHjh0jKyuLp556qlLctcWkuueee2ps0/39/c3eZ8lv3dLXWnKN5nTJvMyvE6JhysrKOH36NFBe3bQ6Xbt2Ze3ateh0Os6cOUPbtm3tFKGwt7lz5+Lj48NXX33FihUriI6O5qmnnuKVV14hMDCwxvdqNBrTPLyKjcqdd95Js2bNWLZsGWvXrsXb25v4+HgeeOABsyVsbOXSSy9lyZIlvPbaa9x///2EhoZy4403kpaWVql3oSrjx48nMjKS999/nyeffJKCggKaNWtGly5dKhUBqqvo6Gi++uorFi9ezNNPP01xcTEdOnTg+eefZ9KkSQ3admNx/vx5Nm/eTGhoKDExMRa/78cff+THH380/dvb25s5c+Ywc+bMGt9X28VgU1PbDS8BBw8eBMoLgObm5lb5mnbt2pGdnc3BgweJjIys9Lxerzfd3CwsLKx1CS9Rd3q9HqPRiMFgMKuoXtsSqK7CaDSa/l/9TPfeey/e3t58/fXXrFixgvbt2/PEE0/w2muvERAQYHpdVe+t7vGZM2cSEhLCZ599ZmrT+/fvz+uvv07r1q1Nr1OTz6qOr3qOvfi5ml6vPj548GBeffVVli5dyty5c2nRogVTpkwhPT2d1atX1/r3vPrqqwkPD+fDDz80tenNmzenc+fOjB8/3ix+Ncbqtnnx423btuXzzz/n1VdfNbXp0dHRPPPMM0ycOLHW413dPoxGI7m5uabaBVW5eAh/VTSKk7Vuv/76K82aNat2fp2fnx9///13rcMl1J752bNny/w6J6IoCjqdjuDgYOkJtpGEhASWLVuGv78/DzzwQI3HedWqVezdu5c+ffowduzYBu3XVf62xcXFJCYm0r59e7y9vR0djsOcPXuW0aNHM3v2bO66664aX6s2uG5ubk79ty0tLWXChAmmBr0xaUzf29LSUmbMmMGOHTt44YUXmDBhQq3vOXHiBBs2bOCyyy4jMjKS3Nxctm3bxssvv0xqaioLFixgypQp1b7fyS51HEZRFHJycggKCnLq37IzeOedd0hNTWXixImmteIvlpSUxCeffIKPjw8PPvggWm3l2atyzG2ruLiY06dP065dO9O5UW2vmpJz584xevRoZs2aVWubbgu2OOalpaVMnDiRsLCwRtmmX/y9rYpL9sxXV85fnV+3ceNGjh07Vu2JVYim7tSpUwB06NCh1pNAjx492Lt3L4cOHWL06NF1Gu4qXMfRo0f58ccf6d27N/7+/iQmJvL+++/j7+/Pdddd5+jw6u3RRx/lkksuITQ0lIyMDL788ktOnTrFY4895ujQRDWMRiOPPvooO3bsYPLkyRYl8lA+yqjiSCMfHx/GjRtH586dmTRpEkuWLGHy5MlVJlPQuIsM1odGo5FjUoO8vDzT/NiOHTtWe6zatGmDj48PRUVFnDt3rsYRbnLMbUM9purxrXjjrrEe75ra9Ouvv97un9tax7ymNr2x/S0v/t42hEtdudtzfp0QrurkyZNAeTJfm3bt2hEYGEhubi7Hjx+vcs6fcH0+Pj4cPHiQb7/9lry8PPz9/RkwYAD3339/tUvZqBRFQa/XYzAY8PHxsVPElikoKOCFF14gKysLDw8PunbtyrvvvsvgwYMdHZqogqIoPP7446xevZpx48Y1qC6BKiYmhp49e7Jz506SkpKkqriwCnWqWmRkpNlyVhfTarV06tSJ/fv3c+zYsUrJvNFoJCkpidzcXAIDA5tcb7GwjYa06c5M2vT6cZlk3t7z62RInm1I8R3bysvLMy2VER0dbdFx7tatG1u2bOHw4cN06dKl3vt2lb9tXQqUNBZt2rTho48+qvK52o6B0WjkwIEDQHnF2+p6Ph3h1VdfrfLxxvh3tWaxHEcwGo089thjrFixgmuuuYaFCxda7bukzimsad6hEHVx5swZoPzcWZuOHTuyf/9+EhMTKz1XVFREdHQ0gCnpEqKh2rZty8cff+zoMKzutddec3QILsklkvnS0lIefvhh9Ho9Dz30kEV3Nps1a8bDDz9c5fy6l156CX9//xrn10mxHNuS4ju2oa4tHxoail6vt2i5nFatWpnem5GR0eCh9s7+t62uWI6omlrQBcrnxMl50TGsWSzH3iom8mPGjOHFF1+0Wg9lWVkZhw8fRqPREBERYZVtClGXZF4dDZKSkkJBQQF+fn42jU0IISpy+mTeUfPrgoKCrBG+uIgUgrGtzMxMoPziIjg42KL3BAUF4e/vT35+PtnZ2TVWwK+Jq/xti4uLycrKws3NTYY8WqDi39LNzc2peuabEvXYBwYGulQBvIqJ/KhRo3jppZdq/N1lZWWRnZ1NSEiI2ZS4PXv20KtXL7PvY1lZGS+++CLJyckMHTrU4nOeEDUpKioyjXBr3bp1ra/39/cnLCyMtLQ0Tp8+Tbdu3WwdohBCmDh1Mu/I+XXOnIw0BlIIxjbOnj0LlF+AWHp8NRoNnTt3ZufOnRw9erRO01iq254z/22tWXSkKZJj5hiu+r194403WLFiBb6+vrRr14633nqr0mtGjBhhmuLz+eefs3Tp0kor0Tz44INA+VSP8PBw8vLy2LFjB4mJiURGRlrl+kAI+LcdbdasmcXD4qOjo0lLSyMhIUGSeSGEXTltMi/z64Som5KSElP1XUuGBlbUpUsXdu7cybFjxzAajdL7KoSwiuTkZKB8je233367ytdERUXVWq9jypQp/P3332zfvp3s7Gzc3d1p06YNd911F7feequMphNWU5ch9qr27duzdevWKufNCyGELTllMi/z64Sou+TkZBRFISgoiMDAwDq9t23btnh7e1NYWMjZs2drXF5HCCEstXDhQhYuXGjx6+fMmWPWI6+64447uOOOO6wZmhBVUm9AWTLEXtW2bVu0Wi3Z2dmmaSJCCGEPTtf9Vp/5dadOnSIrK8vs8T179lQq1FRxft2QIUNkfp1oVNQLELWgXV24ubkRGxsLwJEjR6walxBCCOEKFEXhwoULQPmydJby8vIiKioKgISEBJvEJoQQVXG6nnmZXydE/Zw/fx6o2wVIRTExMezbt8+0Tr0QUD5HOzQ0FEVRXGquthBC1FVWVhYlJSW4ubkRGhpap/e2b9+es2fPkpiYSN++fQFwd3fn7rvvRq/XN3ilGCGEqIrTnVlkfp0Q9aMm82rvQF1FR0ej1WrJzMwkKyvLrJK0aLq0Wi1t2rTBYDBIMi+EaNTUdrRly5Z1nt4ZHR3Nhg0bSExMNN389PLy4o033kCn0+Hl5WWLkIUQTZzTJfMyv06IusvPzyc3N7dBtSC8vb1p3bo1SUlJnDx5kvj4eCtHKZzZ1KlTAVi2bBlQvjzT+++/T3x8fKXvwpIlS1i6dClbtmyRmz5CiEZDHWJfn3a0VatWeHh4UFhYSFpaGuHh4dYOTwiL1dSmDxgwwOy10qa7NqebMy+EqDt1REuLFi3w9PSs93bUNeZlqH3T8+STT/Lkk0+a/l1UVMTSpUvZtm0bZWVllJWVOTA6IYSwvYZMV3NzczNVwFer2iuKQnp6OhkZGZXqOAlhS9W16du3b3dgVMIWJJkXohFo6BB7VceOHYHyC5HS0tIGxyVcR8eOHU1//4oURWHfvn0cPHgQo9HogMjMFRUVVftcQ5cbLS0tlZsWQjRR9S1+V1H79u2Bf5P5wsJCwsPDiYmJobCw0DqBCmGB6tp0ZyNtesNJMi9EI9DQ4neqsLAwAgMDKSsrIykpyRqhuRRFUTAWFDv8f/XtwTlx4gSxsbH89NNPpscOHjxIbGwsV199tdlr77rrLiZNmmT699SpU03D8s6dO8egQYMAePPNN/nPf/7Df/7zHx599FGzbWRmZvLAAw/Qt29fBg8ezPz588nLy7Mo1s2bN3PLLbfQp08fevbsyZQpU9iyZYvZa5YsWUJsbCyHDh3i3nvvpX///lx55ZUADB8+nDvvvJNff/2VCRMmEBcXx9KlSwE4fvw4d999N/379ycuLo7x48fz/fffm21727ZtxMbGsnLlShYuXMjQoUOJi4trkt97IUT5+UwtVFfX4neq6OhoAE6fPu0UNz+bOmnTK7fpS5cuJTY2ltjYWObNm2e2jYa06Vu2bGH69OnSpjuA082ZF0LUjaIopmH2DU3mNRoNHTt2ZPfu3Zw4ccIl7upai6IonBr9EIXbHb80n++ArnRY+1KdC8516tSJ0NBQtmzZwujRo4HypNnb25uTJ0+SmppKeHg4ZWVl7NixgylTplS5nbCwMN5//31mzpzJtddeS1xcHAADBw40e92cOXMYM2YM1113HcePH2fRokUAPP/88zXGuWrVKh555BGuuOIKXnjhBdzd3Vm+fDm33XYbH3zwgemi4+L9TJkyxax369ChQ5w6dYq7776bVq1a4ePjQ0JCAlOmTKF58+Y89thjhISEsHr1aubNm0dGRga333672bYXL15Mr169WLBgAVqtlubNm1twpIUQjU3F4ndabf36usLDw/H29qa4uJjk5GSZf+xAiqKQMOa/0qZj3qZfd911XH/99QCVvp/1bdNXr14tbboDSTIvhIvT6XQUFRWh1WqtUnCnU6dO7N69m1OnTlkhOhfTCKq1Dxo0iM2bN5v+vWXLFsaNG8cvv/zCli1bmDBhAvv37yc/P5/BgwdXuQ1PT0+6desGlF+cqrUU1Pmgquuuu46ZM2cCMHjwYJKSkvjuu+947rnnqr1oKSoq4rnnnuOyyy7jjTfeMD0+bNgwJk6cyOLFi/nmm2/M3jNhwgTuvffeStvKyspizZo1pqGtAA888AClpaV8+umnpiJWw4YNIzc3lzfeeIMpU6YQEBBgen2bNm14/fXXq4xVCNF0NHSIPZSv/tG+fXuOHDlCYmKiJPOOJm06YN6mt2zZkl69elX5uvq26c8++yzDhg1j6dKlptdJm24/kswL4eIq9iZYYx3bdu3aodFoyMzMJDc3l8DAwAZv0xVoNBo6rH0JpbDE0aGg8fWq9zJwgwYNYvXq1Zw9e5awsDB27drFjTfeiE6nY9OmTUyYMIHNmzfj6elpWgu5voYPH27279jYWEpKSsjMzKRFixZVvmfPnj3odDomTpxYaS7b0KFDef/99yksLMTX19f0+MiRI6vcVmxsrFmjD7B161YGDRpUqRr1xIkT2bBhA3v27OHSSy+tddtCiKZFbUvruyKMqmIy39BzrKg/adPrrr5tek5ODuPHj6esrMzsc0qbbh+SzAvh4qw1X17l7e1NZGQkycnJJCYm0rNnT6ts1xVoNBo0ft6ODqNB1DvzW7ZsoVWrVpSVlTFw4EAyMjJ48803Tc/16dMHb++Gfdbg4GCzf6srKdRUtCYjIwOgyrvyqpycHLOGPywsrMrXVTWvVafTVfm4ug2dTlfrNoQQTYuiKKSkpAANb0vVZOTs2bNSSNbBpE2vm4a06XPnzq32NdKm25Yk80K4uIasi1uddu3aNclkvjFo2bIl7dq1Y/PmzURFRdG9e3cCAwMZNGgQCxYsYN++fezbt485c+Y4JL6QkBAAnnjiiWq/W5bOcauqpyM4OJj09PRKj6elpZntv6ZtCCGaluzsbPR6PW5ubtX2QFqqefPmBAQEkJeXx7lz56wUoWiqXKVNf/TRR+ndu3eVbaq06bYlybwQLswaS+lUJTo6mk2bNpGQkICiKE3y5OjKBg8ezE8//URERATDhg0DynuLIiMjef311yktLa1UkOZi6h35kpISmjdvbrXvQZ8+fQgMDOTkyZPcfPPNDd7exQYNGsRvv/1mKgykWrVqFT4+PtXOFRRCNF2pqalAeW9ffYvfqTQaDdHR0ezbt48zZ85wyy23mKrkC1Ef1mzTG7rc28XUNv3UqVNMmzbN6teL0qbXTs4sQriw7OxsiouLcXNzs+rQotatW+Pm5kZeXh5ZWVlNohpoYzJo0CC++OILsrOzzZaTGzhwICtWrCAoKIju3bvXuA1/f3+ioqL4448/GDRoEAEBASQnJ9O6desGxebn58fjjz/OvHnzyMnJ4aqrrqJ58+ZkZWVx9OhRsrKyWLBgQb23P2vWLP7880+mTZvGrFmzCAoK4ocffmD9+vX897//NSuUI4QQ8G8yb40islCeaO3bt4/k5GQ++ugjdDodXl5eVtm2aHqs2ab//vvvDBo0iKCgIEJCQmjVqlWDYqvYpufl5Umb7gCyzrwQLkztlQ8PD8fNzc1q2/Xw8DAlbQkJCVbbrrCPgQMHotVq8fX1Nbtrrc69GzBggEW9T88++yw+Pj7cc8893HDDDaY1Xxtq/PjxfPrppxQWFvLkk08yY8YMnn32WQ4fPlxr70JtoqOj+eqrr2jfvj1PP/00s2bN4sSJEzz//POmKr1CCFGROmS3urm8daXOm79w4YLVe0JF02PtNv3uu+/muuuus1qbPm7cOD766CMKCgqkTXcAjaIoiqODEE2HoijodDqCg4Nl6LYV/Pbbb2zevJm+fftyzTXXWHXbGzZs4M8//6RLly5Mnjy51te7yt+2uLiYxMRE2rdv3+BiMU2BoigYjUYMBgMeHh5O/bdtzOR7K6zBVc7T9rZkyRKysrKYOnUq0dHRVtnmG2+8QXp6OldffTURERFERkY2eAi/qOzic6OiKBgMBtzc3OQ7bidyzOvOmm26nFWEcGG2mC+vUnsWTp8+jdzza7qMRiN79uxh//79GI1GR4cjhBBWpdfrycrKAqw3zB6gU6dOlJaWEh8fT+vWrSksLLTatoUQQiXJvBAuqmLxO2tWsldFRkbi4eFBUVFRlZVEhRBCCFentm9+fn74+flZbbuxsbFW25YQQlRHknkhXJROpzMVv7PWPL+K3NzcTIVRzpw5Y/XtCyGEEI5m7eJ3qtatW+Pj42PVbQohxMUkmRfCRZ0/fx6wfvG7itq0aQNIMi+EEKJxslUyr9Vq6dixo1W3KYQQF5NkXggXZcsh9ipJ5oUQQjRmtkrmoXzevEpqzwghbEGSeSFclD2S+VatWqHRaMjJySEnJ8dm+xFCCCHsTVEUmybzFSvjS+0ZIYQtSDIvhAtSFMU0zN4WlexVnp6eppsF0jsvhBCiMcnLy6O4uBiNRkOLFi2svn1PT0/Tfx85csTq2xdCCEnmhXBBti5+V1Hr1q0BSeabKo1GQ0hIiKxLLYRodNRe+RYtWuDu7m717bu5uXHllVfStWtXjh8/LkPthRBWJ8m8EC5IHWIfFhZms+J3qrZt2wKSzDdVWq2W6Oho2rVrJ8m8EKJRUYe+h4aG2mT73t7erF69mhtvvJHc3FzS0tJssh8hRNMlybwQLkgdYm/L+fIqtWc+LS2NoqIim+9PCCGEsIeMjAwAmwyxV3l5eZluih86dMhm+xFCNE2SzAvhgtSeeVvOl1f5+/vTrFkzAJKTk22+P9H4bNmyhUmTJtGrVy9iY2NZt24dAGvXruXqq6+mR48exMbGWn1OaWpqKkuWLJG5qkKIKqnJvK165lVqVfvDhw/LUHvh8qRNdy6SzAvhYhRFMSXV9kjmAaKiogBJ5psig8HArl272Lt3L0ajsc7vVxSF+++/Hw8PD9566y2WL19O//79ycrK4uGHH6Z169a8//77LF++nHbt2lk19rS0NJYuXSoNvxCiEkVRTMPsbdUzX1BQgFarZdCgQRiNRjIzM03z9IVwRTW16Y888oi06Q5g/WofQgibysjIoKSkBHd3d5sspVOVqKgoDhw4IMm8qLO0tDR0Oh0jRoxg0KBBpsd37dpFaWkp48aNIz4+3oERCiGaosLCQoqLiwFo3ry5zfcXHR3N6dOnOXToEC1btrT5/oSwharadEVR2LFjh7TpDiI980K4mIq98lqtfX7CrVq1AuDcuXMyRNDJLVmyhNjYWE6cOMEDDzxA3759GTx4MPPnzycvL8/stSUlJSxatIjhw4fTvXt3hg4dyoIFC8jNzbVoXwcOHOCuu+4iPj6euLg4JkyYwNq1a81iufTSSwF4+eWXiY2NZfjw4cybN4+bbroJgLlz5xIbG8vUqVMt3q4qNTWVJ554gmHDhtG9e3eGDBnCvffeS0ZGBtu2beO6664DYP78+cTGxhIbG8uSJUvqdkCFEI2S2isfHByMh4eHzffXuXNnQIbai7pxlTZdbcOlTbc/6ZkXwsWcO3cO+Hfouz2Eh4fj5uZGUVER2dnZpjn0jVFBQUG1z7m5ueHt7W3Ra7VaLT4+PvV6rTXMmTOHMWPGcN1113H8+HEWLVoEwPPPPw+U30m/55572Lp1K3fccQf9+vXj2LFjLFmyhL1797J8+XKzNZIvtnXrVmbOnEnPnj156qmnCAgIYO3atcydO5fi4mImTZrE9ddfT+fOnZk9ezZTp07lmmuuwdPTE39/f+Li4nj66ad54IEHGDBgAP7+/hZvF8ob/WuvvZaysjLuuusuYmNjyc7OZuPGjeTk5NCtWzeef/555s+fz913381ll10GID1iQgjAfvPlVZ06dWLdunVkZWWRmpoq5yI7kTbd9m26n58f3bt355lnnpE23QEkmRfCxag982pvuT24u7sTERHBuXPnOHfuXKNO5tUGqCpjxoxhzZo1pn+HhYVRWFhY5WuHDRvG+vXrTf9u166d6eLxYv369WPHjh31C7ga1113HTNnzgRg8ODBJCUl8d133/Hcc8+h0WjYuHEjGzdu5L///a/pdZdccgktW7Zk7ty5rFy5ksmTJ1e7/QULFtCpUyc++eQT0/rMQ4cOJTs7m8WLFzNhwgRatmxJWVkZUL7yQq9evUzv79ixI1C+9GHFxy3Zrlar5bXXXkOn07Fq1So6dOhgev+YMWNM/60WnWrTpo3ZPoQQwh6V7Cvy9PSkU6dOHDlyRIba25G06bZv0xVFMbXD0qbbnwyzF8KF6PV6U/EceybzIEXwXM3w4cPN/h0bG0tJSQmZmZlA+d1ywHRXXDV69Gh8fX3ZsmVLtdtOSkoiISGBsWPHAlBWVmb636WXXkp6ejqJiYl1jrku292wYQMDBgwwa/SFEMJS9k7mAbp27QrA0aNH7bZP0ThImy6qIz3zQriQCxcuoCgKAQEBBAYG2nXfTSWZz8/Pr/Y5Nzc3s3+npaVV+9qL6xmcPn3a4tdaQ3BwsNm/1eF1asEnnU6Hu7t7pVEWGo2GFi1aoNPpqt22ehH8wgsv8MILL1T5muzs7DrHXJftZmdn260ApBCi8bF1JfuqdOzYEY1GQ0ZGBjk5OQQFBdlt302VtOnSpjd2kswL4ULU+fL27pWvuM+UlBTKyspMw6UaGz8/P4e/1h6Cg4MpKysjKyvLrPFXFIWMjAzi4uKA8guBoKAgFEVBo9EAEBISAsCdd97JlVdeWeX227dvX+eY6rLdkJAQWeJJCFEver3eVBTMlnPm3dzcGDNmDKWlpab52VFRUZw7d46EhAR69+5ts32LctKmm7fpVZE23bU1zqtxIRoptVfcnsXvVMHBwfj6+lJYWEhKSopDbigI6xk0aBDvv/8+q1evZvr06abHf/nlFwoLC01Lzmi1Wjp27IjBYDAl89HR0bRr146jR4/ywAMPWC2mumz30ksvZfXq1SQkJBAdHV3lay7uuRBCCPi3x9DX19fqhcoq8vb25scff0Sn05kKrUVHR3Pu3DlOnTolybywGkvb9KpIm+7aJJkXwkUoiuLQnnmNRkNUVBQnTpzg/Pnzksy7uEsuuYQhQ4bw8ssvk5+fT58+fTh27Bivv/46Xbt2Zfz48TW+f8GCBdx+++3cdtttTJw4kfDwcHJycjh16hSHDh3i9ddfr1dclm73vvvuY8OGDdx8883ceeedxMTEkJeXx99//8306dPp0KEDbdq0wdvbmx9++IEOHTrg6+tLWFiYDOUToonLysoC7LO+/MU6dOjAhg0bSEhIMBvxJERDSJvedEkyL4SLyM7OJi8vD61WS2RkpENiiIiIMCXzwrVpNBrefPNNlixZwooVK3j77bcJDg5m/PjxPPDAAzUuYQMwcOBAvvnmG95++22ee+45cnNzCQ4OpkOHDowePbrecVm63fDwcL799ltef/113nvvPXQ6HSEhIfTt29c0t9DHx4fnnnuOpUuXctttt1FaWsrs2bOZM2dOveMTQrg+RybzUVFReHp6UlRUREpKChEREXaPQTQ+0qY3XRpFURRHByGaDkVR0Ol0BAcHy93oOtqzZw+rV6+mdevW3HrrrQ6J4dixY3z11VeEhYVx9913mz3nKn/b4uJiEhMTad++vdn6sqJqBoOBffv2AdCzZ89KBYOEfcj3VliDq5ynbW3lypXs27eP4cOHM3ToUJvtp6CggLCwMKB8HW11mbTPP/+ckydPMnr0aOLj4222/6bg4nOjoigYDAbc3Nya9HfcnuSY150123RZmk4IF5GUlASUr+HpKOqIgPT0dPR6vcPiEPZlNBoxGo2ODkMIIaxC7Zm/uPK3LRQWFlZau1ydpnb27Fmb718I0bhJMi+Ei1CXQWnXrp3DYggICMDf3x9FUaTqqBBCCJekrs1tj2S+Kq1btwYkmRdCNJwk80K4AJ1OR05ODlqt1nQR4Chq77zMmxdCCOFqiouLTT3ljkrmo6Ki0Gg05OTkkJeX55AYhBCNgyTzQrgAtVc+MjKy1iImtqYW67lw4YJD4xBCCCHqSh1i7+fnh5eXl0Ni8PLyokWLFoC0pUKIhpFkXggX4Azz5VXSMy+EEMJVObKSfUUtW7YEICUlxaFxCCFcmyTzQrgAtWfeGZJ5tWc+IyPDpYvgyUIewpXI91UI63D0fHmVuja21J+xDjlHCldize+rrDMvhJPT6XTodDo0Gg1t2rRxdDimInj5+fmkpKQ4RUx14eHhgUajoaCgAB8fH0eH4/Q0Gg0BAQFyoeRg6hxfDw8PB0cihGuzZyV7rVbLsGHDKCsrQ6s17z+TnnnrkDZduCJrtumSzAvh5E6ePAmUL2XjqPl9F4uMjOT48eNcuHDB5ZJ5Nzc3goKCSE9Pp6SkhMDAQNzd3WVt1Bq0adMGg8GAXq+X42RniqJQWFhIWloawcHBuLm5OTokIVyaPZN5Hx8f/vzzT3Q6XaVEU03ms7KyKCkpcZr23dVc3KYHBASg0WikXbcjWWfecrZo0yWZF8LJqcl8x44dHRzJvyIiIjh+/LjLzptv2bIlPj4+pKWlkZub6+hwXILRaKzUsyTsJzg42HTxL4SoP2eZM+/n50dAQAB5eXmkpaU5fKUaV3Zxmy7tlf3JMa8ba7bpkswL4cQMBgOJiYmAcyXzahE8V63Cq9FoCA4OJigoCIPBQFlZmaNDcmqKopCbm0tgYKDcdXcADw8P6ZEXwgqcYVm6ilq2bEleXh4pKSmSzDdAxTa9rKyMrKwsaa/sSK4R6sbabbok80I4sTNnzqDX6/Hz8zMVnnMGajKfnp6OXq93+HJ59aUOxXN3l1NhdQoKCmjXrh2KonD69Gn8/f0dHZIQQtSLTqcDwNfX1y7tVm3nz/DwcE6cOCFF8KxEbdM9PT3x9vaWxNJOFEWhuLhYjrmDyHgIIZzYiRMngPJeeWc6Qfr7+xMQEABI8Z6mICMjw1QBWgghXJWazAcHB9ttnzWdP9W15uX8KoSoL0nmhXBizjhfXiXrzQshhHAl2dnZAISEhDg4knJqMp+RkeHgSIQQrkqSeSGcVE5ODunp6Wg0Gjp06ODocCpRh/276rx5IYQQTYsjeuZrohbhy8/Pp6SkxMHRCCFckSTzQjgpdYh9q1atnHLtVDWZl555IYQQrsDZknlvb2/8/PwA6Z0XQtSPVH0Swkk58xB7+HeYfe6ZC5x/fhlF2w5Tpi+lZEgPmk8fg0dkCwdHKIQQQvzL2ZJ5KB9qX1BQQGZmJlFRUY4ORwjhYiSZF8IJOeuSdBX5+/vTOquMHl/vI6Nkt+nxtK2HSV+6gogFt9F85jVOVbhPCCFE06QoitPNmYfyofZJSUnSMy+EqBdJ5oVwQs66JF1FeX/ups9Xe9GWGjBGh9N6zmQKS4op+X4ThdsOc/6Rtyi9kEHLJ6ZLQu/CtFot/fr1w2AwoNXKzCwhhGsqKiqitLQUgKCgILvs05Lzp1S0F0I0hCTzQjghZ12STlVyKpmkW55FW2ogpV0whQ+Poef1o9DqdETNHE/G0u9Ieeoj0l/9Bo27Oy0fnerokEU9+fj4sH37dnQ6nVPWbhBCCEuovfIBAQG4u9vn8teS86dUtBdCNIQk80I4IWeeL68YjZydtRhjfhHaXh3YOqQZzdPTTM9rNBrC7r0era835x9+i7SXv8S7W3uCxw9xYNRCCEdITU3lp59+YsOGDSQkJJCRkUFQUBB9+vRh5syZ9OzZ0+JtGY1GvvjiC5YvX05SUhK+vr4MGDCAuXPn0q5dO9t9CNEoOON8efi3on1mZiaKojjlDXwhhPOSMZNCOBlnX5Iu65OfKNx+BK2/D63eehDFTUtGRkalZXVazBxLi1mTADg3ezHFh087IFohhCMtW7aM559/nrNnzzJ48GBmzJhB3759+f3335kyZQpr1661eFtPPvkk//d//4fRaOTmm29m2LBh/PHHH1x33XWmG6BCVMdZk/mgoCA0Gg0Gg4H8/HxHhyOEcDHSMy+Ek1EvSp1xSbqyzBwuLPgYgJaPTSM4th0BAQHk5eWRkpJSaR5ixJMzKD6YQP5fezk97Rli/lqK1s/bAZGL+iosLKRr164YjUaOHDliWkZJCEv06NGDzz//nH79+pk9vnPnTqZPn86CBQsYMWIEnp6eNW5n69atfP311/Tr14+PPvrI9PoJEyYwY8YMnnrqKT777DObfQ7h+tRh9vZM5i05f7q5uREYGEhOTg7Z2dkEBATYLT4hhOuTnnkhnEzF+fLOJn3pCoy5BXh3j6b5zGuAf5eou3DhQqXXa9zdaPP+I3hEtkCfcJ4LT39k13hFwymKQlJSEmfPnkVRFEeHI1zMyJEjKyXyAP369WPAgAHodDqOHTtW63a++eYbAO6//36zxH/QoEEMGTKEHTt2mFYAEaIqas+8PSvZW3r+VGNSYxRCCEs5XTKfmprKxx9/zK233spll11G9+7dueSSS5gzZw779u2r07aMRiOfffYZY8eOpUePHgwcOJD77ruP06dP2yZ4IRrImZekK0vXkfHeagBaPjoVjZsbgKnaflXJPIB78yBavX4/AJnv/UD+hr02j1UI4fzUImSWFCPbtm0bvr6+9OnTp9JzQ4aU1+PYsWOHdQMUjYqzDrOHf2OSZF4IUVdON8x+2bJlvPfee7Rp04bBgweb1t9ct24d69atY9GiRYwZM8aibT355JN8/fXXdOzYkZtvvpnMzEzWrl3Lpk2b+Oqrr5wuWRLCmZekS1/6HUphCT69OxFwVbzp8Zp65lUBw/vQbPposj7+ibNzXiXm7zdxC/S1ecxCCOd0/vx5Nm/eTGhoKDExMTW+trCwkPT0dGJiYnD75yZiRWrxu5pu1MuoknLqcWhqx0NRFFOiHBQUZLfPX3E/iqJUu181mc/Ozm5yfxtra6rfcUeSY247lhTEdLpkXubXiabMWZekM+QXkfnJzwCE//cms9jUmw4ZGRno9fpqtxGx4Dby/thN6ZlULvzvfVq9eq9tgxZCOKXS0lIefvhh9Ho9Dz30UJUJekV5eXkA+Pv7V/m8+nhNxcNycnLkQrOCnJwcR4dgV/n5+RgMBjQaDUaj0W494AUFBab/zsnJoaysrMrXeXh4AOXtqPTOW0dT+447Aznm1mfJtCCnS+ZHjhxZ5ePq/LqNGzdy7Ngx4uLiatxObfPr/v77bxITE2nfvr31gheigZx1Sbrsr9ZhzC3As0MkASP7mz3n7+9vKoKXnp5OWFhYldtwC/Cl9dK5JIybR9anPxM08VIChvWyQ/RCCGdhNBp59NFH2bFjB5MnT2bChAl22e/FxTmbKkVRyMnJMVVQbyrUG0KBgYGmpeDsQU3Sofw7WN0NqaioKKD8poMzTgNwJU31O+5Icswdy+mS+ZpYc37d33//zY4dOySZF07DWZekU4xGMt5ZBUCLO8ej0VYutREZGcmxY8dIS0ujW7du1W7Lf0gPmt92NZkfrCH5gSXEbHwTrY+XzWIXQjgPRVF4/PHHWb16NePGjWPBggUWvU+t7l1dz7v6eHWJElg2VLEp0Wg0TeqYVCx+Z8/PXXFfNR1ztfdNHUGiraKdFXXT1L7jzkCOuWO4TDIv8+saB5lXUz11iH1UVBTe3t5Oc4xyf9uB/tR5tIF+BN9wRZVxRUREmJL52uIOf3w6OWu3ok+8QOoLn9PyyRm2Cl1YSdeuXTEYDID8dp2ds15IGY1GHnvsMVasWME111zDwoULLU5YfH19CQ0N5dy5cxgMhkrtutqWq227EBdzVPE7jUZjOn/W9NsMCAjAzc0Ng8FATk6OXSvuCyFcm0sk8zK/rvGReTWVHT16FChfX96Z5sylLf0OAL/rh5FXVgK6kkqvCQwMLH9tWppFf9vgp24h487FpL+xAu2I3nh2a2fVmIV1bdy4ESg/FzvTd1NU5oxJQMVEfsyYMbz44ou1tuMXi4+PZ82aNezevZv+/c2n+qjfz4sfF0LlqGTe19eXgwcPotPp8PWtvuirRqMhODiYzMxMdDqdU/6OhRDOyemTeZlf17jIvJqqGY1Gzp07B0C3bt2cZs5cScJ5SjYdBI2GyNnX4VlNXOoc/+zsbLy9vfH29q5xu8HXXUHp2u3krNpIzhMf0vHXV9C41+3iXtiP/G5FfVVM5EeNGsVLL71UYyKflZVFdnY2ISEhNGvWzPT45MmTWbNmDa+++qpZUdstW7awceNG+vfvL9PmRLWceVk6VcVkXgghLOXUybzMr2u8ZF6NuQsXLlBSUoK3tzeRkZFOc2yyv/gNgIAr+uLVtmW1rwsICCAwMJDc3FxSU1MtGu4aufAu8tfvpXjfKTLfWU3o7EnWClvYiPxuRV298cYbrFixAl9fX9q1a8dbb71V6TUjRoygS5cuAHz++ecsXbqU2bNnM2fOHNNrBg4cyPXXX88333zDxIkTGTZsmGm5WX9/f5566il7fSThgrKzswHnT+bh31iFEMISTpvMy/w60ZQkJCQA0L59e6cpfKOUlpmS+WZTr6r19REREeTm5nLhwgWLflse4c2IePo2zt33GinPLyPwmkF4tYtoaNjCygoLC+nfvz8Gg4Fdu3bh5+fn6JCEC0lOTgbKv0dvv/12la+JiooyJfM1efrpp4mNjWX58uUsW7YMX19fLr/8cubOnSu98qJaRqOR3NxcwP7TUOpy/lSTeemZF0LUhVMm8zK/TjQ1ajIfHR3t4Ej+lfvbDspSs3EPDSbgqvhaX68Wwbtw4YLF+wi5eSTZ3/5Jwd/7Of/I27RfbtnoG2E/iqJw+PBh038LURcLFy5k4cKFFr9+zpw5Zj3yFWm1WqZOncrUqVOtFZ5oAnJzczEajWi1WtPITXupy/lTvdEgybwQoi6cowuwgvrMrzt16hRZWVlmj0+ePBmAV199Fb1eb3pc5tcJZ6PX6zl79izgXMl81rJfAAiZcgVaT49aXl2ezAN1SuY1Gg2tFs1G4+FO3m87yFu3s37BCiGEEFWoOF/emacJSc+8EKI+nK5nXubXiaYmKSkJo9FIcHCw01SwLT2fQd5v5Yl1yM21D7GH8rXmATIyMigpKcHLy7L14706tqL57WPJePN7zj/2HjHDeqHxcLpTkxBCCBfkCsXv4N9VYfLz800jCYQQojZOd8Us8+tEU1Nxvryz9Bpkf7sejEZ8B3TFu1Mri97j5+eHv78/+fn5pKSk0LZtW4v3F/7fG8le/jslJ86S+eEaWtw5vp6RCyGEEP9yheJ3UN6GarVajEYjeXl5sqqSEMIiTpfMy/w60dSoyXyHDh0cHMm/dN/8CUDIDcPr9L6wsDDy8/M5f/58nZJ5tyB/Wj52C8kPLCF14ecEX3cZ7s3lQkYIIUTDuErPvDqnPycnh9zcXEnmhRAWkTE8QjhQfn4+aWlpAE4zWqToUCLFhxLReLoTNGFond4bFhYG1G3evKrZ1JF4d4/GkJNP6guf1/n9QgghxMXUZN5ZprHVRE3gc3JyHByJEMJVSDIvhAOpvfIRERH4+vo6OJpyaq98wMh43IPrVvlXTebV6TJ1oXFzI/LZ2wHI+uRn9GdS67wNYX0ajYa2bdvSunVrp5kGIoQQlnJkz3xdz5/qvHl1KT0hhKiNJPNCOFBSUhKAReuy24NiNP47xP76y+v8/vDwcKB8lYni4uI6v99/aE/8h/VCKS2T3nkn4evrS2JiIvv27XOaG05CCGGJsrIyU2LsiGS+rudPNZmXnnkhhKUkmRfCgdRkvi7zy22pYNMBSi9k4hbkT8CV/ev8fh8fH9MFU32G2gO0fGwaANnL/6D4xLl6bUMIIYRQE3l3d3f8/PwcHE3t1GH2eXl5Do5ECOEqJJkXwkHy8/PJzMwEoE2bNg6Oplz21+W98kHjh6D19qzXNtQl6uoz1B7At19nAkYNAKOR1IWf1WsbQgghRMVK9q4wTUh65oUQdSXJvBAOovbKh4eH4+Pj4+BowFhUQs7qjQAET677EHtVREQEUP+eeYCWj5avQJHz/QaKDibUezui4YqKioiPj+eKK66gqKjI0eEIIYTFHF38rq7nT5kzL4SoK0nmhXAQZxtin/fbDox5hXi0CsVvYLd6b0ftmT9//ny9t+HTPZqgiZcCSO+8gxmNRnbu3MmePXswGo2ODkcIISzm6GXp6nr+VIfZ5+fnYzAYbB2eEKIRkGReCAdxtmRet+qfXvmJl6LR1v/UoPbM63Q6CgoK6r2d8Ef+AxoNuWu3Unwkqd7bEUII0TQ5OpmvK19fX9zc3ADpnRdCWEaSeSEcoKioyLS+vDMk88aiEvJ+3Q5A0LghDdqWt7c3zZs3Bxo21N47pjWBVw8CIH3Jtw2KSQghRNNTcc68K9BoNDLUXghRJ5LMC+EAZ86cAaBFixZOUWE37/ddGAuK8Wgdhk+fmAZvzxpD7QHC7rsegOxv16M/K+vOCyGEsJyazDtqznx9qEPtJZkXQlhCknkhHOD06dOA81Sxz1n1N1DeK2+Nir/WSuZ9+8bif2lPKDOQ/sb3DY5LCCFE06DX6yksLARcK5mXivZCiLqQZF4IB1B75tu1a+fYQCgfYp/7S/kQ++DxDRtir7JWMg8Qev9kALKW/UJZlvRUCCGEqJ3aK+/j44O3t7eDo7GcDLMXQtSFJPNC2FlJSYlpLrkz9Mzn/bkbY34RHlGh+PSNtco2W7ZsiUajIS8vj7y8vAZty39YL7x7dEApKiHr45+sEp+omxYtWpjqIAghhCtwlvnydT1/SjIvhKgLSeaFsLPk5GQURSEoKMg0N86Rcv6pYh807hKrDLEH8PT0JDQ0FGh477xGoyH0nokAZLz/A0Z9aYPjE5bz8/MjLS2NEydOOEV9ByGEsISj15iH+p0/Zc68EKIuJJkXws7OnTsHQOvWrR0cCRiL9eT+tBWAoPFDrbptaw61D5owFPeI5pSlZJHz/YYGb08IIUTj5orF70B65oUQdSPJvBB2pibzrVq1cnAkkL9+T/kQ+4jm+PazzhB7lTWTea2nBy1mXgNA+pvfoyhKg7cphBCi8XKWYfZ1pSbzBQUFGAwGB0cjhHB2kswLYUeKojhVMq/2ygdeMxiN1rqng4rJvDWS72bTx6Dx9aL4QAIFG/c3eHvCMkVFRVx++eWMHTuWoqIiR4cjhBAWcYZh9vU5f/r4+ODm5gbQ4JozQojGT5J5IewoKyuLoqIi3N3dadmypUNjUYxGcn/bAUDgVQOsvv3w8HC0Wi2FhYVWWWLHPSSAZjeOAMp754V9GI1G/vrrLzZt2oTRaHR0OEIIUStFUZximH19zp8ajUaG2gshLCbJvBB2dPbsWQAiIiJMd94dpWjfScpSstD6++B3SZzVt+/u7k54eDhgnaH2AC3uHA8aDXm/bKfk5DmrbFMIIUTjkp+fT1lZGRqNxikKzdaVJPNCCEtJMi+EHTnVEPufy9eWD7i8D1ovD5vsIyIiArBeMu/VsRUBI/sDkPH+j1bZphBCiMZFHWIfGBjo8Bvn9SHJvBDCUpLMC2FHTpXM/7INgIBR1h9ir7JmETxVizvGAZD9xW8Ycguttl0hhBCNgzMMsW+IgIAAQJJ5IUTtJJkXwk70ej1paWmA45N5fXIGxftPgUZD4JX9bbafqKgowHpF8AD8L+uNV0xrjPlFZH+1zirbFEII0Xi4ejKv9sxLATwhRG0kmRfCTtSENjAw0NRQO0rer+W98r79O+PewnbzCUNDQ3Fzc6OkpISsrCyrbFOj0Zh65zPeW40iRdmEEEJU4KrL0qlkmL0QwlKSzAthJ8nJycC/vdWOlPvbTgACr4q36X7c3NxMVfutOdQ+ePJwtIF+6E+dJ+/3XVbbrqiar68vvr6+jg5DCCEs4gzL0qnqc/6UZF4IYSlJ5oWwkwsXLgD/ziN3FKO+1LROe8CIfjbfny3mzbv5+9Ds5pEAZL672mrbFZX5+fmRn5/PuXPn8PPzc3Q4QghRK2cZZl/f82fFYfayJKgQoiaSzAthJ2oyq1Z4d5TCnUcx5hfhHhqMd7f2Nt+fLZJ5gOYzrylfpu73XRSfkGXqhBBCQFlZmalH29HJfH35+fmh0WhQFIX8/HxHhyOEcGKSzAthB0VFRaaeAkf3zOf/sRsoLySn0dr+FKBOK7hw4YJVexi82kUQ+E8l/sz3f7DadoUQQrguta319PR02elBWq1WKtoLISwiybwQdqAOsQ8ODsbHx8ehseT9WZ7MB1zexy77a968OR4eHpSWlpKRkWHdbd8+FoDsL9dhyC2w6rZFueLiYq655hpuuOEGiouLHR2OEELUKDMzEyhvezQajUNjacj5U+bNCyEs4e7oAIRoCpxlvnxZZg5Fe08C5T3z9qDVaomIiODMmTOcP3+esLAwq23bf1gvvGJaU3L8LNlf/EaLuyZYbduinMFgYO3atab/FkIIZ1YxmXe0hpw/JZkXQlhCeuaFsANnmS+f/9deUBS8u7bDo2Uzu+3XVvPmNRoNLe5Ul6n7QZapE0KIJs6ZkvmGkGReCGEJSeaFsANn6ZnP+3MPAP52GmKvslUyDxAy+YryZeoSL5C3bqfVty+EEMJ1ZGVlAdCsmf1uWNtCxYr2QghRHUnmhbCxisXvHNkzrygK+XaeL69Sk/mUlBSrD9XW+nnTbOpVAGS8I8vUCSFEUyY980KIpkSSeSFsTO2VDwkJcWjxu5LjZyk9n4HGywO/Qd3suu9mzZrh5eWFwWAgLS3N6ttv8c8ydfl/7qb42Bmrb18IIYTzKykpMS3lJsm8EKIpkGReCBtTh5Y7eoi92ivvN6g7Wh8vu+5bo9HYdKi9Z9uWBI6WZeqEEKIpU4fY+/n54e3t7eBoGqbiMHtFURwcjRDCWUkyL4SNqT3zji5+l7f+n/nydqpifzFbJvMALe4oL4SX/dXvGHLybbIPIYQQzksdYu/q8+UB/P39gfIq+IWFhQ6ORgjhrCSZF8LGnKFnXjEYKNhyCChfzs0RbJ3M+w3tiVfnthgLisn6/Deb7KMp8vPzw2g0kpWVhZ+fn6PDEUKIajnbfPmGnD/d3NxMCb0MtRdCVEeSeSFsqKioCJ1OBzi2Z77oQALGvEK0gX74dG/vkBjUZD4tLY2ysjKrb1+j0Zh65zM/+FGWqRNCiCZGHWbvLMl8Q8m8eSFEbSSZF8KGUlNTAQgKCnLo/L2CjQcA8BvUDY2bm0NiCAoKwtfXF6PRaDou1hZy/eVoA3zRJ14gf8M+m+xDCCGEc3K2nvmGkmReCFEbSeaFsCE1aW3ZsqVD48jfXJ7M+w+Oc1gMGo2G8PBwAJsl81o/b0JuGA5A1kdrbbKPpqa4uJjJkyczffp0iouLHR2OEEJUSVEUp5sz39DzZ0BAACDJvBCieu6ODkCIxiwlJQXAlMQ6gmIwUPjPfHm/SxyXzEP5cUhMTDQdF1toNn00me//SM7aLZReyMQjonH00DiKwWDg22+/Nf23EEI4o6KiIlPC7CzJfEPPn9IzL4SojfTMC2FDag+0I5P54sOnMeTko/X3wadHB4fFAf+OULBVzzyAT9f2+A7oCgYjWZ//arP9CCGEcB5qr3xQUBAeHh4OjsY6JJkXQtRGknkhbMRoNJKWlgY4NpnPV+fLD+yGxt0x8+VVFZN5W66b23zGGACyPv0ZRXqThRCi0Wts8+XBfK15IYSoiiTzQthIZmYmBoMBDw8Phw75K/hnvryjh9gDtGjRAq1WS0lJCTk5OTbbT9C4IbiFBFB6Lp2833fZbD9CCCGcg7PNl7eGij3ztrwBLoRwXZLMC2EjFYfYazQah8SgGI0UbD4IgJ8Di9+p3NzcCA0NBbDpvHmttychN10JQKYUwhNCiEavsS1LB/8WwCstLZUCpEKIKkkyL4SNOEPxu+IjSRiy89D6eePbq6PD4qjIHvPmAZrfMgqAvHU7KU3Jsum+hBBCOFZjHGbv4eGBj48PIPPmhRBVk2ReCBtxhuJ3BZvKh9j7xndF4+Eci1fYenk6lVfHVvj27wIGI7pv/rTpvoQQQjhOxWXpGlMyD1IETwhRM0nmhbARZ0rm/Z1gvrxKPR62HGavCrnxCgCyv1on8w3rydfXl7y8PM6ePYuvr6+jwxFCiEpyc3MpKytDq9USHBzs6HBMrHH+lGReCFETSeaFsIHCwkJT9VlHJfOKolCw7TAAfoO7OySGqqjD7LOzsykpKbHpvoInXorGy4PiI0kU7T9l0301VhqNBj8/P/z8/BxW+0EIIWqi9sqHhISg1TrPpa01zp+SzAshauI8ZzwhGhG1Vz4kJAQvLy+HxKBPSqEsLRuNhzs+vTo5JIaq+Pr6mor6qEv32YpbkD+BYwYBkP3lOpvuSwghhGM0xuJ3KknmhRA1kWReCBtwhuJ3hduPAODTsyNab0+HxVEVuw61n1I+1F737XqM+lKb76+xKSkpYcaMGcyaNcvmIymEEKI+nHVZOmucP2WteSFETSSZF8IGnGK+/D9D7H3juzgshurYq6I9QMDlfXAPD8GQlUv+X3ttvr/GpqysjE8++YQvv/ySsrIyR4cjhBCVOGvxO2ucP6VnXghRE0nmhbABdfi4M/TM+w3o6rAYqmPPnnmNuxtB44cCkLPyb5vvTwghhH05azJvDZLMCyFqIsm8EFZmNBpJT08HICwszCExGHILKT58GqB8eTYno/bMp6WlYTQabb6/4An/JPNrtmAskaH2QgjRWBgMBnQ6HdA4k3m1xkxJSYlMdRJCVCLJvBBWptPpKCsrw83NjZCQEIfEULjrKCgKnm1b4tHSueYQQvm8Rnd3d0pLS8nOzrb5/nzju+Ae0RxjbgH563fbfH9CCCHsQ6fTYTQa8fDwMCW+jYmXl5epkK7MmxdCXEySeSGsTB1i36JFC4ctkePM8+UBtFqtadSCXYbaa7UEjxsCgE6G2gshRKNRsfhdY10+U4baCyGqI8m8EFbm6CH24Nzz5VXqvHl7FMEDCPpnqH3umi0Yi/V22acQAlatWsX//vc/Jk2aRPfu3YmNjWXFihV12sa2bduIjY2t9n979+61TfDC6TXm+fIqSeaFENVxd3QAQjQ2ajIfGhrqkP0rBgOFO48CztszD/8m87Zea17l278zHpEtKD2fQd4fuwj6Z/15IYRtvfbaayQnJxMSEkJYWBjJycn13lZ8fDzx8fGVHlfrcIimR11j3tmWpbMmdfqAJPNCiIs5ZTK/atUqdu3axcGDBzl+/DilpaU8//zzTJo0yeJtbNu2jWnTplX7/PLly+nVq5cVohXCnJqcOiqZLz56BmN+EVp/H7y7tHVIDJaw5/J0UD7UPmjsJWS8s4rcNVskmbeQr68vqamp5OTk4Ovr6+hwhAt65plnaNu2LVFRUbz77rssWrSo3tuKj49nzpw5VoxOuDpn7pm31vlTeuaFENVxymRe7uILV2U0GsnIyAAcN8y+cPs/8+X7xqJxc3NIDJZQj49Op6O4uBhvb2+b7zNwzMDyZP63HSgGg1MfH2eh0WgIDQ3Fw8Oj0c5HFbY1ePBgR4cgGjFnTuatdf50xWTeWKwnd80W8v7aQ9mFTDTenvj2jaXZ1Ktwbx7k6PCEaDScMpmXu/jCVWVnZ2MwGHB3dyc4ONghMfxb/M5558sD+Pj4EBgYSG5uLmlpabRp08bm+/Qb2A1toB+GjBwKdx5z6poCQojKTp8+zaeffkpxcTGRkZEMHjzYouHViqLYITrnpx6HxnI8SktLTQlus2bNnPJzWeOYVxxm74yfsSJjsZ7Md1eT/sYKDBk5Zs/lrtlC6ktfEj7vP7SYNckmN4gb23fcFcgxtx1LfiNOmczLXXzhqpyhkr0rFL9ThYeHk5ubS2pqql2SeY2HO4FX9kP33V/k/rLNJY6Ro5WUlDB37lz0ej1Lly61ywgKIarz448/8uOPP5r+7e3tzZw5c5g5c2aN78vJyZELzQpycnJqf5ELUEfCeXl5UVJSgl7vXMVNS0pKePzxx4Hyjip1ibm6Uq8ndDodOp3OWuFZlaIoFP26E93zn2M4W147yC2yOb5jBuLRKQpjfhEF32+k9GAiKU9+SO6OIzRbdDcad9uMkGss33FXIsfc+ixZ4rreyfxzzz3H5MmT6dixY303YRf1vYsvRH04upJ9aWoW+tMpoNHg2y/WITHURXh4OCdOnLDbvHmAwFEDy5P5n7YR8b8ZdtuvqyorK+Ott94C4NVXX3VsMMJmnL1Nb9asGQ8//DCXXXYZkZGR5Obmsm3bNl5++WVeeukl/P39mTJlSrXvDwqSYb1QnnDl5OQQFBTUKKbNXLhwASi/gW7JRa+9FRQU8MEHHwDwyiuv4O/vX6/tqPPtS0pK8Pb2drqbqkWHErnw6LsUbNwPgHvL5rR8fBrB119ulqwr991A1kdrufDouxT+uAXv5kFELppt1e9iY/uOuwI55o5V72T+008/ZdmyZfTs2ZPJkyczevRofHx8rBmbVdT3Lr7cwbeNxj4Up2LPvCM+Y8E/vfLeXdqiDfC1awz1+duqNz1SU1PtFqv/FX3A3Y2SY2coTjiPV/sIu+zXVVX8uyiK0mh/u41FfS+knL1N79SpE506dTL928fHh3HjxtG5c2cmTZrEkiVLmDx5crUjouQC05xGo2kUx6TifHln/DwVY2rIMffy8sLHx4eioiJyc3Od5rdZfCSJ9KXfkb38DzAa0Xh5EDp7EqH3TcbNv3KMGo2GFrddg0dEc5KmPkPWJz/j3bU9LW4fa/XYGst33JXIMXeMeifz77zzDt988w3r169n3759PPvss1xzzTVcf/31dO/e3Zox1ktD7+LLkDzbaqxDcVJSUoDyu+iOGAqn27AHALee0Q4bileXv616QZKamkp2drbdGgGv/p0p2XKItJXrCZgx2i77dFUFBQWm/87JyaGsrMyB0Yja1Ld30tnb9OrExMTQs2dPdu7cSVJSEu3bt3d0SMKOmsKydKrg4GCKiorQ6XSmpV2tTVEUlMISjIXFKEYjKIDRiGJUAAWMCmVZuRTuPErOD5so+Hu/6b1B44YQ8fRteLapPbagMYOI+L+ZXHj8PS48+QH+w3rhHdPaJp9JiMau3sn8sGHDGDZsGFlZWaxYsYLvvvuO5cuX8/XXXxMbG8vkyZMZN25cvYcUNVRD7+LLkDzbaMxDcYxGoymBbt++vUMK4GXuTwAgZGhvu++/Pn/bwMBA3NzcKC0tBbBbzGXXDObClkOU/nWA4Lk32mWfrsrDw8P030FBQQ47pwvbcvY2vSbqDYzi4mIHRyLsTU3mnbGSvbUFBwdz4cIFq96oNxbryfttB7k/baVgxxFKz6ShlNbhhq1GQ9A1g2kx+1r8+neu075b3D2BvHU7yV+/h3OzFtPhl0VoHFRrSAhX1uACeM2aNWPmzJnMnDmTnTt38u233/LLL7/wf//3f7z44ouMGjWK66+/nr59+1oj3gaz9C5+Y0s0nU1jHIqjVrL38PAgJCTE7p/PWKynaN9JoLz4naOOb13+tm5uboSGhpKSkkJaWprdelcCr+zPhcfeo3DbIZTCErR+zjX/0JlYa5iocA2u1qaXlZVx+PBhNBoNEREyZaapaUo982onkzWSeaXMQObHa0lbvJyylKyqX6TRlP9P+895X1v+b62vNz5x0fhf3ofgCUMt6omvevMaWi2Zy/FBd1K46xi67/4i5PrLG/CphGiarFrNvl+/fvTr149rr72WBx98kLS0NFauXMmqVavo2LEjs2bNYtSoUdbcZb3IXXxhC+p8+dDQUIckPEX7TqLoy3APDcazXUu777++wsPDSUlJITU1lc6d63Znv748O0Th0Sac0jOp5G/aT+DIeLvsVwhX4og2PSsri+zsbEJCQswStD179tCrVy+zc2tZWRkvvvgiycnJDB061GHLgQrH0Ov15OfnA/WfXuJK1O93Q6cpliSc5+xdL1O48ygAHhHNCZo0jIBhvfDq3Aa34AC0ft52uY7xjGpB2P2TSXnmE1Ke/pigawaj9alfxX8hmiqrJfP5+fn88MMPfPPNNxw5cgRFUejduzcTJ07k8OHDrFq1irlz53L27Fluv/12a+22zuQuvrAVtZJ9aGioQ/avLknnG9/FpXpP1bl/9qxor9FoCBjeh6yPfyLvj92SzAtxEWu26d988w27du0C4Pjx46bHtm/fDsCIESMYMWIEAJ9//jlLly5l9uzZzJkzx7SNBx98EIDevXsTHh5OXl4eO3bsIDExkcjISBYsWGD1YyCcm9or7+Pj4zQF4WxJTeYb0jNfsPUQp//zNIbsPLQBvrR84haaTRuF1tOj9jfbSIu7J5D50VpKk9PJ/HANobMmOSwWIVxRg5P5isPwioqKCAwM5D//+Q833HCD2Zz1e++9l+nTp/PZZ59ZNZmXu/jCWTg6mS/YfhgA3/5dHLL/+nJEMg8QMLzvP8n8Lrvu19X4+PiQkJDgVBWUhe3Yok3ftWsX33//vdlju3fvZvfu3QBERUWZkvnqTJkyhb///pvt27eTnZ2Nu7s7bdq04a677uLWW2+VOjdNkCsMsbfm+bOhyXzB1kMkTHoMpViPT58Y2n78KJ6tHLOMbkVaHy/CH76Jc/e9RvrS72h+69XSOy9EHdQ7mf/www/55ptvOH36NIqi0KtXL2644QbGjBmDl1flH2GzZs246qqrWLp0aa3blrv4whWpw+wdsca8oiimnnm/AV3tvv+GUJP5rKws9Ho9np6edtmv/6U9wU2L/mQy+jOp9Z7319hptVratWuHTqertmCocH22bNMXLlzIwoULLYpjzpw5Zm256o477uCOO+6waBuiaXCFZN6a5081mS8qKqKkpKTK32V1io+f5fRNC1CK9QRc2Z+2H81H6+s8tWKCbxhO6stfUno2jaxPf6bFneMdHZIQLqPeyfyLL75IQEAAN910EzfccAMxMTG1vqd79+5MmDCh1tfJXXzhagwGg2m9W0f0zOtPp1CWrkPj6Y5Pz452339D+Pn54e/vT35+PmlpabRq1cou+3UL9MO3X2cKtx0m749dNJ8+xi77FcIZ2bJNF8IWXCGZtyYvLy+8vb0pLi4mJyfH4o4DY1EJZ2Y8h0GXj2+/zk6XyANoPT0Iu/96kh98g/Q3v6f5zGvQuLk5OiwhXEK9k/nnnnuOMWPG4O1t+QlBXfqmNnIXX7iarKwsjEYjnp6eDrlRVPjPEHufnp3QetunZ9uawsPDyc/PJzU11W7JPEDA8D7/JPO7JZmvhl6v59FHH6WkpISXX365Tr1BwnXYsk0Xwhays7MB507mrX3+DA4OJiUlBZ1OZ3Eyf+HJDyg+koR7WAhtP3vC6RJ5VciUEaQ8u4zSs2nk/rKdoDGDHB2SEC6h3mN+tFotp0+frvE1x48fZ+XKlfXdhRAuw9GV7Au2/TNfPt615sur1IsSR8ybB8j/ay9KmcGu+3YVpaWlLFq0iKVLl1JaWurocISNSJsuXI0r9Mxb+/xZ13nzBVsOkvn+jwC0fuMBPMKct+q/1seLZlOvAiDzvR8cHI0QrqPeyfz8+fNZt25dja9Zv3498+fPr+8uhHAZji5+Z5ov76LJvDpvXr0pYi8+vTriFuyPMa+Qon0n7bpvIZyJtOnClZSWlpKbmws4dzJvbXVJ5pXSMpIfegOAZtNGEXBFXxtGZh3Nbx0DWi35f+2l+NgZR4cjhEuodzKvKEqtrzEajVIwSTQJjkzmDbkFFB9JAly3Z75iRXtLzi3WonFzw29wdwDyN+23236FcDbSpgtXoiazXl5eTWqVDXUanyVrzWd+/BPFR5Jwax5Iy/9Nt3Fk1uHZOpzA0QMAyHxfeueFsIRNW+XDhw9LoTnRJDgymS/ceQwUBc92LfEId80eihYtWqDVaikuLjb1ttiL3yU9ACj4W5J5IWoibbpwFhWH2DtiapujWNozbywqIe2V5QC0nD8V92aBNo7MeprPHAtA9vI/MBYUOzgaIZxfnQrgTZs2zezf33//vWm5uIqMRiMpKSkkJyczevTohkUohJNzdCV7V58vD+Du7k6LFi1IS0sjNTXVrgmD/5A4oPw4KqVlaDzqXRdUCJcibbpwVa4wX94WLE3mMz/+ibKULDxahRJy80jbB2ZF/pf2xLNdS/SnU8j5YRMhU65wdEhCOLU6XbVWbOQ1Gg3JyckkJydXep1WqyUoKIhRo0bx6KOPNjxKIZyYs1Sy94t3rfXlLxYeHm5K5i1ZFstavLu1xy3YH4Mun6J9J/Ht19lu+xbCkaRNF65KTeZDQpy3oJstqMl8YWEher0eT8/Kq9cYC4pJf/VrAMIeuhGtp4c9Q2wwjUZDyE1XkvrcMrK++E2SeSFqUadk/ujRo6b/7ty5M7Nnz2b27NlWD0oIV6IOsW/RooXdh/spBgOFu44B4DvA9ZP5AwcO2L2ivUarxe+SOHLXbCF/435J5kWTIW26cFVNtWfe29vbtNZ8dcvTZX68lrJ0HZ5tW9LsxhEOiLLhQqaMIPX5zyjYuJ+S0xfwahfh6JCEcFr1njP/6aefMnHiRGvGIoRLcuR8+eIjSRjzi9D6++DduY3d929NFYvg2Zv/kPJ58/kbD9h9387Ox8eHAwcOsGnTpiZVaKqpkTZduBJXSeZtcf5URyNkZ2dXek4xGMj4Z1m30Psnu+y0Mc9Wofhf1huA7C9qXmVDiKau3sl8fHw8UVFR1oxFCJfk0OJ3/yxJ59uvMxo3N7vv35rUZD4zM5OysjK77tvvn2S+cNshlFL77tvZabVaunXrRpcuXaSSeSMmbbpwFQaDwVTN3dmTeVucP9VkXr2hUVHuL9spPZOKW0gAIZMvt8r+HKXZTVcCkP3lOhSDwcHRCOG8LL5lt3LlSgBGjBiBv7+/6d+WmDBhQh3DEsJ1ODKZbwzF71T+/v74+PhQVFREeno6ERH2G1bn3aUtbs0CMWTlUrjnBH6N4HgKURNp04Wr0ul0KIqCh4cH/v7+jg7H7tQbGFUl85nvri5/zbRRaH287BqXtQVePQi3IH9Kk9PJ37CPgMv7ODokIZySxcn8vHnz0Gg09OzZE39/f9O/a6IoChqNRhp+0WgZjUaHVrJXe+ZdvfgdlBe9CQ8P5/Tp06Smpto1mddotfgN7k7uj5sp2LRfkvkK9Ho9zz77LMXFxTz99NN4ebn2BaIoJ226cFWutCydLc6fajJ/8TD7koTz5G/YBxoNzW8d0+D9OJrW25Pg64aR+cEasr/4TZJ5IaphcTL/3HPPodFoTAnL888/b7OghHAV2dnZGAwG3N3dTVVm7aU0JQt9UgpoNI2maFvFZN7e/If0IPfHzeRvPEDY3Bvsvn9nVVpaytNPPw3AE088Icl8IyFtunBVrjJfHmxz/qxumH32l+Vzy/0v74Nn6/AG78cZhNx4JZkfrCFn7VYM+UW4+UvdFiEuZnEyP2nSJLN/S6EcISAtLQ0o75W3dw9B4Y7yXnnvru1wC/S1675txZFF8PxM680fwqgvdbnlfISoC2nThatqqsvSqdSbGDqdDoPBgJubG4rRSPZXv5c/f5NrVrCvik/vTnhGR6JPOE/uz1sJuc616wAIYQtSzUiIBpD58tZVMZlXFMWu+/buXD5vXiksoWjfKbvuWwghhGXU4eWu0DNvCwEBAbi7u6MoiqkQYP7f+ylNTsctyJ/AMYMcHKH1aDQagq+9DADdt+sdGosQzqreyXxqaio7duygqKjI9JjRaOTdd99lypQpzJgxgw0bNlglSCGcVUZGBuDo+fKNJ5lXRzgUFhZSUFBg131rtFr8BnUDoGCLLFEnmhZp04WrcKVh9rag0WgqDbXP/uI3AIKvHYbW29NhsdlC8LXDAMj7YzdlmTkOjkYI51PvZP7VV19l1qxZuLv/O1L/rbfeYvHixezdu5ctW7Zwzz33cOCAXBSLxstRPfPGYj1F+04C4DvA9YvfqTw8PGjevDkAKSkpdt+/30A1mT9k930L4UjSpgtXYDQam3zPPJhXtDfkFpLz42YAQm5sPEPsVd4xrfHp2RHKDOSs3ujocIRwOvVO5vfu3cugQYPw8CifV2o0Gvnss8+Ijo5m/fr1fPPNN3h7e/Phhx9aLVghnInRaHRYz3zR3hMopWW4h4Xg2balXfdtaw6dNz+oOwCFWw+jGI12378QjiJtunAFOTk5GI1G3NzcCAwMdHQ4DlMxmc/9eStKUQlenVrh0yfGwZHZhgy1F6J69U7m09PTiYqKMv370KFDZGdnc/PNN9OyZUvi4uIYMWIE+/bts0qgQjgbnU5HWVmZQyrZF/wzxN43vovTL81TV2FhYcC/xQXtyadHB7R+3hhy8ik+kmT3/QvhKNKmC1dQsfhdY2v76kIdZp+dnY1u5d8ABE24tNEek6CJl4JGQ8GWQ+jP2f/aQAhnVu9k3mAwmBWo2rVrFxqNhoEDB5oeCw8PN/VcCtHYqEPsW7RogVZr31qShdvLi9/59W888+VVjuyZ17i74fvPMS3YctDu+3dG3t7ebNu2jXXr1uHt7e3ocISNSJsuXIGrzZe31flT/fw5yank/74LgOAJQ622fWfjGdUCv0vKV5zRrfjLwdEI4VzqnYFERkayf/9+07/XrVtHaGgo0dHRpsfS09Ob9DAo0bg5ar68oihmPfONjZrMp6enYzAY7L5/v8HlQ+0LNksyD+Dm5kb//v3p06cPbm5ujg5H2Ii06cIVuFoyb6vzp/r5fXYloJSW4dW5Ld5d2lpt+87o36H2kswLUVG9k/mRI0eye/du7r33Xv773/+ya9cuRo4cafaaEydO0KpVqwYHKYQzqtgzb0/6xAsYMnLQeLrj06uTXfdtD0FBQXh5eZnVJLAndd58wdZDdl8eTwhHkTZduAIpflcuKCgIrVZLxNHy65DgiY23V14VNO4SNB7uFB9MkGlwQlRQ72T+tttuIy4ujl9//ZUffviBTp06MXv2bNPzp06d4sCBAwwYMMAqgQrhbBzVM68uSefTqxNaLw+77tseNBqNQ4fa+/aJQePpTllKFvrEC3bfv7PR6/W89NJLvP766+j1ekeHI2xE2nThClytZ95W50+tVkuYtz9hZ3OB8vnyjZ17SAD+V/QFZKi9EBW51/6Sqvn7+/P1119z/PhxADp06GA2hMjLy4ulS5cSFxfX8CiFcDKKojiskn3BtvL58r7xjWdJuouFhYVx5swZhyTzWh8vfHrHULjtMAVbDuIVHWn3GJxJaWkpjzzyCAAPPvggXl5eDo5I2IK06cLZKYricj3ztjx/tj1fhNaoYGwXhnenpjFiJnjSpeT9vA3d9xsIf3Rqoy34J0Rd1DuZV8XEVL0MRqtWrWQ4nmi0dDodpaWluLm52f2iwlT8rhHOl1e1bFm+3J4jknkAv0Hd/knmD9HsPyNrf4MQjYS06cJZ5eXlUVZWhlarJSgoyNHhOFyzY+VV3fN6tnFwJPYTOGogGh8v9AnnKdp3Et9GONVQiLqybwluIRoJdYh98+bN7VrJ3pCTT/HRM0DjLH6ncuQwe6gwb14q2gshhFNQh9gHBwfbfQUZZ2PUl+K1v3zeeGp0iIOjsR83fx8Cr4oHQLdig4OjEcI5NKhnfvPmzXz00UccOHCAvLw8jEZjpddoNBoOHz7ckN0I4XQcNl9+x1FQFDzbtcQjrPE24Opa8/n5+RQUFODn52fX/fsN6AoaDfrEC5ReyMQjorld9y+EI0ibLpyZq82Xt6WCzQfRFJZQ7OvBGd/Kv9PGLHjSMHJW/k3Oir+IeGoGmiZ+Y0eIeifzv/zyC3PnzsVoNBIZGUl0dLQsWySaDEfPl/cb2M2u+7U3T09PQkJCyM7OJi0tjfbt29t1/26BfnjHRVO8/xQFWw4SPGmYXfcvhL1Jmy6cnZrMh4Q03hvZlsr7ZTsAKe2CycvPp6SkpMnUMwkY0Q9tgC+l5zMo3H6k0V8PCVGbeifzb7zxBl5eXrz55psMGjTImjEJ4fTS0srnqjms+N2Axt94hYeHk52dTWpqqt2TeSi/YVK8/xQFWw9JMi8aPWnThbOTnvlyiqKQ+8s2ALK7lNeXyczMJDKyaRRr1Xp7EnTNYLK/XIduxV+SzIsmr95jUxITE7n66qul0RdNjqMq2SulZRTuOgb8Mwy8kXP0vHn/wf/Mm98s8+ZF4ydtunB2ksyXKzl+Fv3pFDSe7mj6dQT+HS3YVARPLF+KL2fVRpQyg4OjEcKx6t0zHxISgre3tzVjEcIl6HQ69Hq93SvZF+0/hVJUgltIAF4xjb+qtKOTed9/7vYXH0miLDsP95AAh8ThaN7e3vzxxx/k5+fLOb8RkzZdODNFUVwymbfF+VPtlfcf2pOQyJYkppwnM/P/27vvMKnKs/Hj3zN1Z3a2N3bpbelFpIuCCiqCKMSCxmiixGiiUWOi8f2lGJM3MZqioiYxb6KxRUDFAogIKtKroPRedtneZ3enn98fw4y70pbdmTlT7s917YXOzJ5zz5nZ55z7PM9zP1Uh2XassE0cjj4zFU9FLfZV20m5dITWIQmhmXb3zE+dOpV169bh8XhCGY8QUS+QXGZnZ0d0Tmnj+p0AWMcMTIiCL4FkvqKi4rSFuMLNmJuBqU9nUFWaNiRuwS+9Xs+kSZOYMGGCzKGOY3JOF9GssbERt9uNoiikp6drHU6bhaP9rF/qny+fctUYsrOzgcTrmVeMBtKunQBIVXsh2p0RPPDAA6SmpvLggw9y4sSJUMYkRFQLzJcPJJuREix+lwBD7MHfU2g0GvF4PJr1OthkiTqRIOScLqJZoFc+LS0Ng6FDCzHFNE91PU0bdwOQesUosrL8K60kWs88EKxlU79oLT6nW+NohNBOu1vE6dOn4/F42LZtG8uXLyc1NRWbzXbK6xRFYfny5R0KUohoEkjmA8unRYLaonc4UZJ5RVHIy8ujqKiIsrKyiBcbBP9689WvfkTjup0R33e0cLvd/OMf/6C5uZn7778fk8mkdUgiDOScLqJZLA6xh9C3nw3LN4PPR9Kgnpi65pFdbQT8ybyqqiiKEoqwY0Ly2IEY8rPwlFTR8MkW0qaO1TokITTR7p55VVXR6/Xk5+eTn59PcnIyqqqe8qPF8FghwikwzD6Sybzr0Ak8FbUoZiOWCwojtl+tBY6xVvPmk08WwWvath9fo0OTGLTmcrm47777ePjhh3G5XFqHI8JEzukimsXqsnShbj/rl/rny6deNRqA9PR09Ho9Ho+Hurq6Dm8/lih6PenXXgxA3TsrNY5GCO20u2f+k08+CWUcQsSElkO+IznMPjDE3nJBITqzMWL71VrgGAdGQ0SasWsuxoJs/3q2W/Zgu2S4JnEIEW5yThfRrKamBoi9nvlQUt0eGlZsASDlijEA6HQ6MjMzqaiooLKyMqbqCYRC+rcmUvn3d6n7cD2+Rge6ZCniKRJP/FfREiKEKisrUVWVpKQkUlIiV908UPwuUYbYB2hd0V5RlGDvvF2WqBNCCE3E6jD7UGpctwNfQxP67DSsF349Qi9Ri+ABWEYUYureCbXJSf2yjVqHI4QmQpLMHzhwgGXLlvHuu++GYnNCRK2W8+UjOTctOF9+bGIm83V1dTgc2gxzTx7nX6KuaX3izpsXiUXO6SKaqKoaHBGXyMl8/Uf+ZDV1yqhWK9oE6sloNYJNS4qikDbLv+Z8rQy1FwmqQ8n8l19+ybXXXss111zD/fffz6OPPhp8btOmTQwbNowVK1Z0OEghooUW8+U9lXU49xcBYB2dWMl8UlISaWlpgIbz5scNAaBx0x58LqmYK+KXnNNFNGpubsbpdAKxN2c+VFRV/TqZv2pMq+cCyXxFRUXE44oGgar2DR9vwlvfqHE0QkReu5P5/fv3c/vtt1NUVMR3v/tdLrnkklbPjxw5koyMDJYuXdrhIIWIFlosS9e40d8rb+7XDUNG5Ib2Rwuth9qb+3VFn5mK2uykeftBTWIQItzknC6iVWCIfUpKCkZj4tSMacm5vwjXoRMoJgO2SRe0ei7QuVBRUYGqqlqEp6mkgT0w9+uG6vJQt3id1uEIEXHtTubnzp0LwDvvvMMjjzzCkCFDWj2vKArDhw/nq6++6liEQkQRLZala1wfGGI/KGL7jCZaV7RXFCU4vUHWmxfxSs7pIlrJfHloONkrn3zRUPQp1lbPZWVlodPpcDqd1NfXaxGephRFIf3kUHupai8SUbuT+Y0bN3LllVfSvXv3M74mPz8/YYf9iPjT3NwcPFFGMplP1PnyAVr3zIN/vXlIzGTebDbzwQcf8Oabb2I2m7UOR4SJnNNFtIrl+fKhaj/rPwosSTfmlOf0ej1ZWVmADLVv+OwLPJWJtUSfEO1O5hsbG8/ZsLpcLlmTVsSNQK98WloaSUmRWf7E1+ykedt+IHF75lsuT6fVEMJAMt+0fhdqgrVpBoOBadOmccUVV2AwtHs1UxHl5JwuolWgZz6QsMaSULSfnpqG4PK0qVeOPu1rErkIHoC5d2csw/uA10fdB2u0DkeIiGp3Mp+fn8/+/fvP+pqdO3fStWvX9u5CiKiixRD7pi/2obo9GDplYuwWuXn60SQrKwuDwYDb7Q6uNRxplqG90SUn4a2z49h9VJMYhAgnOaeLaJXow+wbVmwGr4+kAd0xneE6INGL4AGkz/T3ztct/FzjSISIrHYn85MmTWLNmjWsW3f6YhNLlixh27ZtTJ48ud3BCRFNtKhkHxxiP2ZgRJfCiyY6nS54oVJaWqpJDIpBj3XUACDxhtq73W5efvll3njjDdxuqeYfr+ScLqKRqqox3TMfivazfql/vnzKaYbYBwSuSxK1Zx4gbebFADSu3YGntFrjaISInHaPmbz77rv56KOP+P73v8/MmTODdwNff/11tm3bxuLFi+ncuTPf+973QhasEFoKJPMRrWSf4MXvAvLz8ykpKaGkpISBA7WpHZA8fjD2z76gce0Osudco0kMWnC5XNxxxx0A3H777ZhMJo0jEuEg53QRjZqbm3E4HEBsLkvX0fZTdXuwr9gCQOqV507mAxXtE/Hmv6lLLtYxA2nasIvmJRugfy+tQxIiItrdM5+Zmclrr73G4MGDWbBgAZ999hmqqvLb3/6WDz74gCFDhvCf//yHlJTEW0pLxB+fzxfsFc7Pz4/IPlWfj6aNuwGwjknM4ncBBQUFAJw4cUKzGIJF8NbvTMjlf0R8k3O6iEaB4nepqakJuSxd44ZdeOvs6LNSsV5YeMbXZWZmotfrcbvd1NbWRi7AKJP+Lf9Q+6ZFskSdSBwdqmbUtWtX3nzzTXbt2sX27dupq6vDZrMxdOhQhg4dGqoYhdBcVVUVHo8Hk8kUsaF+zj3H8NbZ0SUnYRmc2HeYWybzWvU6WEcUohgNeEqrcR0pxdwzMjd1hIgUOaeLaJPo8+Xrl56sYn/FaBS9/oyv0+l0ZGVlUV5eTkVFRUyOYgiFtBkTOPHzf+DafhDXkRLMPQu0DkmIsAtJaeKBAwdqNvRViEgoKSkB/EPsI5VINm7YCYB1ZH8Uw5lP4okgNzcXvV6Pw+GgtrZWkwsVncWMZUQhTRt20bj2K0nmRdySc7qIFgmfzC/zz5c/UxX7lnJzcykvL6e8vJzCwjP34sczY24GtouHYl+5jdp3PifvodlahyRE2LU5mX/00UfbtQNFUfj973/frt8VIloEkvlIDbEHaFx3MplP8CH24F9HNy8vjxMnTnDixAnNeh2Sxw3yJ/PrdpL57Ss0iUGIUJBzuogFsVz8rqOcB4pwHShGMRqwTRpxztdLRXu/tFmXYF+5jbqFksyLxNDmZH7hwoWnfVxRlNPOHw08Lid+EQ8C8+U7deoUkf2pqkrjmq8AsI0fHJF9Rrv8/PxgMj9okDYFAZPHDabi6QUJV9FexB85p4tYEJgzn4g983VL1gOQPGEo+lTrOV8vybxf2vTxFP/0eRy7juDYfZSkAd21DkmIsGpzMr9ixYpW/+/z+fjf//1ftm/fzm233cbIkSPJysqiqqqKTZs28eqrrzJ8+HD+53/+J+RBCxFJqqpGvPid60gp7pIqFKMB68j+EdlntCsoKGDLli3aFsEbMxAUBdfhEtwlVRjzE6+3SMQHOaeLaNdyWbpETOaD8+WnnrmKfUstK9r7fD50unbXuI5p+vQUki4ZhmPFVmoXfk6nAd/ROiQhwqrNyXznzp1b/f+LL77Il19+yXvvvddq3e1evXoxatQovvWtb3HdddexdOlSvv/974cuYiEirLa2FofDgV6vD975DrdAr7xlRCE6a1JE9hntAkXwSkpKNCuCp09NJmlILxxfHqRx3Q7SZ02MeAyRZjabmTdvHo2NjZjNZq3DESEi53QR7ZqamnA6nUDsJvPtbT89lXXB1WxSrxrbpt/JyMhAr9fj8Xiora2N2WMWCtbpY/3J/DsryXv01oRcqk8kjnbftnvrrbeYOnVqq5N+S3l5eUydOpUFCxa0OzghokFgvnygCFskNK49OcT+oiER2V8syMnJwWAw4HQ6g701Wkge6x/i37h+p2YxRJLBYOCGG27guuuuw2AISc1UEYXknC6iTaCdT0tLi9m2p73tZ/3Hm8DnI2lob0xd2taJoNPpgh0OZWVl7Yo3XlguvxDFYsZ16ATN2w9oHY4QYdXuZL60tBSTyXTW15jN5uDwZCFiVaTnywPYT/bMJ4+XZD5Ar9cHP4OoWG9+XWIk8yIxyDldRJtEni9f/6F/vnzqVW0bYh8QOEcmejKvS04KrgBQ+87nGkcjRHi1O5nv1KkTy5cvDw6B+qbm5mY+/vjjiCZAQoRDpCvZu46X4T5eDnod1tEDIrLPWBH4DLRN5v09845dR/DUNmgWR6R4PB4WLFjAu+++i8fj0TocESZyThfRJh7my7en/fQ5XDR8sgWA1KltG2IfEBhZk+jJPEDazEsAqFv4OarPp3E0QoRPu5P566+/nuPHj3PzzTezfPlyampqAKipqWH58uXccsstFBcXc8MNN4QsWCG0EOnid41r/JXSrcP7ordZIrLPWBGYN69lMm/MzcDUpzOoKk0bdmkWR6Q4nU5uuukm7rjjjjMmeiL2yTldRJtAz3x2drbGkbRfe9pP+6rtqE1OjPlZWIb2Pq/95eXlAZLMA6RMHokuxYq7uCJYf0CIeNTuSUhz5szhyJEjvPPOO9x3332Af76O7+TdL1VVmTVrFnPmzAlNpEJooKGhAbvdjqIowZNkuAWH2Mt8+VO0LIKnZbVe27jBVB8opnHtDlKvPL9hkEJEo3Ce09977z22bNnCjh072LdvH263mz/84Q/MmjXrvLbj8/l44403mDdvHkePHsVqtTJmzBgefPBBevTocd5xiehWWVkJxHYy3x7BIfZTx5534bbAdUpNTQ1OpzOhi5bqkkykTR9PzX+XU/vOymC9GyHiTbuTeZ1Ox+9//3uuu+46Fi5cyN69e7Hb7dhsNvr37891113H6NGjQxmrEBEX6JXPzs7GaDRGZJ+B4neSzJ8q8Dm43W6qqqoitrrANyWPG0z1qx/RuFbWmxfxIZzn9GeeeYbi4mIyMjLIzc2luLi4Xdv59a9/zfz58+nTpw+33norVVVVLFmyhDVr1vDmm2/Sp0+fdm1XRB+fzxcXPfPnS/X5qP9oI3D+8+UBkpOTsdls2O12ysvL6dq1a6hDjCnpMy+h5r/LqXtvNQW//wGKITJFjIWIpA6XBx09enTIk3a5iy+iReCiM1JD7N0nKnEdLgGdjuQxchf5m3Q6Hfn5+Rw7dowTJ05ol8xP8N9oafpiP976RvSpyZrEIUSoheOc/rvf/Y7u3bvTuXNnXnzxRf785z+f9zbWr1/P/PnzGTlyJC+99FKwWN91113H9773PR577DFee+21kMYttFNbW4vX68VgMJCWlqZ1OBHTvO0AnpIqdDYLyRcPa9c2OnXqxIEDBygrK0v4ZN42cTj6zFQ8FbXYV39JyqQLtA5JiJDTZozqOTzzzDPMmzePEydOnHGZnLb49a9/zW9/+1t8Ph+33norEydO5JNPPuH666/nwAFZqkKcW2Bu9jfXZA4X+8leecvQXuhTrRHZZ6yJhiJ4pi65/nnzPh/2Vds1i0OIWDB+/PgOt6GBJfEeeOCBVlX3x40bx4QJE9i0aROHDx/u0D5E9AgMsc/KykqoNcIDQ+xTLrsQnbl9owGlCN7XFKOBtBkXAVD79kqNoxEiPKIymf/d737HJ598wvr165k9e3a7ttHyLv7ChQt5+OGH+eMf/8iLL76I3W7nscceC23QIu6oqkpRUREQuWQ+UPwusPyZOFXgswh8NloJ3OG3r9ymaRxCJIINGzZgtVoZMWLEKc9NmDABgE2bNkU6LBEmiTpfvm7RWgBSp7a/FosUwWst/VuTAKhftBaf061tMEKEQYeH2YfD+PHjO7yNc93FX7VqFYcPH6Znz54d3peITzU1NTQ3N6PX6yNW/E7my59bly5dAH89A7fbHbFaBt9kmzicqv9bJMm8EGHW1NRERUUFhYWF6PWnznkNTJs7cuTIGbehqmqYoostgeMQ7cejZc98tMd6Ni1jV1X1rO/FsecYzr3HUIwGUq4c3e733TKZ9/l8CTWyAU79jlvHDMDQKQtPaRUNn2xpVy0CcXax0q7Eorb8/UZlMh8K57qLv2rVKjZt2iTJvDijwHz5Tp06YTCE/0/FXVaNc38RKIr0zJ9Feno6ycnJNDY2UlJSQrdu3TSJwzZhKOh0OPcX4SqqwNRFm/n74WYymfj3v/9NU1NTqxujQkRKQ0MDADab7bTPBx632+1n3EZdXZ1caLZQV1endQhnFehVtlgs1NbWahtMB7jdbp577jkAmpubz7rWfN2CFQCYLxpMg+qBdr5vvV6PTqfD5XJx/PhxUlNT27WdWNfyO540dRT2l5ZSMW85vrH9NIwqvkV7uxKLMjIyzvmauEzm5S5+9Iqlu3eBZL5z584Ridd+sjJ60sAe6NNtMXGMWorkZ9ulSxf27t1LUVGRZgV+dKnJWEYU0rx5Dw2ffUHmt6doEke4GQwGbr/9durq6jAYDDH3vUw0idYL11aJVETtbFRVpa6ujrS0tKj+rgQS+G7dupGenq5pLB11zz33tOmYVyzfAkDWrEkdfs85OTmUlZXR3Nys2Q1vrZzuO266+QrsLy3FsWIrqaYkdNYkjaOML7HSrsSruEzm5S5+9IuFu3dHjx4F/D3BkegZqPl0MwCGC/vGdE9EJD7brKwsAA4fPsyAAQPCvr8zMY7pT/PmPdR8vAHdtFGaxREpsfB3m+jachc/1qSkpABnPmcHHj/TOR/kJsc3KYoStcekqamJpqYmwD9nPlrjPF9nO+bOg8U4dhwGvY60q89/fflv6tSpE2VlZZSVldG/f/8ObStWtTze1gv7YereCdfRUhqWbyH92gkaRxeforldiWdxmcyHgtzFD49YuXvn9XqpqKgAoLCwMCI9A+Wb9wOQeelI0mKwJyKSn22fPn1Yu3YtZWVlmvbaGK8aR/3z7+Jct4u01FQUXVTWFO0Qj8fD0qVLaWpqYubMmZrVKBCJy2q1kpOTQ1FREV6v95QRd4FRdrLkbHwIzJdPS0uL+ak9gfazsbGRWbNmnbH9rPtgDQC2i4dhyOz4sPhARfvy8vIObyseKIpC6jUXUfnc29QvXivJvIgrcZnMy1386Bftd+/Ky8vxer1YLBYyMzPDHqunqg7nHv9IANtFQ6L62JxLJD7bzp07oygKDQ0NNDQ0aDYn0DqqP7rkJLyVdTj3HMMyKP5qcLhcLmbMmAH4Rz3F+sW1iE2jR49m8eLFbN26lVGjWo+CWb16NcApj4vYFE+V7J1OJ9dccw3gbz/PlcynzQhNkhkogldaWhqS7cWDtOnj/cn8RxvxOd3tXvpPiGgTf91InHoX/5vkLr44l5ZL0kUisW5c469ib+7XDUO2jAo5F5PJFLxYOX78uGZx6ExGksf7Vx6wf/qFZnEIES+qq6s5ePAg1dXVrR6/8cYbAXj66adxuVzBx9etW8fq1asZNWqUFLSNEy0r2ScC17Eymr/YDzodadPGhWSbnTp1Avx/Ty3/XhKZdWQ/DJ0y8TU0Yf98m9bhCBEycZnMg/8uflNTE1u3bj3lObmLL86lZfG7SLCv/hIA28VDI7K/eBBYok7r9eZtE4cD0PCZJPNCnM6CBQv4+c9/zs9//nOWLl16ymPLly8Pvvb111/n6quv5vXXX2+1jbFjx3LDDTewefNmZs6cyZNPPskjjzzCXXfdhc1m47HHHovkWxJhVFVVBcRHz3xb1L3nvyZNHj8YQ056SLaZnJwcHKUqvfN+SoubJfWL1mocjRChE/PJvNzFF+EQ8WR+1clkfoIk820VSOYDn5VWUiZdAEDjuh34HNIDIsQ3bdmyhYULF7Jw4UJ27twJwNatW4OP7d69u03befzxx/nFL36Boii8+uqrfPbZZ1x66aUsWLCAPn36hPMtiAgK1KtJlGS+5q1PAUi/7uKQbjc/Px+AkpKSkG43lqVOvwiAuiXrUE8zcleIWBSVc+YXLFjAli3+JTr27dsXfGzjxo0ATJ48mcmTJwP+u/jPPfcc9957L/fdd19wG4G7+AsWLGDmzJlMnDiRqqoqlixZInfxxVk1NzcHewYikcy7y2tw7j0GQPJFQ8K+v3gRSOZPnDhx2qJYkWIe0B1jfhbukioa1+4g5bIRmsQhRLR64okneOKJJ9r02vvuu6/VubwlnU7Hd77zHb7zne+EMjwRRVwuFzU1NcDXRdzimWPPMRxfHQKDnrQwJPP79u2TnvkWbOMHo89IwVtVT+P6XdjkmkvEgajsmZe7+EJLgTnYmZmZWK3WsO+v8eQQ+6RBPTFkyXz5tsrMzMRiseD1ejXteVAUBdvlFwLQsHyzZnEIIUSsC1Rft9lsJCcnaxxN+NWe7JVPnTIqJFXsW5Ke+VMpRgOpV40Bvi46KESsi8qeebmLL7R07Ji/l7xbt24R2V9wvrwMsT8viqLQtWtX9u3bx/Hjx4M99VpInTySmteW0bBii2YxCCFErCsrKwO+rsYez1Sfj5oFJ4fYXz8p5NsPJPPl5eW43W5ZVvSktGsuoua/y6lfvI6CP/wgplcPEgKiNJkXQkuBZL579+4R2V8gmU++ZFhE9hdPAsn8sWPHGDcuNFWA28M2cTjodTj3H8d1rAxTt/i5EDWZTMydO5fm5mZZlk4IEVaBZD5ehtifrf1s2rgb9/FydDZLsLc4lFJSUrBarTQ1NVFeXh6xGkDRzjbpAnTJSbiLK2jeth/rBYVahyREh0TlMHshtOLxeDhx4gQQmZ55d0kVrgPFoNNhGz847PuLN4EbLseOHUNVVc3i0KfZSB49AICGFfE11N5oNPKjH/2IOXPmSM+OECKsAsl8YGm1WHe29rNm/ieAv6dYZzGHfN+KolBQUADIUPuWdEkmUqb4V7Oqk6r2Ig5IMi9EC8XFxXi9Xmw2GxkZGWHfX6BX3jK0F/o0W9j3F2/y8/PR6/U0NTUFixZqJeXykQAy1F4IIdpBVdWEGWbvc7mDS9Kl33Bp2PYTuCkiyXxradPHA7JEnYgPkswL0ULL+fKRmEdl/3w7AMkTZIh9exgMhuBc+cBnp5VAETz759vxudyaxhJKXq+Xzz77jNWrV+OVpXyEEGFSX1+P0+lEp9PFzbJ0Z2o/G1ZswVvTgKFTJraLw1cvR4rgnV7K5FEoJgPO/UU49mp77SBER0kyL0QLkS5+F6hkH86Tebzr2rUroH0ybxnSC0NuBj57M00bdmkaSyg5HA4uu+wyZsyYgcPh0DocIUScCiyhlp2drdlSo6F2pvaz9uQQ+/RZE1HC+F5bFsGTm7Ff06dasV0yHID6xeu0DUaIDpJkXoiTfD5fcFm6SCTzruNluI6Wgl5H8thBYd9fvGo5b15Lik4XXGNelqgTQojzE2/z5c/EW2en/qONQHiH2AOkp6eTlJSE1+uloqIirPuKNanT/EPt6xbLUHsR2ySZF+Kk8vJynE4nJpMpIvP17Kv8vfLW4X3Rp4R/Pft4FRhmX1NTQ0NDg6axBOfNSzIvhBDnJbDGfLxUsj+T2ndWojpcmPt3xzK0d1j3pShKsHc+UNxX+KVOHQOKQvMX+3EVyY0OEbskmRfipEDPbteuXdHpwv+nERhinyxD7DskKSkp2JOjde+87dILQKfDsfsorqJyTWMRQohYkijF76pf/xiAzFuviEhtHpk3f3rG3AysYwYCUL9EhtqL2CXJvBAnRXK+vKqqwZ55mxS/67BomTdvyEzFGliibtkmTWMRQohY4Xa7gyuSxHMy37zrMM1b96EYDWTceFlE9hlI5gM1CcTX0qaNA2SovYhtkswLgT+5Pnr0KBCh+fJHSnEXV6AYDSSfvDMs2i9a5s0DpF45GiA4J1IIIcTZVVRUoKoqVqsVmy1+l2mtec3fK5961RgM2WkR2WfLZN7n80Vkn7EisERd49odeKrrNY5GiPaRZF4IoLKyErvd3mqps3Cyr/IvSWe5sB+65KSw7y/eBW7AlJWV4XQ6NY0l9Qp/Mm//fBu+Rqn+LoQQ59JyiH0khp5rwedyU3Oyin3GrVdEbL+ZmZmYTCY8Hg+VlZUR228sMHXvRNLgXuD1yQ14EbMkmRcCOHz4MOBPCg0GQ9j3F1ySboLMlw+FlJQUMjIyUFU1uCKBVsz9u2HslofqdAdv2sQyo9HIH//4Rx577DGMRqPW4Qgh4lC8zpdv2X46PtmGt7oeQ34WKZeOiFgMiqIE68rIvPlTBYba18tQexGjJJkXgq+T+Z49e4Z9X6qqYpf15UMu0Duv9VB7RVHiaqi9yWTiZz/7GT/+8Y8xmUxahyOEiEPxmsy3bD/t8z8FIGP25SiG8K0tfzpSBO/MUk8OtW/4ZKuMphMxSZJ5kfB8Ph9HjhwBIpPMOw8U4ymtRjEbsY4aEPb9JYpAMh+ofaClwFD7+mUbUVVV42iEECJ6qaoat8l8gOd4OfYVWwDI/HbkhtgHSDJ/ZkkDe2Dq3gnV4aLhky1ahyPEeZNkXiS80tJSHA4HZrM5eMILp8bV/qHX1lED0CVJT2eo9OjRA4Di4mLcbremsSRfNARdchKekiocXx3SNJaO8nq9bNq0ia1bt+L1erUORwgRZxoaGmhubkZRFHJycrQOJ6QC7eeaP/8br8+H7dIRmHsVRDyOlkXw5AZza4qikCpV7UUMk2ReJLzAEPsePXpEZH35r5ekkyH2oZSRkUFKSgper5eioiJNY9ElmbBNugCA+o82aBpLRzkcDsaMGcPkyZNxOGQIohAitAK98tnZ2RGpWRNJgfZz5itP4sRL1pzpmsQROLYul4vq6mpNYohmgar2DR9tQnV7NI5GiPMjybxIeC2T+XBTVZXGNV8BMl8+1BRFCX6GgWkTWgoOtY+DefNCCBEu8T7EPsDYOZvUK0Zpsm+dTidF8M7COqo/hpx0vHX2YE0jIWKFJPMioXm93mDBtF69eoV9f849x/BU1KJYzFhG9Av7/hJNYL35aJg3n3Lyoq156z7c5TUaRyOEENEpUZL5jG9fiaKPbOG7liSZPzNFryd16lgA6hev0zgaIc6PJPMioRUVFeF2u7FarRGZqxe445s8egA6syzzFWqBnvmioiI8Hm2HyhnzMrGMKASg4eNNmsYihBDRKp6T+abt+4P/nTn7cg0jkSJ45xKcN79kHarPp3E0QrSdJPMiobVckk5RlLDvL7DuuO3iYWHfVyLKzMzEZrNFxbx5kKH2QghxNh6Ph8rKSiA+k/nq/ywN/rchJ127QGidzEsRvFPZLhmOzmbBU1pN89Z9WocjRJtJMi8S2sGDB4HIDLFXfb7gfPlkKX4XFtE2bz7l5Hrz9k+34nO4NI5GCCGiS0VFBaqqkpSUREpKitbhhJSnup7a91ZrHUZQbm4uOp0Oh8NBXV2d1uFEHZ3ZSMrJG/B1MtRexBBJ5kXCampqori4GIDevXuHfX+OnYfx1jSgs1mwXtA37PtLVNE0b94ytDfGgmx8jQ7sn2/TOhwhhIgqgSH2nTp1isjouEiqeWM5qjN6buLq9frg6AcZan96aS2WqJPRCyJWSDIvEtahQ4dQVZWcnBzS0tLCvr/AknTJYwehGONr+Z1oEk3z5hVFIXXqGADql6zXNJb2MhqN/OpXv+Lhhx/GaJQ6D0KI0Akk87m5uRpHElqqz0fVS4sxouNn1307atpPKYJ3dimXj0QxGXAdKMa597jW4QjRJpLMi4QVGGLfp0+fiOwvWPxOhtiHVVZWFsnJyXg8nuDICy2lTvXf6a//aENMFtUxmUw89thj/PznP8dkMmkdjhAijpSXlwPxN1++YdkmXIdLMKel8IdX/xk17acUwTs7faoV28QLAH/vvBCxQJJ5kZBUVeXAgQNAZJJ51eOlce0OQNaXD7domzefPGEIuhQrnrIaKaojhBAnqapKaWkp8HWPcbyoeO5tALK+OxVdcpLG0XxNiuCdW6Cqff0iSeZFbJBkXiSksrIy7HY7RqORbt26hX1/TV/sx1ffiD7dhmVo+OfnJ7pomjevMxlJmTwSgLoPY2+ovc/nY+fOnezevRtfDI4sEEJEp8bGRpqamlAUJSJLw0ZK0xf7/DfvDXoy7pweVe1nXl4eiqLQ2NiI3W7XOpyolHb1ONDraN5+AOdhGcEgop8k8yIhBXrle/TogcEQ/vnr9pVfAP4l6RS9Puz7S3SBnvnjx49rPm8eIPXqsUBszptvbm5myJAhXHTRRTQ3N2sdjhAiTgTmy2dmZkbFfPJQqXh+IQDpsy7Bm5kcVe2n0WgM3jg5ceKExtFEJ0N2WnD54LqFn2scjRDnJsm8SEgRny+/chsAtknDI7K/RJednR2cNx8NFyypk0eCQY9z7zGch7SPRwghtBZI5uNpvryrqJy691YBkPOjWRpHc3oyb/7c0mdNBKBWknkRAySZFwnH6XRy7NgxIDLJvK/RQdPG3QDBwioivBRFCQ61j4Z58/o0G7aLhgBQH4ND7YUQItTiMZmv/Pt74PVhu2QYliHROaUuUJ8gUK9AnCp1+jgUowHHzsM49hzTOhwhzkqSeZFwDh8+jM/nIyMjg8zMzLDvr3HdDlS3B2PXXEw988O+P+EXTfPmAVKnnhxqL8m8EELEXTLvrW+k+pWlAGRHaa88SM98WxjSU7BdNgKQ3nkR/SSZFwknklXsARoCQ+wnDkdRlIjsU3w9b/7YsWN4vV5tg4HgevON63fhqarTOBohhNCO1+uloqICiJ9kvvqVj/DZmzEXdiXl8gu1DueMAj3z9fX1NDY2ahxN9EqfeQkAtQtXSuV/EdUkmRcJRVVVzebLp8gQ+4jKycnBarVGzXrzpq55JA3uBT4f9cs2aR2OEEJoprKyEp/Ph9lsJi0tTetwOkx1e6j8x3sAZP9wJoouei+vzWYzWVlZgPTOn03q1LEoSSZcB4pp/mK/1uEIcUbR29oIEQZVVVXU1tai1+uDPbfh5KmoxbHjEAC2S4aFfX/iay3nzctQeyGEiB4th9jHw4i12vdX4y6uwJCTTsaNl2kdzjnJUPtz06dYSZs+HoCa/36scTRCnJkk8yKhBIbYd+vWDZPJFPb92T/fDkDS4F4YctLDvj/RWuCGTTQUwYOvl6hr+GQLPodL42jaxmg08tBDD3HvvffG1fJRQgjtxNN8eVVVqXz+HQCy5kxHl/T1tUW0tp9SBK9tMm6eDEDt2yvxOd0aRyPE6YV/gW0hokikh9g3BNaXnzg8IvsTrQV65o8fP47X60Wv12saj2Vob4wF2bhPVGL/fBupV4zWNJ62MJlMPPXUU9TW1kbkBpgQIv7FUzLfuHYHzdsOoFjMZN0xrdVz0dp+Ss9829guGRY8Z9cv3UD6tRO0DkmIU0jPvEgYbrc72EMbiWReVVXsn/mT+RRJ5jWRm5uLxWLB7XZHxXrziqIEC+HVL5Gh9kKIxBRPyXzFyV75jNmXY8iKjfn/gWS+pqaG5uZmjaOJXopeT/pN/mkTNW8u1zgaIU5PknmRMI4ePYrH4yE1NZWcnJyw7891uAR3UQWK0UDyuMFh3584VXTOmx8HQP1HG1B9Po2jOTefz8eRI0c4duwYvhiIVwgR3RobG7Hb7YD/hmssc+w7TsPSDaAo5Nxz3SnPR2v7abFYSE9PB2So/blkzPYPtW9Yvhl3WbXG0QhxKknmRcIIzJfv3bt3RAru2E8OsbeOHoAuOSns+xOnF23z5pMnDEGXYsVTVkPTpj1ah3NOzc3N9OrVi+HDh0sPjhCiwwK98pmZmVE19Lw9Kv/2LgCpV43B3KfLKc9Hc/spQ+3bJqlvF6yjBoDXR+2Cz7QOR4hTSDIvEkbE58t/KvPlo0GgZz5a1pvXmYykXuUfal/3/mqNoxFCiMiKlyH2nso6auatACD7RzM1jub8SRG8tgsUwqt+42NZc15EHUnmRUKora2lsrISRVHo1atX2Penuj1fry9/6Yiw70+cWV5eHklJSbjd7qjpgUibcREAde+vkQsDIURCKS8vB2J/iH3VvxahOlxYLugbk1PppGe+7dJnXYIuOQnnnqM0rt2hdThCtCLJvEgIgSH2Xbt2JSkp/EPeGzfuxtfQhD47DcsFfcO+P3FmLefNR8tQ+5TLLkRns+AurqB56z6twxFCiIgJ9MwHeoZjka/ZSeW/FgGQ88NZEZm6F2qBZL6yshKXKzaWStWKPjWZ9BsuBaDq/z7QOBohWpNkXiSElvPlI6Hh400ApFx+IYpO/sy0Fpg3Hy1F8HQWMyknl6WTofZCiETh8/mCPfOxPMy+Zv6neCvrMHbJIS1Glyuz2WykpKQAMtS+LbLmTAegbtFa3CcqNY5GiK9JliHintfr5fDhw0AE58ufTOZTJ4+KyP7E2bWcNx8tFYXTTw61r31vtQy1F0IkhKqqKrxeLyaTKVhNPdaoPh+Vf1sIQPYPrkUx6DWOqP1kqH3bWQb2JHn8YPD6qPrPUq3DESJIknkR944fP47L5cJqtQZPXOHkKirHsfso6HTYLpP58tEgMG/e5XJFzUVLyuSRKFYz7mNlNG8/oHU4QggRdoEh9rm5uTE5NB2gYcUWnPuOo7NZyPzOVVqH0yFSBO/8ZN3p752v/s+H+FxujaMRwk+SeRH3AkPs+/TpE5GLh4blmwGwjuyHISMl7PsT56bT6aJu3rzOmhQcuRHNQ+0NBgP33HMPd955JwaDQetwhBAxLB4q2Ve+4O+Vz7ztKvSp1rO+Ntrbz0AHx4kTJzSOJDakTR+PoVMmnvIa6j5Yo3U4QgCSzIsE0DKZj4SGj/3JfMoUGWIfTQLJfLTMm4fYqGpvNpt5/vnneeqppzCbzVqHI4SIYbGezDfvPOxfqUanI/sHM875+mhvPwPJfEVFBW639DSfi2I0kHX7VAAq//Zu1J63RWKRZF7EtYaGhuDFQySWpPM5XNg/3wZAqiTzUSVQBC+a5s2nXDEaJcmE69AJHDsPax2OEEKEVawn84Fe+bQZF2HqGpvvoaXU1FSsViuqqgYLE4qzy/ze1ShmI81b98kydSIqSDIv4trBgwcBKCgoIDk5Oez7s3++DV+jA2N+FkmDe4Z9f6Lt8vLyMJvNOJ3OqJkfqLdZSJk8EoC691ZpHM3pqapKRUUFlZWV0gshhGi35uZm6uvrgdhM5t1l1dS+/RkAOT+c2abfifb2U1EUKYJ3noy5GWTcMgWAimcWaByNEJLMizgX6SH29YvXAZA6bZwsSRdlonHePHw91D5aq9o3NTWRl5dHYWEhTU1NWocjhIhRgV759PT0qBxyfi5V/1qM6vJgHT0A68j+bfqdWGg/Zd78+cu591ug09GwfDPNOw5pHY5IcJJtiLilqmpwSbpIrC+ver3UL90AQOrV48K+P3H+onHefOoVY1DMRlwHinF8JRcFQoj4FMtD7H3NTqr+vRiA7Hva1isfKwLJfLSMWIsF5p75pF07AZDeeaE9SeZF3CovL6epqQmj0Ujnzp3Dvr+mTXvwVNSiT7Nhu2hI2Pcnzl9g3vzRo0ejZt68PtVK6pVjAKhZ8KnG0QghRHjEcjJfM+8TvNX1GLvlkTYtvm7WB5L5srIyvF6vxtHEjtz7bwCgduEqHPuLNI5GJDJJ5kXcCgyl7tatG3q9Puz7qzs5xD7lylEoxuhbgkb419Q1mUw4nc7ghWU0SL9hEgC176xElYspIUQcitVkXlVVKv/2LgDZP7gWxRD+64lISk9PJykpCZ/PJ0XwzoNlaG9Sp44Fn4/yp97QOhyRwCSZF3ErMMQ+0BsbTqqqUr/En8ynyRD7qBWt8+ZTJo9Cn2bDU1Il1XGFEHGnZaIYa8m8/bMvcO4/js5mIfPbV2gdTshJEbz2y3vk2wDUvr0Sx55jGkcjEpUk8yIu+Xy+4Lzonj3DX1XesfsIrsMlKGYjtssuDPv+RPtF47x5ndn4dSG8tz7TNhghhAix6upqPB4PBoOBjIwMrcM5L1X/twiAjFumoE+1ahxNeEgy3z6Wob1JnT4eVJUy6Z0XGpFkXsSl0tJSHA4HZrM5eJIKp7p3VwNgu3QEepsl7PsT7ReN8+YB0q+fBEDd+2vwOd3aBiOEECEUKK6Wl5eHLoZWenEdLQ0Wts26c7rG0YSPJPPtF+idr3t3FY5dR7QNRiSk2GlRhTgPgSHU3bt3D/uFg6qq1L6zEoD0WZeEdV+i4/Lz8zGZTDgcjqiaH5g8fjCG/Cy8dXYalm/SOpwgg8HA7bffzs0334zBILUghBDnL5DMd+rUSeNIzk/VvxeDqmK7dARJfbuc9+/HSvvZsgheNN3kjgWWQT1JmzEBVJXSJ17TOhyRgCSZF3EpkvPlm7cfwHXoBIrFTOpVY8O+P9ExOp2Obt26AdE1b17R60mfNRGIrqH2ZrOZl156ieeffz4m14YWQmgvUPwulpJ5X5OD6lc/AiD7+9e0axux0n5mZmZiMpnweDxUVFRoHU7MyXvk26DTUb9oLY2b9mgdjkgwUZvMf/nll3z/+99n1KhRDB8+nOuvv54PPvigzb+/YcMG+vXrd8afbdu2hS94oSmv18uxY/5CJJGYL1/7zucApF45WobYx4honDcPXw+1r1+6AW+dXdtghAghOacntsDw7VhK5mvfXom31o6peydSpozUOpywkiJ4HZM0oDsZsy8HoPQ3/0ZVVY0jEokkKsf8bNiwgTvvvBOj0ci0adNISUlh2bJl/PSnP6W4uJi77767zdsaPXo0o0ePPuXxWDqhiPNz4sQJXC4XFosl7FVzVa+XusAQ+5kyxD5WBEZsHDlyBFVVURRF24BOsgztjbl/d5x7jlL79kqy7pimdUioqkpjYyONjY2kpaVFzbESsUPO6YnNbrfT2NiIoigxU8leVVUq/+m/2ZR1xzSUdi5vG0vtZ6dOnTh69CglJSUMHz5c63BiTt7Pb6X27c9oXLuDhuWbSZ0ySuuQRIKIumTe4/Hwi1/8AkVReP311xk4cCAAP/rRj5g9ezZz587lqquuavPw6dGjR3PfffeFMWIRbQJDp3v06BH2E6f9s224T1Siz0gh5YpTLzBFdGo5b760tDQiRRLbQlEUMm+9gpJf/JPq1z6KimS+qamJlJQUABoaGrDZbBpHJGKJnNNFYL58VlYWRqNR42japmnDLhw7DqFYzGTc2v7l6GKp/SwoKACkZ769TF1yyPr+DCqfe5vS37xEymUj2n0TSIjzEXXD7NevX8+xY8eYPn168KQPYLPZ+OEPf4jH4+Gdd97RMEIR7SI5X7769WUApN9wKTpzbFykCNDr9cHvx8GDB7UN5hsybroMxWigedsBmncc0jocITpEzukiFovfVb74PgAZ10/CkJGicTSREbipXVpaKkXw2in3wRvRpSbj2HWE2gWfaR2OSBBR1zO/ceNGACZMmHDKcxdddFGr17TFkSNHeOWVV3A4HBQUFDB+/HgyMzNDE6yIOh6Ph+PHjwPhny/vqa6nfsk6ADK/PSWs+xKh16tXL/bt28ehQ4dO295oxZCVRurUsdS9v5rq15bR+Ym2D0EWItpEyzld5rD6BY5DJI9HoKc3Ly8vJj4H94lK6hatBSBzzvQOxdzyd1VVjer3n5mZidFoxO12U1VVRXZ2ttYhtYsW3/EAfbqN3AduoPTxlyn9/SukXjsBXZIp4nFEmpbHPN61ZYRx1CXzLZcU+6a0tDQyMjLOq2jVokWLWLRoUfD/k5KSuO+++5gzZ85Zf0++kOER7j/448eP4/F4sNlsZGVlhfVzrFnwKarLQ9LQ3iQN7pXw35lYa8wDN3uOHTuGy+WKquGfGbdOoe791dTO/4ROv/6ephcDsXQxKtp24o+kaDmn19XVyXe3hbq6uojt68SJE4B/NEZtbW3E9ttedf94FzxezKP64eySibMDMTc2Nn693bo6PB5PxwMMo+zsbEpKSjhw4EBUL6XXFpH8jrekv2ki+hffw11UQfELb5Nyx1RN4tCCVsc8nmVkZJzzNVH3l2q3+ys4B+YYfZPNZgsO2TqbzMxMHn74YSZNmkRBQQH19fVs2LCBP/3pTzz11FPYbDZmz559xt+XE394hesPfs8e/5IgBQUFYW9UKl/zL1mTNHNCTFygREqsNOYGg4Hk5GQaGxvZtWvXaZMNrajDe6HvlIm3tJrSBSuwXjNOs1hi7WI00bXlxB9J0XJOT0tLa98biDOqqlJXVxexYmwulyt4fuzdu3dUzxkH8LnclMz/FIC8e2aSlp7eoe21vEmclpYW9e+/S5culJSUUF9fT3oH37tWIv0dP61Hv0Px/c/S8MJ7FMyZgT41WZs4IiQqjnkCi7pkPlT69u1L3759g/9vsViYMWMG/fv3Z9asWcydO5cbb7wRne70ZQPkxB8e4f6DD1wUFhYWhvVE1PTFftw7j6CYDOR/ZyqG9MSYU3c2sdiY9+nTh+3bt1NeXs6wYcO0DqcV57evoOLPb+JcuJqC72h3Zz/WLkZFfOroOT1W2qRIURQlIsekvLwc8N+0OdMNnWhS//4aPOW1GPKzSJs2vsPHqOXvR+qYd0TLefPRHuu5aHm8M2+eQuXzC3HuO07l3Lfp9IvbNYkj0mLhOx6Poq4AXuBCsaGh4bTP2+32Dp0QCgsLGTZsGJWVlWcd2hf4QspP6H/CdXw9Hg9FRUWAfwh1ON9D1T/9xXHSZl6CMTNV82MaLT+x9rfTu3dvAA4dOqR5LN/8CdRhsK/chutIqeafa6x9ton6E22i5ZwutBFrxe+qAsvRfe9qFGPc9nedUcuK9jI6tf0Ug55Ov/Qn8BV/fxd3eY3GEYl4FnXJfKDC9OlOynV1ddTU1HR4OGxgGKLD4ejQdkR0OXbsGD6fj9TU1LAONXWXVVP3zucAZH9/Rtj2I8KvV69eAJSVlQWHA0cLc498bJddCEDVvxad49Xho9fruf7665kxYwZ6WWZHnCc5pye2WErmm77YR9PmPShGA5m3XRWSbcZa+5mdnY3BYMDpdFJVVaV1ODEt9epxWEYUojY5qfjrfK3DEXEs6pL5UaNGAbB69epTnluzZg3gX2e2vTweD7t27UJRlKhZW1qERqDQUqBXPlyq/7MU1e3BOmoA1hGFYduPCL/k5OTgRWZgScNokn3XNQDUvP4xvkZtEpWkpCTmz5/Pyy+/TFJSkiYxiNgl5/TEFkvJfNX/+W+apl13Mcbc0HQIxFr7qdfrg73zgZGOon0URaHT/7sNgKqXFuMqKtc4IhGvoi6ZHzduHF27dmXRokXs3r07+LjdbueFF17AYDAwc+bM4OPV1dUcPHiQ6urqVtv54osvThki5PF4ePLJJykuLmbChAkxW9xDnF4k1pf3udxUvbQYgOy7pFc+HgR65w8dir413VMmj8TUMx9vnZ2aBZ9oHY4Q503O6YnL6/UG58xHezLvqayj9p2VAGR//xqNo9FW586dAUnmQ8E26QKSLxqC6vJQ/tR/tQ5HxKmomxBkMBj43e9+x5w5c7jllluYPn06NpuNZcuWUVRUxAMPPNBq/fDXX3+d5557jnvvvZf77rsv+PhDDz0EwAUXXEBeXh4NDQ1s2rSJw4cPU1BQwG9+85uIvzcRPk6nM7j8TTjXl697dxWeshp/cZwZF4VtPyJyevfuzdq1azlw4ACqqkbVvGNFpyPrzumU/OKfVL74AZm3T42q+IQ4FzmnJ66Kigo8Hg9ms5nMzEytwzmr6tc+QnW6sVzQF8uF/bQOR1NdunQBoLi4WONIYl+gd/7g1T+j+o2Pyfnx9Zh7d9Y6LBFnoq5nHmDs2LG88cYbXHjhhXz44Ye88cYbpKen89RTT3HPPfe0aRuzZ8+mc+fObNy4kVdeeYUPPvgAk8nE3Xffzbvvvhu88yjiw9GjR1FVlYyMjLCtRKD6fJSfnPeUfef0hCyOE4+6deuGyWTCbrdTUlKidTinyPz2FBSrGeeeozSu/jLi+29sbESn05GZmdlqmToh2krO6YkpcIM9Pz8/qm9Cqh4vVf86OeLu+zNCGmsstp+BZL6srAyXy6VxNLEveewgUqaMAq+Psj++rnU4Ig4pqpSrFBGkqiq1tbWkp6eH9IS5bNky1q1bx4gRI7jmmvAMkav7YA1Hb/9fdKnJDPjy5bhfN/R8heuzjYT58+eze/duJk6cyKRJk7QO5xRFDz1H9UtLSJ0+nh6v/CKi+25sbGxVkVyWphMidkWynf7ggw/YunUr48ePZ8qUKWHdV0fULVrL0dt+hz4rlQFfvYIuyRSybcdq+/nXv/6V+vp6vvvd73a4QGWkReO1SPOXB9k/6T5QFPqueg7LwPCNINVCNB7zRBKVPfNCnK9wz5dXVZWyP78J+OfKSyIfXwoL/YUM9+3bp3Ekp5d953QA6pesx3WsTONohBDi3AIjnaJ91ETV//mXo8u87aqQJvKxLNA7L/PmQ8MytDdpMyaAqlL2+1e1DkfEGUnmRcxrbm4OVswN13z5huWbcXx5EF1yEtl3XxuWfQjt9OnTB/BffJ5pPWwtJQ3sgW3icPD5qHhhodbhCCHEWXk8HsrK/DceA9XRo5Fj1xHsn28HnY6s703TOpyoIUXwQi/v0VtBp6N+yXqavzqodTgijkgyL2JeYEm67OzssAxhU30+yp54DYCsO6ZhyEwN+T6Etmw2W/DiJVp753N+fD3gL9Tkqa7XOBohhDizsrIyfD4fVqs1bHVsQqHi+XcASJs+HlOXHI2jiR6Bnvnjx4+fsoqEaJ+kft1Iu+5iAMr/Mk/jaEQ8kWRexLyW68uHQ927q2j+Yj86m4Wce78Vln0I7QWG2u/fv1/jSE7PNukCkob0Qm1yUvXvxVqHI4QQZxSohF5QUBC1c2jdJVXUvvUZADn3ztI2mChTUFCAXq+nsbHxlGUiRfvl/uRGAOreX4Nj7zGNoxHxQpJ5EfPCOV/e53JT+rv/AJBz37cw5KSHfB8iOgSS+YMHD0ZlBV9FUci5z38zqfLF9/E1OzWOSAghTi8wXz6ah9hX/vN9VLeH5HGDsI7sr3U4UcVgMAR7548ePapxNPHDMrAnqdPGgapS/lfpnRehIcm8iGl2u52KigogPMl89UtLcB0pxZCXQc4P5c59PMvLyyM9PR2Px8OBAwe0Due00q+9GGPXXLyVddS8uTwi+9Tr9Vx99dVMmTIFvV4fkX0KIWJby575aORtaKL6pQ8ByA7jiLtYbj+7desGSDIfarkPzQag9q2VOA9H33K4IvZIMi9iWqBXvlOnTlit1pBu21PTQNlT/wUg75Fb0SUnhXT7IrooisLAgQMB2LVrl8bRnJ5iNJDzw5kAVDz3DqrXG/Z9JiUlsWjRIubNm0dSkvwNCCHOrrm5OXiTPdC7G21qXl+Gt86OqU9nUq8cHbb9xHL7GViSTpL50LIO70vK5JH+grZPz9c6HBEHJJkXMS2QzIdjvnzpb1/GW12PuX93Mm+9IuTbF9EnkMzv27cPt9utcTSnl3nrlegzUnAdLqHu3dVahyOEEK0EKqBnZmaSnBx9y7iqbg8Vf3sXgJwfzkLRyaXw6XTt2hWdTkddXR21tbVahxNXAr3zNW+uwFVUrnE0ItZJCyZiWriS+abNe6j+z1IAuvz5RyiG2BoeJ9qnoKCA1NRU3G43Bw9G59IxuuQksn/gXx6x7M9vovp8GkckhBBfO3bMX9grMEw72tTM+wT38XIMOelk3HSZ1uFELZPJRH5+PiC986GWPGYgyRcP9d9Ymvu21uGIGCfJvIhZNTU11NbWotPpgsPBQkH1eCn66fOgqmTcPJnkcYNDtm0R3WJhqD1A9g9moEux4txzlPpFa8O6r8bGRmw2G126dKGxsTGs+xJCxL7jx48D/p7daKO6PZT/+U3Av9ynzmIO6/5ivf2Uofbhk3eyd7761Y9wl8mKAaL9JJkXMSvQK9+5c2dMJlPItlvxwkIcXx5En2Yj/7E7QrZdERsCyfzevXvxeDwaR3N6+jTb173zf3oz7OsANzU10dTUFNZ9CCFin9frDRa/i8ZkvubNFbiOlmLISSfre1dHZJ+x3H4GkvnDhw/LevMhlnzxMKwj+6M6XFS+sFDrcEQMk2RexKxwDLFv3nmYst+/AkD+b+fIUnQJqEuXLqSmpuJyudi3b5/W4ZxR9j3XobNZcOw4RP3SDVqHI4QQlJaW4vF4sFgsZGdnax1OK6rbQ1nLXnlrbBWk00KPHj3Q6XTU1tbKevMhpigKuQ/dBEDVS0vw1DRoHJGIVZLMi5ikqmrIk3mf083xu/+E6vKQctUYMr49JSTbFbFFURSGDBkCwPbt2zWO5swMGSlkzZkOQPlTb0iviRBCc4H58l27dkVRFI2jaa3qpSW4j5VhyM2IWK98rDOZTMHaB9FaRyaWpVwxmqTBvfDZm6n8x3tahyNilCTzIiZVVFTQ2NiIwWAI2dI3ZU++jmPnYfRZqXR5+sdRdyEiImfYsGEAHDhwIKrnOeb8cBaK1UzztgM0fLRR63CEEAkuWufLe+vslD35BgB5j9wivfLnoXfv3oAk8+GgKAq5PznZO//i+3jrY3M6htCWJPMiJgV65bt3747BYOjw9ho37KLimbcA6PLXH2PMzejwNkXsysnJoaCgAJ/Px44dO7QO54wM2Wlkz7kGgNLfvyqV7YUQmlFVlSNHjgCEtChtKJT/ZZ5/qdl+3cj8zlVahxNT+vTpA/ivu6K1jkwsS7tmPOa+XfDW2ql6abHW4YgYJMm8iEmBO8ShGGLvbWji+A//DD4fGbMvJ236+A5vU8S+QO98NA+1h5NzP1OsOHYcou49WXdeCKGN0tJSmpubMZlMFBQUaB1OkPNISXAIc/7jd8pSs+cpLy+P5ORk3G53cOSFCB1Fryf3QX/vfOULC/E1OzWOSMQaSeZFzPF4PMG7/4E7xu2lqipFP34a1+ESjJ1zKPjDD0IQoYgHgwcPRqfTUVJSQnl5udbhnJEhM5WcH84EoPQPr6J6vCHdvk6nY+LEiVx00UXodHLKEEKcXmDEXI8ePdDroyNhVlWV4p++gOryYJs4nJTJIyO6/3hoPxVFCV5rHThwQONo4lP6tyZi7JaHp6KW6lc/0jocEWNis2URCe3o0aO43W5SUlLIzc3t0Laq/vEede+tRjEa6PbvR9Gn2UIUpYh1VquVwsJCALZs2aJxNGeXfc9M9JmpuA4UUzNvRUi3bbFY+PTTT/nggw+wWCwh3bYQIn4cOnQICO0KMx1V+/Zn2D/ZgmI20vmpH0a8Fk68tJ+BZH7Pnj1SbDUMFKOB3PuvB6Di2bfwudwaRyRiiSTzIuYE7gz37t27QyfmxvU7OfGrfwH+ZeiSR/UPSXwiflx44YWAf6i92x29J1d9qpWcH/svBMqefAOfM3pjFULEH6/XG6xkHy3JvKemgRP/8yIAuQ/NxtwnNMVyE1Hfvn3R6/VUV1dTUVGhdThxKePmKRg6ZeI+UUnNm6G9KS/imyTzIuYEkvmODLH3VNRy9M4nwOMlbdZEsr5/TajCE3Gkd+/epKen43Q6o7oQHkD2nOkY8jJwHy+n+tWlWocjhEgggRFzycnJHR4xFwqqqlL8wLN4K+sw9+sWvNkp2sdsNger2u/evVvjaOKTLslEzr3fAqDimQUhnzIn4pck8yKm1NbWUllZiaIo9OrVq13bUL1ejn3/j3hKqjD37SrL0IkzUhQl2Dsf7UPtddYkch+aDUD5n9/E1+gIyXYbGxvJzc2lb9++Ub1MnxBCO/v27QP8PbjRcD6t/s9S6j5YAwY9XZ//CTqTUZM44qn97N/fP3pRkvnwybp9KvqsVFyHS0I+ZU7EL0nmRUzZu3cv4F/Dtr3zz8r+8Br2z7ejS06i+3/+H3pb7M5jE+F3wQUXoNPpKC4upqSkROtwzirztqv8RXTKaqh4/p2QbbeyspKqqqqQbU8IET9UVQ0m8/369dM4GnDsPsqJ/+cfXp//y+9iHVGoaTzx0n7269cPRVEoKyujurpa63Diki45idwf3wBA2R9flylzok0kmRcxJZDMt/eCof6jDZT/ZR4AnZ/+MUn9u4UsNhGfkpOTGThwIAAbN27UOJqz05mM5P/quwCUP7sAd0nsX0AKIaJbZWUlNTU16PX6do+YCxVPTQNHvvNb1GYntssuJPtHMzWNJ55YrVZ69OgBwK5du7QNJo5lzZmOMT8Ld1EF1bLuvGgDSeZFzGhubg4uSRcY7nU+nEdKOH73nwF/Y5nxrUkhjE7EszFjxgDw1VdfYbfbNY7m7NJmXoJ1ZH/UJielv39V63CEEHEucJO9Z8+emEwmzeJQ3R6O3fEHXIdOYOyaS7e//xQlRpeDi1aDBg0C4Msvv5Sq9mGis5jJ/dktAJT9+U28DU0aRySinbRyImbs378fVVXJyckhMzPzvH7X29DEkVsex1tnx3phP/J/+/0wRSniUZcuXejSpQter5dNmzZpHc5ZKYpC/u/83++aNz6mecchjSMSQsSzwBD7wFKeWlBVleKfvYB95TZ0yUn0eOPXGLLTNIsnXg0aNAi9Xk9FRQWlpaVahxO3Mr89BVPvArxV9ZQ/PV/rcESUk2RexIzA3f/z7ZVXfT6O/+gvOPccxZCXQff//D90Zm2K4YjYNXbsWAA2b94c1cvUASSPHkDazEtAVSn55f9JD4oQIizsdjtFRUWAv/idFlRV5cSj/6D6laWgKHT9+0+xDIqO5fHiTVJSUvAabPv27RpHE78Uo4H8x+4AoPL5d3Aeju56PUJbksyLmOByudi/fz9w/sl8+VP/pX7RWhSTge6v/BJjQXY4QhRxbsCAAaSlpdHU1MSXX36pdTjnlP+r76KYDNhXbqN+8TqtwxFCxKGdO3eiqipdunQhPT094vtXfT5KfvFPql58H4Aucx8gbdr4iMeRSIYOHQrAjh078Hpl+bRwSb16HLaJw1FdHkp++U+twxFRTJJ5ERP27t2L2+0mIyOD/Pz8Nv9e3aK1lP3xdQA6//lekked/1x7IQB0Ol1w7vy6devw+XwaR3R2pu6dyLnPv2btiUf/gdfe3K7t6HQ6Ro4cGazqL4QQATt27AC+nksdST6Xm+P3/JnKv70LQOe/3EvmLVMiHsfZxGP72bt3b5KTk2lsbOTAgQNahxO3FEWh4A93g15H/ZL1NKyI7uVxhXbio2URcS9wwTB48OA2r2HbvOswx+/5EwDZP7iWzG9fEbb4RGIYMWIEFouFqqoqdu7cqXU455T74E0Yu+XhLq6g/E//bdc2LBYLGzduZMWKFe1eDlIIEX9qamooKipCUZSIJ/PehiaOzH6M2gWfgl5Hl+d/QtZ3r45oDG0Rj+2nXq8P9s5v3rxZ42jiW1L/bmTPuQaAop/MbfdNeRHfJJkXUa+5uTl493fw4MFt+h13eQ1HbnkcX6MD28Th5P92TjhDFAnCbDYH586vWrUq6uei66xJdP7j3QBUvLAQx+6jGkckhIgXgZvsPXr0ICUlJWL7dewv4sAVP8H+2RfokpPo+d/HyLx5csT2L2DUqFEAHDhwgKoqWQI1nPL+5zsYu+TgPl5O6e/+o3U4IgpJMi+i3u7du/H5fOTl5ZGbm3vO1/saHRy5+THcx8ow9Sqg279+jmLQRyBSkQhGjx6N2WymoqKC3bt3ax3OOaVeOYbUq8eCx0vxz56P+hsQQojop6oqX331FdD2m+yhUPfBGg5cfj/OvccwdMqk13tPkDJ5ZMT2L/wyMjKCBQ+jfYWXWKdPsdLl6fsBqPrnBzSuj/5RgSKyJJkXUe+LL74AYMiQIed8rerxcnTOEzR/sR99Vio95z+OITM13CGKBJKUlBScOx8LvfMABX/4AYrVTOPaHVT/Z+l5/W5TUxM9e/Zk2LBhNDXJerdCCCguLqaiogKDwcDAgQPDvj+fw8WJR//B0dv/F5+9meTxg+n76bNYR2i3HF5bxHP7Geid37ZtGy6XS+No4lvKZSPIuHkyqCrHfvAUntoGrUMSUUSSeRHVysvLKSoqQqfTMWzYsLO+VlVVih9+gYaPNqIkmejx+q8x9yqIUKQikYwdOxaTyURpaWlwycRoZuqaR6dHvwNAya/+D9fxsjb/rqqqHD16lOPHj8fEjQshRPht2eIvxjVo0CCSkpLCui/HriMcmPwAlf94D4DsH82i18LfY8zLDOt+QyGe288+ffqQmZmJ0+lk69atWocT9wr+8ANMPTrhPl5O0X1Px933SbSfJPMiqgVOEP369cNms53xdaqqcuLnf6f65Q9BUej2j5+RPHpApMIUCcZisTB69GgAPvnkk6ivbA+Qffe1WMcMxGdvpujHz8iFgBCiXRwOR3C+/IgRI8K2H1VVqfznB+y//H4cu45gyEmnx7zfUPDbOShGQ9j2K9pGURTGj/cvA7h27Vo8Ho/GEcU3fWqyf9qo0UD94nXB5RiFkGReRC2PxxNcz/uCCy444+tUn48Tj/yNqn9+AIpCl2fuJ+2aiyIVpkhQF110EUlJSVRUVLB9+3atwzknRa+n69wHUCxm7Cu3Uf3yEq1DEkLEoC+++AKPx0NOTg5du3YNyz48FbUcmf0YJx75G6rTTcrkkfRd9TypU0aFZX+ifYYNG0ZKSgoNDQ3B6zURPtYLCsl//E4ASn71L5q2RP/IQBF+ksyLqLV9+3aam5tJS0ujd+/ep32Nz+Hi2PefpOr/FvkT+WfvJ/NWWYJOhF9SUhIXX3wxAJ999hlut1vjiM7N3KcL+b+8HfBfCDgPl2gckRAilvh8PjZs2ADAmDFj2rxU7PloWL6ZfRN+SMPHm1DMRgqeuJse836DMTcj5PsSHWMwGBg3bhwAq1evjolRarEu664ZpE4fj+r2cOTbj5/XtDkRnySZF1FJVVXWrVsH+Ocn63SnflU9lXUcmvk/1C38HMVooOvfHpK15EVEjR49mtTUVOrr62Omom/WXTNIHj8YX6ODY3OewOeK/psQQojosGfPHurq6rBarcG1xkPF53Rz4n9e5PCNv8JTUUvSgO70WfE02XfNCMtNAxEaF154IVarlZqaGrZt26Z1OHFPURS6PvcTkgb1xFNew+GbHsNb36h1WEJDksyLqLR3716qqqowm82nHWJv/3wb+y75EU0bdqFPs9Hz7d+RceNlGkQqEpnBYODSSy8F/JXtm5ubNY7o3BSdjq5//yn6dBvNX+yn9PGXtQ5JCBEjAjfZR44cidFoDNl2HXuPcWDKg1T+/V3Af9Oxz/KnsQzsGbJ9iPAwmUwxN0ot1ulTrfT472MYOmXi3HPUv8qD3JhPWJLMi6ijqiqrV68G/BcMZrM5+Jyv0UHJr//FoZn/D09pNeZ+3ei99E/YJoS2h0CItho6dCi5ubk4HA4++eQTrcNpE1OXXLrMfQCAyhcWUr9s4xlfqygKAwcOpF+/ftI7JkQCO3LkCEVFRej1+uCyZB2lqipVL3/I/svux7HjEPqsVHr899d0fuJudBbzuTcQ5RKl/Rw5ciTp6ek0NDQEp2GI8DJ1yaHHfx9Dsfrr4By/6ylUj1frsIQGJJkXUWfv3r0UFxdjNBoZO3Zs8PH6jzawd/zdVMx9G1SVzNuuou+Kp0nq103DaEWi0+l0TJ06FfAv11RSEhvz0NOmjSfrrhkAHP/hX3AVVZz2dVarlR07drBu3TqsVmskQxRCRAlVVfn0008Bf0Has60u01beOjvHvvcHin8yF7XZie3SERSueoHUK8d0eNvRIlHaz5aj1FavXk1Dg6yDHgnWYX3o8fL/QzEaqHt/Ncfv/QuqVxL6RCPJvIgqPp+PFStWAP658jabDVdxJUdu+x1Hbv4N7uPlGLvk0OONX9Pl6R+js4Z3fVsh2qJHjx4MHjwYVVX58MMPY2bZt/zf3IllWB+81fUcve23+JqdWockhIhChw4d4tixY+j1+uCQ6o5o3LSHfZfcS937q1GMBvIfn0PPBY9j7BT9a8eL0xsyZAgFBQU4nU6WLVumdTgJI2XySLq99CgY9NTO/5TinzyHKoUIE4ok8yKqbN26lcrKSiwWC+NGj6Hib++yb9wPqF+0Fgx6cn58Pf3W/YPUq+Lnzr2ID1OmTMFoNHL8+HG2bt2qdThtojMb6f7y/6DPTKV52wGKfvx0zNyIEEJERste+ZEjR5Kamtr+bfl8lD+zgIPTfob7eDmmHp3o/eGfyLl3FsppCt2K2KEoCtOnT0dRFHbs2MHBgwe1DilhpF09jm7/+BnodFS/+hEnHv6bJPQJRFpOETXsdnuwV35ifh+KrnmUkv/3Ij57M9bRA+j72bPkP3YHumTpjRfRJzU1NTjMcNmyZdTW1mobUBuZunei+8v/47+r//ZKKp5Z0Or5pqYmBg8ezLhx42hqatIoSiGEVnbs2BGc+jZhwoR2b8ddXsPhG35F6W9eAo+XtFkT6fvZc1hHFIYw2uiSaO1nfn4+o0ePBmDx4sVSDC+C0mdeQtfnHwRFoerfiyn68TMy5D5BSDIvosZHH32Eu6GRsZsrsDz4b5q3H0CfZqPzX39M7yVPSVVbEfXGjBlD165dcblcvP/++zHTy22bMJTOf7wbgNLf/oe6D9YEn1NVlV27drF3796YeT9CiNBwuVx8/PHHAFx88cXtnivfsGIL+y+5F/unW1EsZro8cz/d/vkw+tT4nUcOidl+XnrppaSkpFBTUxPsoBGRkXHT5XT920Og01Hzxsccu+spVLdH67BEmEkyL6LCtm3bOPrZRibN20n+mkPg85F+/SQKN/yDrNuvkuF3IibodDquvfZaDAYDhw8fZuPGM1eJjzZZ35tG1h3TQFU5dteT2Nd+pXVIQgiNff755zQ0NJCRkcG4cePO+/d9TQ6KH/kbh2/4JZ7yGpIGdKfvimfI/M6VcV3dPZGZzWauueYaADZs2CDD7SMs48bL6P7vn/uL4i38nCO3/y8+h0vrsEQYSYYkNFdaWsqO3/8fl765g9SqZgx5GfSc/zjdXnwYY26G1uEJcV6ysrKYMmUK4B9uf+LECY0jaruCJ+4m9eqxqE43R255nOadh7UOSQihkRMnTrB27VoArrjiCgwGw3n9ftMX+9h/6Y+p+ucHwNdrxyf1lxVo4l3fvn0ZOXIkAO+++y6NjY0aR5RY0mZMoPtrv0RJMtGwdAOHZv0/PNX1WoclwkSSeaGp6mPF7Jj1c4YuP4Teq2KbPJLCz58nZfJIrUMTot1GjRpF//798fl8LFiwIGbmSioGPd3++QjWsYPw1TdyaOb/0Lz7iNZhCSEizO12s3DhQlRVZdCgQfTr16/Nv6t6vJQ99QYHrnwI5/4iDPlZ9Hzrd3GzdrxomyuuuILs7Gzsdjvz58/HK/O3Iyp1yih6zn8cXWoyTet3cuCqh3Aejo2lc8X5kWReaKby080cmHgfuXvK8ekVsn55Gz3ffAxDTrrWoQnRIYqicO2115KRkUFtbS3//e9/Y6YQkM5ipscbv8IyvA/eyjoO3/hrrUMSQkTYsmXLqKysxGazMW3atDYPiXfsPcaBqx6i7A+v+YvcXTuBwtUvkHLZiDBHLKKN0Wjkpptuwmw2c+zYMZYuXap1SAnHNmEofT78E8YuObgOFHPgyp/QuGmP1mGJEJNkXkSc6vVx9HcvUXz9r0mqc9CUYaHgnd/S+cHZMjdexI2kpCRuvvlmkpKSKCoqYuHChfhiZKkYQ3oKPd/5XywjCvHWyNA8IRLJF198webNmwG49tprsVgs5/wd1eulYu7b7J90H81b96FLTabr339Kt38/iiEjJdwhiyiVnZ3NrFmzANi8eTNbtmzROKLEkzSgO32W/RXLMP8N+kMzHqH61Y+0DkuEkGROIqJcxRUcv/6X1P/1LRRVpWxIPn0+eYbci+WuvYg/OTk5zJ49G71ez+7du3nvvfdiKqHv9c7/kjxqAAU6CwU6C1Uvf5gwFZmFSESHDh1i8eLFAEyaNIk+ffqc83ecB4s5OO1hSn79L1Snm5TLL6Tf2r+RceNlCV/kTlEUunfvTteuXRP2WBQWFnLZZZcBsGTJEimIpwFjp0x6ffDHYE2covufoeiBZ/E5Y2PEoDg7RZUrMxEhpfOWU/LQc+ibXHiMOo5cN5zJTz1Mamqq1qGJEFBVldraWtLT0xP2ouVMdu3axVtvvYWqqgwYMICZM2diNBq1DqtNfE43RQ88S+08/xJDadddTOe/3IshXXrbhIg1Z2unjx07xmuvvYbb7WbgwIFcf/31Z23LVZ+Pqn9+QMnjL6M2O9HZLBT8711k3HqFnANakHOj/xgsXLiQr776CpPJxHe/+13y8/PDtq9EP95novp8VDy9gNL/fQVUFcuIQrr/+1FM3fI6tl055pqSZF6EXfPREnbd80eM6/cBUJ2XjPNnM7n8thvPuzquiF7SmJ/dnj17WLBgAT6fj06dOnHjjTeSkREbqzX4fD6O/+kN6p56E7w+9NlpdPqf75B565UoBr3W4Qkh2uhM7fTevXt566238Hg89OrVi5tvvvms52fnkRKK7nuaxjX+JSxtE4fT5dn7MXXtWFIQj+Tc6Of1enn99dc5fPgwycnJ3HnnnWE5B8rxPreGFVs4dteTeGsa/Dfh/ngPGbMvb/fxkmOuLUnmRdh4nS52/+HfuP6+GIPLi0+nUDKpkK6//B6Dhg6RP/g4I435uR09epT58+fT1NSE0Wjk8ssvZ/To0VF/vAKfrelgGUU/+ivO/ccBMBd2Jfvua8m44TJ0yUkaRymEOJdvttNer5dPP/2UNWvWAP4lxW644YYzjhxSVZXql5dQ8qt/4Wt0oFjN5P/mTrK+d7XUvDkDOTd+zeFw8PLLL1NWVkZGRgbf/e53Qz46U45327iOlXHsB0/RtGEXAKnTx9P5yR9i7JR53tuSY64tSeZFyKluD4f/9hZVz7yFuca/JFdtlzTSfvNdhlw7hbq6OvmDj0PSmLdNbW0t7777LkePHgWgU6dOTJo0icLCwqg8bs3NzVxyySV4vV5Wr16NxWii6qUllP3xdbw1DQDoUqykTh1D2rTxpFx2oST2QkSpQDudlpbGgQMH+OSTTygrKwP8S2peeeWV6PWnH23jPFxC8YPPYv98OwDJ4wbR5bmfYO4ZnuHS8eCb7afVatU6JM3V19fz0ksvUVtbS2ZmJrfffntIE3q5Fmk71eul4tm3KD25+oTOZiHv57eS/f1rUIxtHzkrx1xbksyLkPHWN1Hy8iLKnn8HY4W/ArYj2Yj3O5cy4ld3Y05Kkj/4OCafbdupqsrmzZtZvnw5LpcLgIyMDC688EKGDx9OcnKyxhF+rbGxEZvNBkBDQ0Pwv731jVS//jFV/1qE69CJ4OuVJBO2S4aRetUYUq8YjbEgW5O4hRCnUlWVnTt3snHjRo4f94+wSUpK4pprrmHgwIGn/x2Pl4oX3qHsiddRHS6UJBOdfvldsn8wQ3rjz+FM7Weiq62t5T//+Q+1tbVkZWVx++23k5ISmjosci1y/pq/PEjRT+bSvNU/HdbcrxudHr2V1Onj2/Q3LsdcW5LMiw5RfT4a13xF5X8/pvbdVegc/sqYTouBhmsuZMTjPyI99+uLefmDj1/y2Z6/pqYm1q5dy+bNm3E6nYC/+nGPHj0YMGAA/fv3D9kFTnud62JU9flo2ribukVrqV+8DtfR0lbPW4b1IeXK0aReNQbLsD7y3RBCIyUlJaxYsSJYTdxgMDB69GgmTJhwxuXnGtfvpPiRv+H46hDgnxvf+c/3Yu5VELG4Y5kk82dWW1vLyy+/TF1dHampqdxyyy3k5XW85oJci7SP6vNR/doySh9/GW+1v0MuaVBPch+8kdRp49GZz1y0V465tiSZF+dNVVUcXx2i5q3PqH37MzwlVcHn6jOTqJ7YnxE/v5MufXuf9nflDz4+yWfbfi6Xix07drBlyxZOnDjR6rkuXboEE/vMzPOfy9ZR53Mxqqoqjt1HaFi6kfqlG2jashdanGJMvQvIvHkK6TdehqlLTthjF0JAZWUln332GTt37gRAp9NxwQUXMHHixDPeLHQeKaH01/+m7gP/XHp9Rgr5v51Dxs2TpX0/D5LMn11NTQ2vv/46VVVVmEwmZsyYwaBBgzq0TbkW6RhPbQOVf3uPyr+/i6/BP1VWn5lKxo2XkX7DJP9N+W/01ssx15Yk86JNfA4X9lXbafhoI/UfbcRdXBF8zmXWU9w3E/vYPoz43vX079//jH/M8gcfv+SzDY3q6mr27NnD7t27KSoqavVcXl4eAwYMYMCAAeTk5ETkOHfkYtRTUUv9x5uoX7oB+6db8TU6/E8oCraJw8n49hTSrh6HzmIOR+hCJLS6ujpWrlzJtm3bCFzqDRkyhAsuuIAePXqctv1wHiym/OkF1MxbAR4v6HRk3nYlnR79Doac9Ai/g9gnyfy5NTc3M2/evGAdmSFDhjBlypR2j0qTa5HQ8NQ2UPWP96l+ZSnuFp12hk6ZpF4xmuQJQ7BeUIjp5CgdOebaidpk/ssvv2Tu3Lls27YNt9tNnz59uP3227nmmmvavA2fz8cbb7wRbCSsVitjxozhwQcfpEePHuELPg6oqorrcAn2z7fR8MnW1hfigMego6xHGsf7ZeMa0ZOJky9n8ODB5/wjlkY2fslnG3r19fXs3buX3bt3c+TIEVo215mZmQwYMIB+/frRuXNndGGauxqqi1GvvZm6D9ZQ88bHweWsAHSpyaR/ayKZt0zBMiI6iwCKjpNzeuQ0NjayevVqNm3ahNfrBaCwsJDLLruM3NzcU9pp1evF/tk2ql9ZSt3ideDzAWC7dAT5v70Ty8Cemr2XWCfJfNt4vV5WrlzJ6tWrUVUVg8HA0KFDGTZsGF26dDmv85tci4SW6vXS8MlWal7/mIZPtuCzN7d6Xp9mI2lYb3SFXUgbOQDr0D6Y+3SWZWsjKCqT+Q0bNnDnnXdiNBqZNm0aKSkpLFu2jKKiIh588EHuvvvuNm3nl7/8JfPnz6dPnz5MnDiRqqoqlixZgtls5s0336RPnz5hfiexI5C8N23Zi33Vduwrt+E+Xt7qNQ6bmZIeaZT0SqeiaxoFPboxbtw4+vfv3+aGVhrZ+CWfbXg1NTWxb98+du/ezcGDB4MX6QBms5nu3bvTs2dPunXrRm5u7lnXiD4f4bgYdR4poea/K6j578e4i74e5WPu143MW6aQftNlGHNDv/6w0Iac0yOjubmZDRs2sG7dumBhze7du3P55ZfTtWtX4Ot2OsVgpmnNV9R/tJH6ZRtbTZdLuXI0uQ/eRPLoAZq8j3giyfz5KSoqYtmyZcHijOA/v3Xu3JmcnByysrLIzs4mKyuLlJSU015ryLVI+PicbhrXfEXDx5to2rKX5q8Oojrdp7xOSTKRNLAHliG9sQzpRdLgXlgG9ZSVbsIk6pJ5j8fD1KlTKS0tZd68ecHqqna7ndmzZ3P48GEWL158zrvw69ev5/bbb2fkyJG89NJLmEwmANatW8f3vvc9Ro4cyWuvvRbutxMy27dvZ82aNeh0OoxGIyaTieTkZJKTk7HZbMGf5ORkrFYrVqv1jBfzvkYHjv3Hce4vwrnvGE3bD9C0ZR++k8tMBV+nU6jKt1HRNY3SnunU5VixWK0MHjyYYcOG0blz5/N+H9LIxi/5bCPH6XRy4MCBYGLvcDhaPa8oCtnZ2eTk5JCWlhb8sdlsmM3m4I/BYEBRlODP6TQ2NtKjRw9UVeXIkSMhvRhVfT7sq76k5o2PqftgDarDn4Cg02EdUUjK5JHYLh2BZVhvdKYzF98R0UvO6R2jer3Uf7QRb00DismIYjKiMxtRjAYUs///7c5mduzbw469e3D4PPj0Ojrl5HDRyNF0zemEr6EJV3EF7qIKHHuPYd+yF8/BE8EeeAB9uo30Gy8j87YrpSc+hMLZfsarwLHavn07u3fvDt6Y+iaj0UhWVtYpP5mZmTgcDrkWiQDV7cGx+yhN2/ZTt2U3vr1FOHYebjWSN0hRMPfp7E/sh/bGMqgnSYN7YcjLkM+pg6IumV+9ejV33nkns2bN4g9/+EOr55YsWcKDDz7ID37wA37yk5+cdTsPPfQQixYt4rXXXmPUqFGtnpszZw6rVq1i6dKl9OwZ/pOWqqqoTjeKUY9yhvVbz+W9995j27ZtrR7TeXwYXF6MLm/wX6PTg+Hk/yd5IMmrYHV4MNldmBocGBscGBtP3zB69Qp1OVaqClIo75pGVecUvEY9nTp1omfPnvTq1YuePXuecQ3atpCEL37JZ6sNn89HaWkphw8f5vDhw5w4cYLm5uZz/2ILPXr04LbbbtO01oW3vpHadz6n5o2Padq8p9VzislA0uBeWC/oi7l3Z0w98jF174SpW15M3OlXfT5Uhwuf033yXxdqswufy40xJz2ul++Lt3O6y+XilVdeob6+HpPJhNVqJT09nfT0dDIyMkhPTw/ePDufc6Wqqni9XrxeL6qqBm+wNa7cxvGbHgvLezF2yyP1ytGkThlF8oSh6JJMYdlPopNzY/v5fD7KysooLi6mqqoq+FNTU8PZ0hez2UxycjIWi4WkpCT0ej06nQ6DwcDYsWPb1Rklzqzld5yTI32bvzxI845DOE7+6ymrOe3v6rPT/In9oJ5YBvfC1KsAU9dcf5IvS1+2SWjGYYbQxo0bAZgwYcIpz1100UWtXnM2GzZswGq1MmLEiFOemzBhAqtWrWLTpk1hP/GrPh8Hr/rp1xeniuJP6k1GFMPJfwN32I0GFJPh5L9GFKMevD58DhcDXG5625tQXW7UJhdqowPF7Wl3XE6LgYYMCw2ZFuqzLNTkp+DrmUdqVgY5OTmMyM0lNzeXvLw8rFZriI6GECLUdDodBQUFFBQUcNFFF6GqKg0NDZSVlVFZWUl9fT11dXXU1tbS1NSEy+XC6XTia9Erd77JfzjoU5PJ+u5Usr47FVdxJQ0rNtOwfDONq7/EW2uneeu+4Bq4LSkWM4asVAxZaegzU9GnWNElJ6GzmFEsZnQW89f/n2RC0etAUfxtsc7/L4F/T954Vd0e/78uDz6X/1/V5UZ1uv2JuMOFz+FCdbrwOdz+f5udrZ5XnW7/axwu1LO11TodhWteIKlftzAeXe3E2znd7XZTXl6O2+0fWlpVVdVqSHBLKSkpJCUlYTQaMRgMeL1ePB7PKT+Bx0/H6PQwaHAuFrsLndeHzqv6//Wpwf/Xe3wY0WFQAZcnWLhOZzGhWMzobRaMnXMwdsnB1L0Tvr75ZI8fjik/K1yHSYiQ0Ol05Ofnk5+f3+pxr9dLTU1NqwQ/8GO323E6ncHlXr/JZDJJMh9Gik6HuXdnzL07kz7zkuDj7rJqHF8donnHIZq/PIhj52GcB0/grazDvnIb9pXbWm/HaMDYORtDpyz06Tb0acno02zoU6z+PMmoB73en0sZ9P5zuM+H6vWBT0X1ef3/en2tHsfnQ/X5Tn1OVcF78jmvD/V0r/V4/dcHrpPXCW6P/zrh5L+qx4NlUE+6/evnEb0REXXJ/JEjRwD/PK9vSktLIyMjI1jx8kyampqoqKigsLDwtHfGA8P5Avs6nVANWFDxJ/QtNnzywrD9iThAy3u7umQLuhQr+lQruhT/j5KchM9iwmsx4ku1QGYKaoYNslIgJw1rdjqdzGZMJhNJSUnYbLYzznsP5eCNwLaibECICAH5bKNHSkoKKSkpZ5xDrKpqMInw+XwkJSUFHz/T68/2fKgZC7LI/M6VZH7nSn89jyOlNG/dS/NXh3AdLfX/HC7FV9+I2uzEXVTRau59VDPo0ZlNKEn+IdKmLjnos9NCdmyjrecv3s7pVquVBx54gNraWpxOJ42NjdTW1lJbW0tNTQ11dXXU1dXh8XhoaGigoaHh3Bs9C7fZwLbLW9+g0Ov1ZGRkkJ+fT7du3ejXr1+r4duqz+e/WXWG+cR1dXUY0kL3nRNnJ+fG0NPpdMFh9d/kcDgoLi7GYDDgcDhwOBz4fD58Ph+KotCvXz/5LEKsLd9xQ24GtssvxHb5hcHHfE0OHHuO4dh52P+z6wiuo6W4S6pQ3R5cR0pxHSkNe/yh5CmpxtvoQG+zhGR7bTmnR10yb7fbAc64JIXNZqO09OwfbODkeaa5SYHHA/s6nbq6upD9sWfN+yVqowPV7QWPB9Xj9Sfzbv9/4/YG7/AQuNPj9vrvsBt0J+fJGeDk/DglyYQuxXIyabf4e5o6wOfzUV9fH5L32lZ1dXUR3Z+IHPlsY8+Z5iSCv9f+xhtvBGD+/PlYLKE5QZ2XDAtcPhzL5cNpuXefvRlfTQPe6gZ81Q34quvxNTpQm53+HvHgvy58TQ5/oZ6Td9lR/T+qqvrvuvpUUAiOliI4Ssr/g9Hg79kPtMNmI0ogKTeffPzkD+ZvPtbiv09T4deOD2prQ3OoMqKrcGA8ntMBLBYLFouF9PT0U3r5VFWlubmZhoYGXC5XsAder9djMBjQ6/Wt/rvlYy1vVrS8QG4Zu8lkanWB5/F4qD3P74+005ERFe1nAgok+Wlpaac853a7z/vvRbRNu9qVXrnoeuVivWYMgXHAqseLt6waT3Elvqp6fHWN/p/6Rn8+5fH6e88D/54c/abodBAYfadTvh6Jp9eBTud/Xuf/fyUwKk+vA0Xnf61OOfk6pcV2dF9vx6j3XxcY9P5rgpPXCRj0wesFQ49ONHicUHv6kSHnqy3n9KhL5qPF6RqADskM7eZiVaBXIC0tLep6kETHyGcbn4xGI2vWrAH8CVlUFXBKT4cu+ed8mRAhP6efQ7TdVAmQdjqyorr9jFPyHY+8sBzz7CwY1Dc024pzUZfMt1zC43TsdvsZ7/AHBJ4/0136wONna1SlAQivs1XPFrFNPtv40vKzlM9WnC85p0cn+VuODGk/tSPHO/LkmGsj6soEBua+nW4OXV1dHTU1Naede9eS1WolJyeHoqKiVmsxBwTm1Z1rKRwhhBBCtJ+c04UQQojwibpkPrDkzOrVq095LjBUafTo0efczujRo2lqamLr1q2nPBfY9jeXtxFCCCFE6Mg5XQghhAifqEvmx40bR9euXVm0aBG7d+8OPm6323nhhRcwGAzMnDkz+Hh1dTUHDx6kurq61XYCBUeefvrpVsWd1q1bx+rVqxk1alRE1pgXQgghEpWc04UQQojwUdQoXJ9h/fr1zJkzB6PRyPTp07HZbCxbtoyioiIeeOAB7rnnnuBr586dy3PPPce9997Lfffd12o7v/jFL1iwYAF9+vRh4sSJVFVVsWTJEsxmM2+++eYZl20S4aOqKrW1taSnp8u8mjgjn218amxsbDXvWQo4ifMl5/ToIe10ZEn7GXnyHY88OebairoCeABjx47ljTfe4Nlnn+XDDz/E7XbTp08f7r//fmbMmNHm7Tz++OP069ePefPm8eqrr2K1Wrn00kt58MEH5Q6+EEK0kdVqPfeLhDgDOaeLRCbtpxAinKKyZ17EL7l7F7/ks41f8tkKER/kbzny5JhHlhzvyJNjrq2omzMvhBBCCCGEEEKIs5NkXgghhBBCCCGEiDGSzAshhDgjh8PB9OnTuemmm3A4HFqHI4QQMUPaTyFEuEVlATwhhBDRwev1smTJkuB/CyGEaBtpP4UQ4SY980IIIYQQQgghRIyRZF4IIYQQQgghhIgxkswLIYQQQgghhBAxRpJ5IYQQQgghhBAixkgyL9l4QV0AABFVSURBVIQQQgghhBBCxBhJ5oUQQgghhBBCiBijqKqqah2EEEIIIYQQQggh2k565oUQQgghhBBCiBgjybwQQgghhBBCCBFjJJkXQgghhBBCCCFijCTzQgghhBBCCCFEjJFkXgghhBBCCCGEiDEGrQMQ8WvTpk188skn7Nixg127dmG325k5cyZPPPFEu7a3atUqXnzxRXbu3ImqqgwePJi77rqLiy++OMSRi7aoqKjg6aefZuXKldTV1VFQUMA111zDXXfdhclkavN2+vXrd8bnHnroIe66665QhCu+4csvv2Tu3Lls27YNt9tNnz59uP3227nmmmvavA2fz8cbb7zBvHnzOHr0KFarlTFjxvDggw/So0eP8AUvhGgTaafDQ9rPyOro8d6wYQO33XbbGZ+fN28ew4cPD1G0se+9995jy5Yt7Nixg3379uF2u/nDH/7ArFmzzms78h2PDEnmRdi8/fbbLFy4EIvFQn5+Pna7vd3bev/99/nZz35GRkYGM2fORFEUPvzwQ+bMmcNTTz3FjBkzQhi5OJeKigpuvPFGSkpKmDx5Mj169GDLli3Bk+2LL76ITtf2gT+dO3dm5syZpzw+YsSIUIYtTtqwYQN33nknRqORadOmkZKSwrJly/jpT39KcXExd999d5u28+tf/5r58+fTp08fbr31VqqqqliyZAlr1qzhzTffpE+fPmF+J0KIM5F2Ojyk/YysUB1vgNGjRzN69OhTHu/UqVMoQ455zzzzDMXFxWRkZJCbm0txcXG7tiPf8QhRhQiTL7/8Ut23b5/q8XjUL774Qi0sLFQfeeSR895ObW2tOnLkSHXMmDHqiRMngo+XlZWpF110kTpy5Ei1trY2lKGLc3j44YfVwsJC9fXXXw8+5vP51EceeUQtLCxU33rrrTZvq7CwUL311lvDEaY4DbfbrU6ePFkdPHiwunPnzuDjDQ0N6rRp09SBAweqhw8fPud21q1bpxYWFqq33HKL6nQ6g4+vXbtW7devn/rtb387HOELIdpI2unQk/YzskJ1vNevX68WFhaqzz77bBijjR9r1qxRi4qKVFVV1X/84x9qYWGh+vbbb5/XNuQ7HjkyZ16EzZAhQ+jbty96vb5D21m6dCn19fXceuut5OfnBx/Pzc3ltttuo76+nqVLl3Y0XNFGdrudJUuW0LVrV26++ebg44qi8JOf/ASdTseCBQs0jFCczfr16zl27BjTp09n4MCBwcdtNhs//OEP8Xg8vPPOO+fcTuAzfuCBB1oN1x03bhwTJkxg06ZNHD58OPRvQAhxTtJOh4e0n5EVquMtzs/48ePp3Llzh7Yh3/HIkWReRL2NGzcCMGHChFOeC8yXD7xGhN+2bdtwuVyMHz8eRVFaPZebm0thYSHbt2/H6XS2eZv19fUsWLCAv//978yfP58jR46EOGoRcLa/p4suuqjVa85mw4YNWK3W0w6xDWx706ZNHQlVCNFO0k6Hh7SfkRWq4x1w5MgRXnnlFV588UUWLVpEdXV1aAIVp5DveOTInHkR9QIXDN27dz/lucBjR48ejWRICS1wrM9UvKR79+7s2bOH48ePt3k+1J49e/jFL34R/H9FUbjmmmt4/PHHsVgsHY5ZfO1sf09paWlkZGSc8++pqamJiooKCgsLTzvyJvDdSMSLfSGigbTT4SHtZ2SF4ni3tGjRIhYtWhT8/6SkJO677z7mzJnT4VjF1+Q7HlmSzIuoFyicl5KScspzVqsVvV5PQ0NDpMNKWIFjfbrPA/zD31q+7lzuuOMOpk6dSvfu3VEUhV27dvHXv/6V999/H6/Xy1/+8pfQBC6As/89gf/zKy0tPes2Ap9t4LM+3TZa7ksIEVnSToeHtJ+RFYrjDZCZmcnDDz/MpEmTKCgooL6+ng0bNvCnP/2Jp556CpvNxuzZs0MaeyKT73hkSTIvzmrMmDHU1ta2+fWvvPIKY8aMCV9AImSi5bN95JFHWv3/2LFjefnll7n22mtZvHgx99xzD3379g35foUQItpJOy1Ex/Xt27fV99NisTBjxgz69+/PrFmzmDt3LjfeeON5re4gRLSQZF6c1fTp02lsbGzz67Ozs0MeQ8sehIyMjFbPNTU14fV6z3jXVpxZez/bwLE+U4/Oue6kt4XFYmHatGm88MILbN26VS4SQ+hcPXJ2u/2cn13g+TPdVQ88fqa78kKItpF2OrpI+xlZoTjeZ1NYWMiwYcPYvHkzR48epWfPnu3elviafMcjS5J5cVa//OUvtQ6BHj16sGPHDo4ePXpKMh+YK3W6+VTi7Nr72QaO9ZnmOh09ehSdTkfXrl3bGxpA8LNubm7u0HZEa4G5akePHmXw4MGtnqurq6OmpoYLLrjgrNuwWq3k5ORQVFSE1+s9ZU5c4Ltxpvm6Qoi2kXY6ukj7GVmhON7nEvgOOxyODm1HfE2+45El40lE1Bs1ahQAq1evPuW5VatWATB69OiIxpTIhg8fjslkYu3ataiq2uq58vJy9u3bx7BhwzCbzR3az/bt2wHo0qVLh7YjWjvb39OaNWuAtv09jR49mqamJrZu3XrKc4FtB/YlhIgsaafDQ9rPyArV8T4Tj8fDrl27UBSl1dLHouPkOx45ksyLqNHc3MzBgwc5ceJEq8enTp1KSkoKr732GiUlJcHHy8vLeeWVV0hNTeWqq66KdLgJy2azcfXVV3P8+HH++9//Bh9XVZW//OUv+Hw+brjhhla/c6bPdteuXaft0fnwww9ZvHgxGRkZjBs3LjxvJEGNGzeOrl27smjRInbv3h183G6388ILL2AwGJg5c2bw8erqag4ePHjKEj433ngjAE8//TQulyv4+Lp161i9ejWjRo2SIYtCaETa6fCQ9jOyQnW8v/jii1Nuank8Hp588kmKi4uZMGEC6enpYX0v8Uq+49pT1G9+u4UIkc2bN/PWW28B/j/2lStX0q1bNy688EIAevXqxV133RV8/YYNG7jtttsYPXo0r776aqttvffeezz88MNkZGQwbdo0FEXhww8/pLKykieffJJrr702cm9MUF5ezo033khpaSlTpkyhR48ebN68ma1btzJhwgT++c9/tiokc6bP9uc//znLly9n3Lhx5Ofno6oqu3btYvPmzZjNZubOncvEiRO1eItxbf369cyZMwej0cj06dOx2WwsW7aMoqIiHnjgAe65557ga+fOnctzzz3Hvffey3333ddqO7/4xS9YsGABffr0YeLEiVRVVbFkyRLMZjNvvvlmm5e8EkKEnrTT4SHtZ2SF4nhfdtllAFxwwQXk5eXR0NDApk2bOHz4MAUFBbz22mt07tw54u8tWi1YsIAtW7YAsG/fPnbu3MmIESOC03cmT57M5MmTAfmORwOZMy/C5tixYyxcuPCUx44dOwb4h+C0TObP5tprryUjI4MXX3yRd955B4BBgwbxxBNPcPHFF4c2cHFOubm5zJ8/n6effpqVK1fy6aefUlBQwH333cddd93V5oqwl19+OfX19ezcuZNVq1bh8XjIy8vj+uuv54477qB3795hfieJaezYsbzxxhs8++yzfPjhh7jdbvr06cP999/PjBkz2rydxx9/nH79+jFv3jxeffVVrFYrl156KQ8++KDccRdCY9JOh4e0n5EViuM9e/ZsVq1axcaNG6mpqcFgMNCtWzfuvvtu7rjjDtLS0sL8LmLLli1bTrl+37p1a3DIfOfOnYPJ/NnIdzwypGdeCCGEEEIIIYSIMTJnXgghhBBCCCGEiDGSzAshhBBCCCGEEDFGknkhhBBCCCGEECLGSDIvhBBCCCGEEELEGEnmhRBCCCGEEEKIGCPJvBBCCCGEEEIIEWMkmRdCCCGEEEIIIWKMJPNCCCGEEEIIIUSMkWReCCGEEEIIIYSIMZLMCyGEEEIIIYQQMUaSeSGEEEIIIYQQIsYYtA5ACBGfGhoaeOGFF/j4448pLS0lKSmJoUOH8uCDDzJkyBCtwxNCCCFEG8j5XIjopaiqqmodhBAivjQ0NDB79mwOHDjAmDFjGDRoECUlJXz00UekpqaycuVKkpKStA5TCCGEEGch53Mhopv0zAshQu65557jwIEDPPLII9xxxx3Bxx999FHeeecdDh06xMCBAzWMUAghhBDnIudzIaKbzJkXQoSU1+vlnXfeoXv37q1O/ABGoxGA1NRULUITQgghRBvJ+VyI6CfJvBAipHbv3k19fT2XXnppq8fdbjcrVqygc+fOdOnSRaPohBBCCNEWcj4XIvpJMi+ECKmdO3cCtCqK43Q6efTRR6msrOS2227TKjQhhBBCtJGcz4WIfjJnXggRUrt27QJg0KBBLF68mM8//5xVq1ZRVVXFzJkz5eQvhBBCxAA5nwsR/SSZF0KE1K5du0hOTqZHjx489NBDwTv7RqORLl26IAtoCCGEENFPzudCRD8ZZi+ECBmv18u+ffsYMGAAiqIwf/58Vq9ezfPPP0/fvn2ZO3cuzz777Gl/d82aNQwYMIBHH300wlELIYQQoqX2nM9nzZpFv379mD9/fqvHGxoaGDduHP369WP16tWRfBtCxD1J5oUQIXPw4EEcDgeDBg0CwGAwkJOTw+TJk/nXv/6FTqfjk08+OeX3vF4vTz75JLfffjt79uyJdNhCCCGEaOF8z+dut5t9+/ZRUFDAvn37Wm3rhRdewGQyAcgydkKEmCTzQoiQCcyvO93JOiUlBb1eT3Jy8inPvfnmmwwZMoQrrriCAwcO4PF4wh6rEEIIIU7vfM/nBw4cwO12c+2117J///7g40ePHmXevHlMnTqVTp06kZmZGf7ghUggkswLIUImMJ/udCf/tWvX4na7GT16dKvH6+rqePHFF7nvvvvo27cvLpeLQ4cORSReIYQQQpzqfM/nO3fuJDMzk0mTJrVK5v/4xz8ye/ZsGhoaGDBgQPgDFyLBSDIvhAiZ3bt3A7B48eJWj9fU1PDEE09gNpu58cYbWz03d+5crrnmGvLy8khJSSE3N1eG2gshhBAaOt/z+a5duxg4cCCFhYXU1NRQXV3N+vXr2bZtGz/84Q/ZvXt3cMi+ECJ0pJq9ECIkVFUNnvz//ve/s3XrVoYOHUpNTQ0rVqygvr6e3//+93Tp0iX4OwcPHmTJkiUsXbo0+Fjfvn3ZvXs3M2bMiPh7EEIIIRJde87nu3btYuTIkVitVrp168bevXt54oknuP/++zGbzezfv58f/ehHWr0lIeKWJPNCiJA4evQodrudyy67DFVV2bRpE1u2bCEzM5MxY8Zw5513MmzYsFa/88QTT1BdXc3YsWODj/l8vkiHLoQQQoiTzvd87vP52Lt3b3Dd+f79+/PUU0/h8/m4/vrr2bdvHy6XS4rfCREGkswLIUIiUCxn0qRJ3HTTTed8/cqVK9mzZw/vvvsuOt3XM36WL1/Oa6+9FrY4hRBCCHFm53s+P3z4ME1NTcE58f3792fp0qW8/PLL6PV6du3aRUZGBvn5+WGNW4hEJMm8ECIkAif/thS48Xg8PPHEE3z/+9+nf//+rZ6rra3lmWeeoaKigpycnLDEKoQQQojTO5/zeeD1VquV7t27A3DnnXcye/ZsMjIyAP/8e+mVFyI8pACeECIkdu3ahV6vp1+/fud87euvv05DQ8Np7/gHLgYC8/WEEEIIETnncz4PvL5///7BUXYmkymYyAeel2ReiPBQVFVVtQ5CCBH7xo4dS3Z2NosWLdI6FCGEEEK0k5zPhYgdkswLIYQQQgghhBAxRobZCyGEEEIIIYQQMUaSeSGEEEIIIYQQIsZIMi+EEEIIIYQQQsQYSeaFEEIIIYQQQogYI8m8EEIIIYQQQggRYySZF0IIIYQQQgghYowk80IIIYQQQgghRIyRZF4IIYQQQgghhIgxkswLIYQQQgghhBAxRpJ5IYQQQgghhBAixvx/9c5eVBeijroAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"_, axs = plt.subplots(1, 2, figsize=(10, 5))\n",
"plt.sca(axs[0])\n",
"az.plot_dist(no_measurement_error_model.posterior[\"beta_A\"], color=\"gray\", label=\"ignoring error\")\n",
"az.plot_dist(\n",
" measured_divorce_marriage_inference.posterior[\"beta_AD\"], color=\"C0\", label=\"with error\"\n",
")\n",
"plt.axvline(0, color=\"k\", linestyle=\"--\", label=\"no effect\")\n",
"plt.xlabel(\"$\\\\beta_A$\")\n",
"plt.ylabel(\"density\")\n",
"plt.legend()\n",
"axs[0].set_title(\"Effect of Age on Divorce Rate\")\n",
"\n",
"plt.sca(axs[1])\n",
"az.plot_dist(no_measurement_error_model.posterior[\"beta_M\"], color=\"gray\", label=\"ignoring error\")\n",
"az.plot_dist(\n",
" measured_divorce_marriage_inference.posterior[\"beta_MD\"], color=\"C0\", label=\"with error\"\n",
")\n",
"plt.axvline(0, color=\"k\", linestyle=\"--\", label=\"no effect\")\n",
"plt.xlabel(\"$\\\\beta_M$\")\n",
"plt.ylabel(\"density\")\n",
"plt.legend()\n",
"axs[1].set_title(\"Effect of Marriage on Divorce Rate\");"
]
},
{
"cell_type": "markdown",
"id": "687588ba-353e-4108-af16-a7dc333f7ccf",
"metadata": {},
"source": [
"#### Again, no clear rule for how measurment error will effect causal estimates\n",
"\n",
"- Estimated effect of age is attenuated when accounting for measurement error (left)\n",
"- Estimated effect of marriage on divorce rate increases when modeling measurement error (right)\n",
"- Effects of age and marriage found in previous examples could be due in part to measurement error and/or population confounds"
]
},
{
"cell_type": "markdown",
"id": "769eac77-2a8b-457c-a0b1-8991b9b31014",
"metadata": {},
"source": [
"## Unpredictable Errors\n",
"\n",
"- Modeling measurment error of Marriage increases the estiamted effect of Marriage on Divorce\n",
" - This is not intuitive\n",
" - your intuitions are the devil 😈\n",
" - Often results for nonlinear interactions are not intuitive -- rely on probability theory\n",
" - Likely due to down-weighting the effect of unreliable, high-uncertainty datapoints, improving the estimate\n",
"- Errors can \"hurt\" or \"help\", depending on goals\n",
" - only honest option is to attempt to model them\n",
" - do the best you can, analyze your data like you wish your collegues would analyze their own.\n"
]
},
{
"cell_type": "markdown",
"id": "4d32ea95-daa5-480f-ac93-d029fe06611e",
"metadata": {},
"source": [
"# Misclassification\n",
"\n",
"## [Paternity in Himba pastoralist culture](https://www.science.org/doi/10.1126/sciadv.aay6195)\n",
"\n",
"- Unusual kinships systems (in a Western sense, anyway)\n",
"- \"Open\" marriages\n",
"- **Estimand**: proportion of children fathered by men in extra-marital relationships $p$\n",
"- **Misclassification**: categorical version of measurement error\n",
" - Paternity Test has some false positive rate $f$ (FPR, say 5%)\n",
" - If the rate of extra-marital paternity is small, it may be on the same order as the FPR\n",
" - thus often can't ignore the misclassification error\n",
" - How do we include misclassification rate?\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "681a04cf-32f6-4f77-8fc2-466ab1e1766c",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"F \n",
"\n",
"F \n",
" \n",
"\n",
"\n",
"X \n",
"\n",
"X \n",
" \n",
"\n",
"\n",
"F->X \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"T \n",
"\n",
"T \n",
" \n",
"\n",
"\n",
"F->T \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"Xstar \n",
"\n",
"Xstar \n",
" \n",
"\n",
"\n",
"X->Xstar \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"T->X \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"M \n",
"\n",
"M \n",
" \n",
"\n",
"\n",
"M->X \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"M->T \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"eX \n",
"\n",
"eX \n",
" \n",
"\n",
"\n",
"eX->Xstar \n",
" \n",
" \n",
" \n",
"\n",
"\n",
"unobserved \n",
"\n",
"unobserved \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[\n",
" (\"F\", \"X\"),\n",
" (\"F\", \"T\"),\n",
" (\"T\", \"X\"),\n",
" (\"M\", \"T\"),\n",
" (\"M\", \"X\"),\n",
" (\"X\", \"Xstar\"),\n",
" (\"eX\", \"Xstar\"),\n",
" ],\n",
" node_props={\"X\": {\"style\": \"dashed\"}, \"unobserved\": {\"style\": \"dashed\"}},\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d7dd3d63-fa31-47a7-98e9-8cf70864a8fe",
"metadata": {},
"source": [
"- social father $F$\n",
"- mother $M$\n",
"- social ties (dyads) $T$\n",
"- _actual_ extra-marital paternity $X$, unobserved\n",
"- _measured_ extra-marital paternity $X^*$\n",
"- misclassification errors $e_X$\n",
"\n",
"### Generative Model\n",
"$$\n",
"\\begin{align*}\n",
"X_i &\\sim \\text{Bernoulli}(p_i) \\\\\n",
"\\text{logit}(p_i) &= \\alpha + \\mu_{M[i]} + \\delta_{T[i]}\n",
"\\end{align*}\n",
"$$\n",
"\n",
"### Measurement Model\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"P(X^*=1 | p_i) = p_i + (1 - p_i)f \\\\\n",
"P(X^*=0 | p_i) = (1 - p_i)(1 - f)\n",
"\\end{align*}\n",
"$$\n",
"\n",
"With\n",
"- error rate $f$\n",
"- probability of extra-marital paternity $p$"
]
},
{
"cell_type": "markdown",
"id": "f4871ae6-f5f6-470b-a7ff-6bc8d681502e",
"metadata": {},
"source": [
"#### Deriving the Misclassification Error Model graphically:\n",
"\n",
"Not being clever, right out all possible measurement outcomes"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "14afee65-a0f4-4b81-ba78-621d6a493663",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
"X=1 \n",
"\n",
"X=1 \n",
" \n",
"\n",
"\n",
"->X=1 \n",
" \n",
" \n",
" p \n",
" \n",
"\n",
"\n",
"X=0 \n",
"\n",
"X=0 \n",
" \n",
"\n",
"\n",
"->X=0 \n",
" \n",
" \n",
" 1-p \n",
" \n",
"\n",
"\n",
"X*=1 \n",
"\n",
"X*=1 \n",
" \n",
"\n",
"\n",
"X=0->X*=1 \n",
" \n",
" \n",
" f \n",
" \n",
"\n",
"\n",
"X*=0 \n",
"\n",
"X*=0 \n",
" \n",
"\n",
"\n",
"X=0->X*=0 \n",
" \n",
" \n",
" 1-f \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[\n",
" (\"\", \"X=1\"),\n",
" (\"\", \"X=0\"),\n",
" (\"X=0\", \"X*=1\"),\n",
" (\"X=0\", \"X*=0\"),\n",
" ],\n",
" node_props={\"\": {\"shape\": \"point\"}},\n",
" edge_props={\n",
" (\"\", \"X=1\"): {\"label\": \" p\"},\n",
" (\"\", \"X=0\"): {\n",
" \"label\": \" 1-p\",\n",
" },\n",
" (\"X=0\", \"X*=1\"): {\n",
" \"label\": \" f\",\n",
" },\n",
" (\"X=0\", \"X*=0\"): {\"label\": \" 1-f\"},\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "a23f4ada-7bdf-463a-a4e7-722388f314f3",
"metadata": {},
"source": [
"#### $p(X^*=1) = p + (1-p)f$ \n",
"\n",
"The probability of observing $X=1$ given $p$ is the red path below"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ed3c1c64-7cb3-4bb8-aefd-f3cadc9f5533",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
"X=1 \n",
"\n",
"X=1 \n",
" \n",
"\n",
"\n",
"->X=1 \n",
" \n",
" \n",
" p \n",
" \n",
"\n",
"\n",
"X=0 \n",
"\n",
"X=0 \n",
" \n",
"\n",
"\n",
"->X=0 \n",
" \n",
" \n",
" 1-p \n",
" \n",
"\n",
"\n",
"X*=1 \n",
"\n",
"X*=1 \n",
" \n",
"\n",
"\n",
"X=0->X*=1 \n",
" \n",
" \n",
" f \n",
" \n",
"\n",
"\n",
"X*=0 \n",
"\n",
"X*=0 \n",
" \n",
"\n",
"\n",
"X=0->X*=0 \n",
" \n",
" \n",
" 1-f \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[\n",
" (\"\", \"X=1\"),\n",
" (\"\", \"X=0\"),\n",
" (\"X=0\", \"X*=1\"),\n",
" (\"X=0\", \"X*=0\"),\n",
" ],\n",
" node_props={\n",
" \"\": {\"shape\": \"point\"},\n",
" \"X=1\": {\"color\": \"red\"},\n",
" \"X=0\": {\"color\": \"red\"},\n",
" \"X*=1\": {\"color\": \"red\"},\n",
" },\n",
" edge_props={\n",
" (\"\", \"X=1\"): {\"label\": \" p\", \"color\": \"red\"},\n",
" (\"\", \"X=0\"): {\"label\": \" 1-p\", \"color\": \"red\"},\n",
" (\"X=0\", \"X*=1\"): {\"label\": \" f\", \"color\": \"red\"},\n",
" (\"X=0\", \"X*=0\"): {\"label\": \" 1-f\"},\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "6b5671df-c027-46c9-b24e-c177e82e9050",
"metadata": {},
"source": [
"#### $p(X^*=0) = (1-p)(1-f)$ \n",
"\n",
"The probability of observing $X=0$ given $p$ is the red path below"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "8afd1a64-0070-4483-a1ac-3c2d0ae7d066",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
"\n",
"X=1 \n",
"\n",
"X=1 \n",
" \n",
"\n",
"\n",
"->X=1 \n",
" \n",
" \n",
" p \n",
" \n",
"\n",
"\n",
"X=0 \n",
"\n",
"X=0 \n",
" \n",
"\n",
"\n",
"->X=0 \n",
" \n",
" \n",
" 1-p \n",
" \n",
"\n",
"\n",
"X*=1 \n",
"\n",
"X*=1 \n",
" \n",
"\n",
"\n",
"X=0->X*=1 \n",
" \n",
" \n",
" f \n",
" \n",
"\n",
"\n",
"X*=0 \n",
"\n",
"X*=0 \n",
" \n",
"\n",
"\n",
"X=0->X*=0 \n",
" \n",
" \n",
" 1-f \n",
" \n",
" \n",
" \n"
],
"text/plain": [
""
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utils.draw_causal_graph(\n",
" edge_list=[\n",
" (\"\", \"X=1\"),\n",
" (\"\", \"X=0\"),\n",
" (\"X=0\", \"X*=1\"),\n",
" (\"X=0\", \"X*=0\"),\n",
" ],\n",
" node_props={\n",
" \"\": {\"shape\": \"point\"},\n",
" \"X=0\": {\"color\": \"red\"},\n",
" \"X*=0\": {\"color\": \"red\"},\n",
" },\n",
" edge_props={\n",
" (\"\", \"X=1\"): {\"label\": \" p\"},\n",
" (\"\", \"X=0\"): {\"label\": \" 1-p\", \"color\": \"red\"},\n",
" (\"X=0\", \"X*=0\"): {\"label\": \" 1-f\", \"color\": \"red\"},\n",
" (\"X=0\", \"X*=1\"): {\"label\": \" f\"},\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"id": "3fdd91b7-4823-4ab5-9b6f-a4d28f988898",
"metadata": {},
"source": [
"### Generating a Proxy Dataset\n",
"\n",
"AFAICT, the dataset in the Scelza et al. paper isn't publicly available, so let's simulate one from the process defined by the generative model."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "1477e678-e4fc-4aaf-a64a-48667ad79078",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Actual average paternity rate: 0.48\n",
"Measured average paternity rate: 0.53\n"
]
}
],
"source": [
"from itertools import product as iproduct\n",
"\n",
"np.random.seed(123)\n",
"\n",
"# Generate social network\n",
"N_MOTHERS = 30\n",
"N_FATHERS = 15\n",
"\n",
"MOTHER_IDS = np.arange(N_MOTHERS).astype(int)\n",
"FATHER_IDS = np.arange(N_FATHERS).astype(int)\n",
"\n",
"MOTHER_TRAITS = stats.norm.rvs(size=N_MOTHERS)\n",
"DYADS = np.array(list(iproduct(MOTHER_IDS, FATHER_IDS)))\n",
"\n",
"N_DYADS = len(DYADS)\n",
"DYAD_ID = np.arange(N_DYADS)\n",
"\n",
"RELATIONSHIPS = stats.norm.rvs(size=N_DYADS)\n",
"\n",
"PATERNITY = pd.DataFrame(\n",
" {\n",
" \"mother_id\": DYADS[:, 0],\n",
" \"social_father_id\": DYADS[:, 1],\n",
" \"dyad_id\": DYAD_ID,\n",
" \"relationship\": RELATIONSHIPS,\n",
" }\n",
")\n",
"\n",
"# Generative model\n",
"ALPHA = 0\n",
"BETA_MOTHER_TRAIT = 1\n",
"BETA_RELATIONSHIP = 3\n",
"\n",
"PATERNITY.loc[:, \"mother_trait\"] = PATERNITY.mother_id.apply(lambda x: MOTHER_TRAITS[x])\n",
"p_father = utils.invlogit(\n",
" ALPHA + BETA_MOTHER_TRAIT * PATERNITY.mother_trait + BETA_RELATIONSHIP * PATERNITY.relationship\n",
")\n",
"\n",
"PATERNITY.loc[:, \"p_father\"] = p_father\n",
"PATERNITY.loc[:, \"is_father\"] = stats.bernoulli.rvs(p_father) # unobserved actual paternity\n",
"\n",
"# Measurment model\n",
"FALSE_POSITIVE_RATE = 0.05\n",
"\n",
"\n",
"def p_father_star(row):\n",
" if row.is_father == 1:\n",
" return row.p_father + (1 - row.p_father) * FALSE_POSITIVE_RATE\n",
" return 1 - (1 - row.p_father) * (1 - FALSE_POSITIVE_RATE)\n",
"\n",
"\n",
"PATERNITY.loc[:, \"p_father*\"] = PATERNITY.apply(p_father_star, axis=1)\n",
"PATERNITY.loc[:, \"is_father*\"] = stats.bernoulli.rvs(p=PATERNITY[\"p_father*\"].values)\n",
"\n",
"print(\"Actual average paternity rate: \", PATERNITY[\"is_father\"].mean().round(2))\n",
"print(\"Measured average paternity rate: \", PATERNITY[\"is_father*\"].mean().round(2))"
]
},
{
"cell_type": "markdown",
"id": "d6e41c0d-8e42-418c-b10c-40ccb5a1ce6b",
"metadata": {},
"source": [
"We print out the actual, and observed paternity rates above. In principle, we should be able to recover these with our model"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "6d7b2ac1-60e0-4e1c-a5a7-c3ffa303ca67",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" mother_id \n",
" social_father_id \n",
" dyad_id \n",
" relationship \n",
" mother_trait \n",
" p_father \n",
" is_father \n",
" p_father* \n",
" is_father* \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" -0.255619 \n",
" -1.085631 \n",
" 0.135581 \n",
" 0 \n",
" 0.178802 \n",
" 0 \n",
" \n",
" \n",
" 1 \n",
" 0 \n",
" 1 \n",
" 1 \n",
" -2.798589 \n",
" -1.085631 \n",
" 0.000076 \n",
" 0 \n",
" 0.050072 \n",
" 0 \n",
" \n",
" \n",
" 2 \n",
" 0 \n",
" 2 \n",
" 2 \n",
" -1.771533 \n",
" -1.085631 \n",
" 0.001658 \n",
" 0 \n",
" 0.051575 \n",
" 0 \n",
" \n",
" \n",
" 3 \n",
" 0 \n",
" 3 \n",
" 3 \n",
" -0.699877 \n",
" -1.085631 \n",
" 0.039724 \n",
" 0 \n",
" 0.087738 \n",
" 0 \n",
" \n",
" \n",
" 4 \n",
" 0 \n",
" 4 \n",
" 4 \n",
" 0.927462 \n",
" -1.085631 \n",
" 0.845111 \n",
" 1 \n",
" 0.852855 \n",
" 0 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 445 \n",
" 29 \n",
" 10 \n",
" 445 \n",
" -0.581850 \n",
" -0.861755 \n",
" 0.068670 \n",
" 0 \n",
" 0.115236 \n",
" 0 \n",
" \n",
" \n",
" 446 \n",
" 29 \n",
" 11 \n",
" 446 \n",
" -0.659560 \n",
" -0.861755 \n",
" 0.055178 \n",
" 0 \n",
" 0.102419 \n",
" 1 \n",
" \n",
" \n",
" 447 \n",
" 29 \n",
" 12 \n",
" 447 \n",
" 0.750945 \n",
" -0.861755 \n",
" 0.800764 \n",
" 1 \n",
" 0.810726 \n",
" 1 \n",
" \n",
" \n",
" 448 \n",
" 29 \n",
" 13 \n",
" 448 \n",
" -2.438461 \n",
" -0.861755 \n",
" 0.000281 \n",
" 0 \n",
" 0.050267 \n",
" 0 \n",
" \n",
" \n",
" 449 \n",
" 29 \n",
" 14 \n",
" 449 \n",
" -1.307178 \n",
" -0.861755 \n",
" 0.008299 \n",
" 0 \n",
" 0.057884 \n",
" 0 \n",
" \n",
" \n",
"
\n",
"
450 rows × 9 columns
\n",
"
"
],
"text/plain": [
" mother_id social_father_id dyad_id relationship mother_trait \\\n",
"0 0 0 0 -0.255619 -1.085631 \n",
"1 0 1 1 -2.798589 -1.085631 \n",
"2 0 2 2 -1.771533 -1.085631 \n",
"3 0 3 3 -0.699877 -1.085631 \n",
"4 0 4 4 0.927462 -1.085631 \n",
".. ... ... ... ... ... \n",
"445 29 10 445 -0.581850 -0.861755 \n",
"446 29 11 446 -0.659560 -0.861755 \n",
"447 29 12 447 0.750945 -0.861755 \n",
"448 29 13 448 -2.438461 -0.861755 \n",
"449 29 14 449 -1.307178 -0.861755 \n",
"\n",
" p_father is_father p_father* is_father* \n",
"0 0.135581 0 0.178802 0 \n",
"1 0.000076 0 0.050072 0 \n",
"2 0.001658 0 0.051575 0 \n",
"3 0.039724 0 0.087738 0 \n",
"4 0.845111 1 0.852855 0 \n",
".. ... ... ... ... \n",
"445 0.068670 0 0.115236 0 \n",
"446 0.055178 0 0.102419 1 \n",
"447 0.800764 1 0.810726 1 \n",
"448 0.000281 0 0.050267 0 \n",
"449 0.008299 0 0.057884 0 \n",
"\n",
"[450 rows x 9 columns]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"PATERNITY"
]
},
{
"cell_type": "markdown",
"id": "8444ff67-5988-4473-a17d-55af49951efe",
"metadata": {},
"source": [
"### Fit the model with misclassification error\n",
"\n",
"#### Notes\n",
"- we average over the unknown $X_i$, so we have no likelihood, and thus do not need the $X_i \\sim \\text{Bernoulli}(p_i)$ term in the model\n",
"- But we still include an observation model, where we use two simultanous distributions, based on our observation:\n",
" - if $X^*=1$ we use $p(X^*=1) = p + (1-p)f$\n",
" - if $X^*=0$ we use $p(X^*=0) = (1-p)(1-f)$\n",
" - To use these custom distributions, we leverage the `pm.Potential` function, which takes in the log probability of each observational distribution\n",
" - this is analogous to the `custom` function used in lecture\n",
" - We use the vanilla implementation below, one that doesn't use the `logsumexp`, etc. functions, as it compiles just fine"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "9ea257d5-5442-46d6-b096-7c47eb2b2cbb",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [beta_M, beta_T, alpha, T, M]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46f6fcccb8d9407590db1b49fdc7b44b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 4 seconds.\n",
"The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n"
]
}
],
"source": [
"MOM_ID = PATERNITY.mother_id\n",
"MOM_TRAITS = PATERNITY.mother_trait.values\n",
"\n",
"with pm.Model() as paternity_measurement_model:\n",
"\n",
" beta_M = pm.TruncatedNormal(\"beta_M\", 0, 1, lower=0.01)\n",
" beta_T = pm.TruncatedNormal(\"beta_T\", 0, 1, lower=0.01)\n",
"\n",
" alpha = pm.Normal(\"alpha\", 0, 1.5)\n",
" T = pm.Normal(\"T\", 0, 1, shape=N_DYADS) # Relationship strength\n",
" M = pm.Normal(\"M\", 0, 1, shape=N_MOTHERS) # Mother traits\n",
"\n",
" p_father = pm.Deterministic(\n",
" \"p_father\", pm.math.invlogit(alpha + M[MOM_ID] * beta_M + T[DYAD_ID] * beta_T)\n",
" )\n",
"\n",
" custom_log_p_x1 = pm.math.log(p_father + (1 - p_father) * FALSE_POSITIVE_RATE)\n",
" pm.Potential(\"X*=1\", custom_log_p_x1)\n",
"\n",
" custom_log_p_x0 = pm.math.log((1 - p_father) * (1 - FALSE_POSITIVE_RATE))\n",
" pm.Potential(\"X*=0\", custom_log_p_x0)\n",
"\n",
" paternity_measurement_inference = pm.sample(target_accept=0.95)"
]
},
{
"cell_type": "markdown",
"id": "984ee79b-c96c-40ac-bbe6-413be371585c",
"metadata": {},
"source": [
"### Fit analogous model without accouting for misclassification"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "aa083f5a-aabf-4e40-8d05-665d341b56f8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [alpha, beta_M, beta_T, T, M]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "51a881f99ca84370a950d638dcdad1fc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 7 seconds.\n",
"There were 6 divergences after tuning. Increase `target_accept` or reparameterize.\n",
"The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n",
"The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n"
]
}
],
"source": [
"IS_FATHER_STAR = PATERNITY[\"is_father*\"].values\n",
"with pm.Model() as paternity_model:\n",
"\n",
" alpha = pm.Normal(\"alpha\", 0, 1.5)\n",
" beta_M = pm.TruncatedNormal(\"beta_M\", 0, 1, lower=0.01)\n",
" beta_T = pm.TruncatedNormal(\"beta_T\", 0, 1, lower=0.01)\n",
"\n",
" T = pm.Normal(\"T\", 0, 1, shape=N_DYADS) # Relationship strength\n",
" M = pm.Normal(\"M\", 0, 1, shape=N_MOTHERS) # Mother traits\n",
"\n",
" p_father = pm.Deterministic(\n",
" \"p_father\", pm.math.invlogit(alpha + M[MOM_ID] * beta_M + T[DYAD_ID] * beta_T)\n",
" )\n",
" pm.Bernoulli(\"is_father\", p_father, observed=IS_FATHER_STAR)\n",
"\n",
" paternity_inference = pm.sample(target_accept=0.95)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "9565d371-b5e8-4f8d-9772-46e1204e4505",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Actual average paternity rate: 0.48\n",
"Measured average paternity rate: 0.53\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/MAAAGbCAYAAACIxMC9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAji1JREFUeJzs3Xd8FHX+P/DXbM/uphcCIaET6U2KioCIFUVEOCt2BQE58cR2nu1UxPZDmh6ggHzVQ5oN7KeAhYRioYOQhCQkJCF9N9vn90fYMSGbkLK7s+X1fDz2sZOZ2Zn3bD7Z7Hs+TRBFUQQRERERERERBQ2F3AEQERERERERUcswmSciIiIiIiIKMkzmiYiIiIiIiIIMk3kiIiIiIiKiIMNknoiIiIiIiCjIMJknIiIiIiIiCjJM5omIiIiIiIiCDJN5IiIiIiIioiAT8Ml8eXk5RFGUOwwivxBFkWWewgrLfEMukwV/xF2NP+KuhstkkTscrzOZTBAEAYIgwGQyyR2OLFjuKdywzFO48VdZD/hknn/0FG5Y5incsMxTOGK5p3DDMk/kfQGfzBMRERERERFRfSq5AyAiIqI6VErE3jxOWg41KpUKd9xxh7RMRERErSOIAd7mpaysDDExMRAEQe5QiHzO3aeMZZ7CBcs8hSOWewo3LPMUbkRR9EtZZzN7IiIiIiIioiDD9m1EREQBRBRFiGYrAEDQa0OuFksURZjNZgCAXq8PuesjIiLylxbXzH/yySd4+umnMWnSJPTt2xfp6enYuHFjs16bm5uLQYMGIT09HU8//XSLgyUiIgp1otmKfamTsC91kpTUhxKz2Qyj0Qij0Sgl9URERNRyLa6Zf/PNN5Gfn4/Y2FgkJSUhPz+/Wa8TRRFPPvlkiwMkIiIiIu9zOp2w2+1yh0FhQBRF2Gw2WCwWtsahoKZSqaBUKgOmHLc4mX/hhRfQqVMnpKSkYNmyZXj99deb9bo1a9Zgz549mDt3LubNm9fiQImIiIio7URRRGFhIcrLy+UOhcKIy+VCaWmp3GEQtZlSqURSUhKio6NlT+pbnMxfeOGFLT5JTk4O3njjDdx7773o1atXi19PRERERN7hTuSTkpI4bgH5hSiKcDqdAVWjSdRSoijC4XCgsrISBQUFqKmpQfv27WWNyecD4LlcLjzxxBPo0KEDZs6ciV9//dXXpyQiIiIiD5xOp5TIx8fHyx0OhQkm8xRKIiMjodVqUVJSgqSkJCiVStli8Xkyv3r1avz666/44IMPoNFoWnUMURS9HBVRYHKXdZZ5Chcs8w3VfS9EUQy59ybUr6855Cz3NpsNABARERGW7z3Jj+WOQoFer5fGgtDpdA22+2ueeZ8m81lZWViwYAFuv/12DBo0qNXHqaio8GJURIGPZZ7CDcv8X1xmi7RcXlEOhb3hl4RgZjKZpOXy8vKwHoBNjnJvs9ngcrngcrngdDr9fn4KbyxzFCrcn6OVlZWwWCwe94mNjfV5HD5L5t3N65OSkvDQQw+16ViBMLgAkT+IooiKigqWeQobLPMNuXQ2VE24CAAQExcHha51rdoClU6nw+TJkwEA8fHxHms0Qp2c5d5isaC0tBRKpVLWpqEUftzN7IlCgVKphEKhQFRUVKM18/7gs2T+vffew2+//YbVq1cjIiKiTccSBIFf8iissMxTuGGZ/4syQovOq/4pdxg+ExERgXXr1skdRkCQo9y7z8e/OfKnuokNyx2FgkD5LFX46sCHDh2CKIq4/fbbkZ6eLj1uv/12AMDatWuRnp6OGTNm+CoEIiKioOMoqUDOHS/iQO/bkDdnEZzVNXKHRBTwvvzyS6Snp2PLli0Ntk2YMAHp6enYvn17g23jxo3D9ddfDwDIyMhAeno6MjIypO1bt27FokWLPJ4zPT0dzz//vJeuoGXef/99bNy4sdn7jx07Funp6Zg6darH7R9//LH0Xb3u9ZP/1dTUYNGiRc3+PeTl5dXLtc5+NFZ+A9n+/ftx5513YtCgQTj//PMxa9Ys5ObmNuu1U6dO9fg+3HPPPfX2KygowMyZM3HppZdi4MCBGDJkCCZOnIj/+7//g8Ph8MVl+YTPauaHDh3qsSlNcXExtm7diq5du2Lw4MHo3bu3r0IgIiIKKi6rHVk3PYOaPUcAAKWrv4CztBJpq55kbRZRE4YNGwZBELBjxw5cffXV0vry8nIcOXIEer0eGRkZuPjii6VthYWFyM3NxV133QUA6NOnD9auXYvu3btL+2zduhXvv/8+HnzwQf9dTDN8+OGHiI2NxaRJk5r9GoPBgJ07d+LEiRNIS0urt23Dhg0wGo2orq72dqjUQjU1NVi8eDFmzZqF4cOHN/t1U6dOxTXXXNNgfXJysjfD87ljx45h6tSp6NWrFxYsWACr1YqFCxfilltuwSeffIK4uLhzHiM1NRWvvfZavXWRkZH1fjabzTAajZgxYwY6dOgAm82Gbdu24d///jcOHjyIF1980avX5Ss+S+ZvuOEG3HDDDQ3WZ2RkYOvWrRg6dKhsdzOJiIgCUcl/PpYSeQCASomKz37C6Xc3I+Gehl/SgpHJZILRaAQAVFdXw2AwyBwRhYK4uDj06NEDmZmZ9dbv3LkTKpUKN9xwQ4Oazh07dgCAlDAZjUYMHDjQL/HKYciQIThy5Ag2bNiAOXPmSOtPnDiBnTt3YsqUKfjoo49kjNA7LBZLWI7F0b59+1aV35qaGo9dop1OJ5xOZ6tnI2vq2E1ZuHAhNBoN/vOf/0j/K/r06YMrrrgC77zzDubOnXvOY+h0unO+F926dcP8+fPrrRs9ejROnz6Njz/+GM8880ybrt1fWtzMft26dXj88cfx+OOP48svv2yw7ttvv/V6kERERKHOXnAaRa/9t966dv+s7ZpW8M9lqNl7TI6wiILG8OHDkZWVhaKiImldRkYG+vbti9GjR2P//v31ap4zMzOhVCpx/vnnS/vWbWb++OOP4/333weAes118/Ly6p33448/xlVXXYUBAwZgwoQJ+P777xvEtmvXLtxxxx0YNGgQBgwYgJtuugk//PBDvX0WLVqE9PT0Bq/duHFjvfOOHTsWR48eRWZmphTT2LFjz/n+KBQKTJw4EZs2bYLL5ZLWb9iwAe3bt8cFF1zg8XV79+7F9OnTMWzYMPTr1w8TJ05s0J2htLQUzz77LK6++moMGjQIF1xwAW6//Xbs2rWrwfE++OADTJgwAYMGDcKgQYNw5ZVX4o033mjx++B+L6ZNm4avv/4aEydORL9+/bB48WIAta2Bn376aYwaNQp9+/bF2LFjsXjx4npNqN1N1FesWIFly5Zh7Nix6N+/P6ZOnYqsrCzY7Xa89tprGDlyJIYMGYKZM2fi9OnTDWLbsmULbrzxRgwcOBCDBg3CPffcgwMHDtTb5/HHH8egQYOQk5OD++67D4MGDcLo0aPx8ssvS1NG5uXlSb+HxYsXS7/fxx9/3OPvpqXctfc7d+7ETTfdhAEDBuDJJ5+U3ofly5dj6dKlGDt2LPr16yfd8Pruu+9w4403YsCAARg0aBDuuusu/Prrr/WO7f697d+/H7Nnz8bQoUNx2WWXtSg+h8OBH374AZdffrmUyANASkoKhg8f7pc8My4uDoIgQKHwWW90r2pxzfzu3buxadOmeuv27NmDPXv2AKh9s8eNG+ed6IiIiMJEwbPvwlVdg4jB6ajZcxgAkHDPNajJPIjKL3Yg5+556PG/hVBG6mWOlEJZ3akDz6ZUKuvVeDa1r0KhqFcj15J9W2vEiBFYs2YNMjMzpebGGRkZuOSSSzB48GAIgoDdu3dj9OjR0rbevXs3aH7rNmPGDJjNZnz11VdYu3attD4pKUla/uGHH7B3717Mnj0ber0eK1aswKxZs/Dll18iNTUVQO1Ng7vvvhs9e/bEiy++CI1Ggw8//BDTp0/HG2+8Ua9bQHMsXrwYs2fPRmRkJJ555hkAaHYN4g033ID//Oc/2L59O0aPHg2n04lNmzZh8uTJHpOXHTt24N5778WAAQPw7LPPIjIyElu2bMGcOXNgsVikZv7l5eUAgFmzZiEhIQFmsxnffPMNpk6dilWrVmHYsGEAgM2bN+O5557D1KlT8dhjj0GhUCAnJwd//vlni96Duvbv349jx47hgQceQMeOHREREYHi4mJMmTIFCoUCM2fORFpaGn799Ve89dZbyM/Px7x58+od44MPPkDPnj3x9NNPo7KyEvPnz8f06dMxYMAAqFQqvPTSSzh58iTmz5+Pf/7zn3j77bel17799ttYsGABJk2ahAceeAB2ux3vvPMObr31Vqxbt65etw273Y4HHngAkydPxt13342dO3di6dKlMBqNmDVrFpKSkrBixQrce++9mDx5MqZMmQIAzWpa7nK5PPb1Vqnqp3vFxcWYO3cu7r33XsyZM6fe733NmjXo3LkzHnvsMRiNRnTq1AmfffYZHnnkEYwcORKvv/46bDYbVqxYIf1u3TfD3B588EFcffXVuOmmm2A2mwHU3oh54oknMG/evCa7hpw4cQIWi8XjzZyePXvip59+gtVqhVarbfK9OHHiBIYNG4bq6mp06NAB48ePxwMPPNDoqPNOpxMmkwk//fQTNm3ahLvvvrvB+xaoWhzlyy+/jJdffrnVJxw+fDgOHz7c6tcTERGFGtOO/Shf9z0gCGj/73twfPyjAGpHye24eA6OjpoF27GTyP/HYqT+Zy77z5PP1K0NO9vVV1+NzZs3Sz8nJSVJX9bPNnr06Ho1z507d0ZJSYnHfc8//3zs3LmzdQHXMXToUCgUCimZLysrw9GjR/Hoo4/CYDCgd+/e2LFjB0aPHo2CggLk5eXhyiuvbPR4aWlpSEhIAIBGm+xarVasXLmyXnPgiy++GF988QXuv/9+AMDrr7+OqKgorFmzRupWcskll2DixImYP38+rrrqqhb9Tffu3Rs6na5V3QLS0tIwdOhQbNiwAaNHj8aPP/6IoqIiTJo0Cfv27Wuw/3PPPYcePXpg9erVUnJz8cUXo6ysDG+88QYmTpwIhUKBrl274tlnn5Ve53Q6MXLkSOTn52PNmjVSMr9nzx5ERUXhqaeekvZtrEVAc5WWlmLz5s3o0qWLtO7pp59GRUUFNm/ejA4dOkjn0el0mD9/Pu655556SXZkZCSWLl0qJbZlZWV46aWX0LVrV7z11lvSfsePH8fq1atRXV0No9GIgoICLFq0CLfddlu9a7rwwgtxxRVXYPHixViwYIG03m6348EHH8RVV10lxbRv3z58/vnnmDVrFjQaDfr06QOgtq97S36/r732WoN+4kDtYIl1E+7y8nIsWLCg3vvubu2g1WrxzjvvQK1WA6i9QXDzzTejZ8+eWL58ufT+jB49Gpdddhlee+01/Pe/9VuUTZw4EbNnz663TqFQSFO5NcV9UygmJqbBtpiYGGlaz7o31M42ePBgXHXVVejatSusViu2bduGFStWYPfu3XjvvfcaxLB8+XK8/vrrAGr/506bNq1eN5RAFxy3HIiIiEKU6HQi/7HaL4txU6+Avn/3ettVsZFIW/4ojl37GMrX/wDj6IGIu/VyOUIlCmjR0dE477zzpGbyO3fuhFKpxODBgwHUJvvuZsPufVoywJgnw4cPr3cDJCEhAfHx8cjPzwdQO8jW77//jptvvrne+BBKpRITJkzAa6+9huPHj6Nbt25tiqMlbrjhBjz11FMoKyvD+vXrMXz4cHTs2LFBMp+Tk4Pjx4/jscceA4B6tb6jRo3C999/j6ysLCn2Dz/8EB999BH+/PNPqdk4AHTt2lVa7t+/P95//308/PDDuPrqqzF48OBm1To3JT09vV4iD9S2mBg+fDiSkpIaxD1//nxkZmbWS+ZHjx5dL8lzX9OYMWPqHde9/uTJk+jZsyd+/PFHOBwOXHfddfXOo9VqMXTo0AbjNAiC0KBLRHp6ulQu2+L222/HhAkTGqyv+/4DtX8njd1AGTt2rJTIA5C6rdxxxx313h+DwYDLL78ca9eubdAv/vLLG/5/mjhxIiZOnNjsa2nq5ta5bnydnYiPHj0aKSkpmD9/Pr777rsGTf+vv/56XHDBBaioqMCOHTvwzjvvoLq6Gv/617+aHa+cmMwTERHJqPS9L2HZexzKaCOSn7rD4z6GEX2Q/ORUFP57NU69tAaxN14KQdVwxhiitmpqNPOzZymq2zf9bGfXfmVnZzd737YYPnw4Vq5ciVOnTiEjIwN9+vSRkuhhw4Zh5cqVqKqqQkZGBlQqFYYMGdKm83mqQdRoNLBarQCAyspKiKKIxMTEBvu5axfdtZH+csUVV+Df//43Vq1ahe+//75Bk3M3d0uK+fPnNxgozK2srAwAsHLlSrz88su46aab8Pe//x2xsbFQKBR48803cfz4cWn/6667Dk6nE+vWrcPs2bPhcrnQr18/PPTQQ7joootadT2e3tvTp0/j+++/l2q5G4vbLTo6ut7P7oS2sfXu36/7PZo8ebLH85xdtiMiIho0Ea9bXtoiOTkZ/fr1O+d+nt6vxra536fGyq/L5UJlZWW9ZL6pWvNzcf89nf37AWr/TgRBQFRUVIuPO2HCBMyfPx+//fZbg2Q+MTFRur6RI0ciKioKr7/+Om644YagmHWNyTwREZFMHGVVKHzhPQBAuydugyohGi6TxeO+CTMmoXjpJtgLTqPyywxEX3OhP0OlMNGS2QV8tW9buJP5zMxMZGZmYtSoUdI2d+K+c+dOZGRkoF+/fj6PKyoqCgqFAsXFxQ22uW+GxMbGAoCU5Nlstnp94D0lNm0RERGB8ePHY9myZTAajR5rUuvGNW3atEYHMnPXiH/66acYNmwYnnvuuXrbPY2V4J7xymw2Y+fOnVi0aBGmTZuGr776CikpKS1+HzzV1MbGxiI9PR0PPfSQx9e0JeE8+zxA7Qjs7ub8ga4ltd7u62us/CoUilYl141JS0uDTqfDkSNHGmw7cuQIOnXqdM7+8k1pzo3D/v37A6i9AclknoiIiBpV8vYncJZVQderE+LvHl+7UqlA5GVDpWU3hVaNuFsvR/HC9Shb+13QJvNKpVIa8Ovsml6itho6dCiUSiW++uorHD16FI888oi0LTIyEr169cLHH3+M/Px8XHvttec8njuZbO10Z3q9HgMGDMA333yDxx57TDqGy+XCp59+iuTkZCkhTklJAQAcOnRISigAeBwdX6PRwGLxfOOvOW6++WaUlJRg2LBhjSZHXbt2RefOnXHo0CE8/PDDTR5PEIQGg/AdOnQIv/32G9q3b+/xNXq9HqNHj4bdbsfMmTPx559/IiUlpUXvQ2PGjBmDrVu3Ii0trUHtujeNHDkSKpUKJ06cwBVXXOGVY9Ytc3Lr0qUL2rVrh88//xz33HOPlOybzWZ8/fXXGDhwoFcGr3RTqVS45JJL8M0332Du3LlSF5aTJ08iIyMDd955Z6uO6x68fcCAAefc1901Ii0trVXn8jcm80RERDJw2ewoXf0FACDpkZulZvMKnQZd1j7n8TXR149C8cL1qPp+D1w1VigiWl9DIRedTldvEDUibzIajejduze+/fZbKBSKBs3ohw4ditWrVwNoXn/5nj17AqgdJGvUqFFQKBRIT09v0fzTDz/8MO6++27cfvvtuPvuu6FWq/HBBx/g6NGjeOONN6QEafTo0YiJicE///lP/P3vf4dSqcSmTZtQUFDgMa7Nmzdjy5Yt6NixI7RarccRwBvTq1cvLF269Jz7Pffcc7jvvvtwzz334Prrr0e7du1QUVGBY8eOYf/+/Vi4cCGA2uR56dKlWLhwIYYOHYqsrCwsXboUHTt2hNPplI73r3/9CzqdDoMHD0ZiYiKKi4uxbNkyREZGSk3EW/I+NGb27Nn4+eefcdNNN2Hq1Kno0qULbDYb8vLysG3bNjz33HNITk5u9vEa07FjR8yePRsLFixAbm4uRo0ahaioKJSUlGDv3r2IiIhoMBjcuRiNRqSkpOC7777DBRdcgOjoaMTGxqJjx45Nvq6goAC//fZbg/VxcXGtTkwVCgXmzp2LRx55BNOmTcONN94Im82Gd955B5WVlfjHP/7RrON8/PHHePLJJ/HSSy+ds+/8gw8+iMmTJ2P69Om47777YLPZsHDhQsTGxuLuu++ut2/v3r3r/U3v2rULb731Fi677DKkpqZKA+B99NFHGDFiRL3xChYuXIiSkhIMHToU7dq1Q2VlJbZv345169bhyiuvRN++fVv2ZsmEyTwREZEMqr7dBUdRGVTtYptdyx7RvxvUKYmw5xej6odfEX3VCB9HSRR8hg8fjr1796JXr14NRucfOnQoVq1aBbVajUGDBp3zWNdccw327NmDDz74AEuWLIEoivjuu+/OmVjVNWzYMKxatQqLFi3CE088AZfLhfPOOw9vvfUWLrnkEmk/o9GI5cuX46WXXsLcuXMRGRmJKVOm4OKLL643UjpQm/AUFxfjqaeegslkQkpKCv73v/81O6bmGjFiBNatW4e3334bL730EiorKxETE4Nu3bpJI7IDwPTp01FTU4P169djxYoV6N69O5599ll8++23yMzMlPYbMmQINm3ahC+++AIVFRWIjY3FkCFDMH/+fGkgvJa8D41JSkrC+vXrsXTpUrzzzjs4deoUDAYDUlJScPHFF3u1afi0adPQrVs3vPfee9i8eTNsNhsSExPRt29f3Hzzza065osvvohXXnkFDzzwAGw2G66//vpzzia2Zs0arFmzpsH6a6+91uMo98117bXXIiIiAsuWLcOcOXOgVCoxYMAAvPfee9LgkuficrngdDrhcrnOuW+3bt2wZs0avPbaa9LNnBEjRmDJkiUNBks8+5iJiYlQKpVYunQpysrKIAgCOnXqhNmzZ+Puu++u18y+b9++WLNmDb777juUl5dDo9Gge/fueOKJJ1r9e5ODIIqiKHcQTSkrK0NMTAyn4aGwIIoiysvLWeYpbIRzmc99cAHK3v8a8fdPQMrL05v9uvxHl+L0is8Rf894pLw604cRkq/IWe4tFguysrLQpUuXVjUbJ2oN91zeSqUy7D7rKTSd67NUFEW/lHXvDR9KREREzSK6XKj6ura2Kuqs2nWXyYK9Ha/H3o7XexwMzzh6IACgetvvPo/TF0wmEwwGAwwGg8fBsYiIiKh5mMwTERH5mWVfFhzF5VAYI2C4oOHUSaLZCtHseaoiw0X9AIUC1qN5sJ8s8XWoPmE2m2E2m+UOg4iIKKgxmSciIvIz0479AAD9sN5QaNQteq0qJhIRA7oBCN7aeSIiImo7JvNERER+Zso4AAAwDO/VqtcbRw0EAFRvZzJPREQUrpjMExER+ZEoijCfqZk3jGjYxL45jKNq58qt3vobAnwcWyIiIvIRJvNERER+ZM8rgr3gNKBUQD+4+fNC12UY3huCRgX7yRLYjp/0coREREQUDJjMExER+ZG7iX1E/25QGFo3NZhCr0PEmRsBpp/3eS02IiIiCh4quQMgIiIKJ2apv3wjTewVQu2I9WeWG2O4oA/MO/bDtGM/4qZe4e0wfUahUGD06NHSMhEREbUOk3kiIiI/Mu2oTeb1w3t73K6I0KLbZ/PPeRzDiD4oxl8j4weLiIgI/PDDD3KHQUREFPR4S5yIiMhPnJUmWA5kA6jt994WhuG9AUGALasA9sJSL0RHREREwYTJPBERkZ+Ydx4CRBGaTslQJ8e16VjKKAN0fbsAAEy/sN88hbcvv/wS6enp2LJlS4NtEyZMQHp6OrZv395g27hx43D99dcDADIyMpCeno6MjAxp+9atW7Fo0SKP50xPT8fzzz/fqnjz8vKQnp6O9PT0Ro//xBNPSPuQvP78808sWrQIeXl5zdp/48aN0u/O06NuGQsWmzdvxnXXXYd+/fph5MiRePHFF2EymVp8nD///BN9+/ZFeno69u7dW2/b1KlTm3zfiouLvXU5IYPN7ImIiPzE3SReP6LxWnmXyYKDA+8EAPT6bVWTg+QZLugLy97jMO3Yj5jrR3k1Vl8xmUzo3LkzACA7OxsGg0HegCgkDBs2DIIgYMeOHbj66qul9eXl5Thy5Aj0ej0yMjJw8cUXS9sKCwuRm5uLu+66CwDQp08frF27Ft27d5f22bp1K95//308+OCDPonbYDBg06ZNmDlzZr0xJEwmE7788ksYjUZUV1f75NzUfH/++ScWL16MYcOGoWPHjs1+3bx589C1a9cG6+uWsWDw6aefYu7cuZgyZQqeeOIJZGdn47XXXsOxY8fw7rvvNvs4TqcTTz75JGJjY1FUVNRg+zPPPNOgvNfU1OC+++5Dnz59kJiY2OZrCTVM5omIiPzElOke/K7pJvbO05XNOp5hRB+cXvYpTL8EV7/5kpISuUOgEBMXF4cePXogMzOz3vqdO3dCpVLhhhtuaFAbumPHDgDA8OHDAQBGoxEDBw70S7xuV199NdatW4dffvkFF110kbR+y5YtcLlcGDduHD799FO/xuRtTqcTDocDSqVS7lD8rkePHujXr1+LXiOKIqxWK3S6hjdyLRYLtFotBKHxwVHPpaamBhEREc3e3+l04pVXXsHIkSPxwgsvAABGjBgBg8GARx55BFu3bpUGNT2XVatWobCwEPfddx9efPHFBts93eTYtGkT7HY7Jk+e3OyYwwmb2RMREfmBaHfAvPswAMAwrG395d30Q3sBACwHs+EyW7xyTKJgNXz4cGRlZdWr8cvIyEDfvn0xevRo7N+/v16tX2ZmJpRKJc4//3xp37pNoB9//HG8//77AFCvqe/ZTa0//vhjXHXVVRgwYAAmTJiA77//vtkxd+nSBYMGDcKGDRvqrd+wYQMuu+wyREZGenzdli1bcOONN2LgwIEYNGgQ7rnnHhw4cKDePnv37sWcOXMwduxY9O/fH2PHjsXDDz+M/Pz8evvV1NRg/vz5GDt2LPr164dhw4Zh0qRJ+Pzzz6V9pk6diqlTpzaI4/HHH8fYsWOln93dB5YvX46lS5dKx3S/p3v37sX06dMxbNgw9OvXDxMnTmzQNcLdRP2XX37BU089heHDh2Pw4MF49NFHYTabUVxcjL///e84//zzMXLkSMyfPx92u73eMWw2G5YuXYorr7wSffv2xYgRI/DEE0+gtLT++CJjx47FtGnTsG3bNlx//fXo378/rrzySqxfv75ePH//+98BALfffrtUDjZu3Ojxd9NS7u4aH374Ia666ir069cPmzZtkt6HH3/8EU888QRGjBiBAQMGwGazweVyYfny5dL1XXDBBXj00UdRWFhY79hTp07FNddcg507d+Kmm27CgAED8OSTT7Yovt9++w3FxcWYNGlSvfVXXnkl9Ho9vv3222YdJzs7GwsXLsQzzzwDo9HY7POvX78eer2+Xosb+gtr5omIiPygZu9xiGYrlNFGaM9L88ox1R3ioWoXC8epMtTsPd7mQfWIXKYmbgopFVDoNM3bVyFAEaFt1b6tNWLECKxZswaZmZm45pprANQm6JdccgkGDx4MQRCwe/duqRYxIyMDvXv3bjRhnjFjBsxmM7766iusXbtWWp+UlCQt//DDD9i7dy9mz54NvV6PFStWYNasWfjyyy+RmprarLgnT56M559/HhUVFYiOjsbx48fx66+/4qGHHsLXX3/dYP+3334bCxYswKRJk/DAAw/AbrfjnXfewa233op169ZJtZv5+fno0qULxo8fj+joaBQXF+PDDz/E5MmTsXnzZsTF1Y7bMW/ePHz66ad46KGH0KtXL9TU1ODIkSMoLy9vVvyerFmzBp07d8Zjjz0Go9GItLQ0ZGRkYNq0aRgwYACeffZZREZGYsuWLZgzZw4sFkuDZPGpp57C5ZdfjjfeeAMHDhzA//t//w9OpxNZWVm47LLLcOONN+Lnn3/G8uXLkZSUJHWXcLlcmDFjBnbv3o177rkHgwcPRn5+PhYtWoQ//vgDGzZsqFfrfejQIcyfPx/33XcfEhISsG7dOvzzn/9Ep06dMHToUIwZMwYPP/ww3njjDTz99NPo06d2WtG0tHN/jrtcLjgcjnrrBEFo0Erh22+/xa5duzBz5kwkJCQgPj5e6k/+5JNPYsyYMXjllVdQU1MDlUqFZ599FmvXrsVtt92GMWPGID8/H2+++SYyMzOxceNG6XcLAMXFxZg7dy7uvfdezJkzR+rO8fjjj2PTpk347rvvmuw6cPToUQBoMHaDWq1G165dpe1NEUURTz31FMaMGYNLL7202TdCsrOzsWvXLkyZMoVdshrBZJ6IiMgPTGfml9cP6wXBS/OrC4KAiIE9UPVVJmp+O8pkntpsX+qkRrdFXjYUXdY+J/28P/1miGarx30NF/WrN8XiwYF3Ntp9JGJQD/T47s1WRvyXoUOHQqFQSMl8WVkZjh49ikcffRQGgwG9e/fGjh07MHr0aBQUFCAvLw9XXnllo8dLS0tDQkICADTa/N5qtWLlypVSTWOfPn1w8cUX44svvsD999/frLivuuoqvPjii/j8889x6623Yv369ejYsSOGDx/eIJkvKCjAokWLcNttt+Gpp56S1l944YW44oorsHjxYixYsABAbc1p3etzOp0YM2YMLrroInz++ee4/fbbAQC//vorLrroItx5553SvmPGjGlW7I3RarV45513oFarAdQmc/fffz969OiB1atXQ6WqTUEuvvhilJWV4Y033sDEiRPrjRtwySWX4LHHHgMAXHTRRfjtt9/w+eef44knnpBivfDCC/Hjjz/is88+k5L5L774Atu3b8eiRYtw+eWXS8c777zzMHnyZGzcuBG33HKLtL6srAwffvghOnToAKC2HO3YsQOfffYZhg4diri4OHTq1AlAbTPwlnTF+Nvf/tZgnVKpbNCKwmw247PPPkN0dLS0zp3MX3DBBfUGWjx27BjWrl2LW265Bf/617+k9b1798aUKVOwevVqzJkzR1pfXl6OBQsW4IILLqh3ToVCAaVSec4m++6bOnVjc4uJiWnWoIDvv/8+jhw54nGAyqa4W0iwiX3j2MyeiIjID8wZzesv31L6QT1rj//rEa8elyjYREdH47zzzpOadO/cuRNKpRKDBw8GUJukube5n9395Vtr+PDh9ZoMu2tVz27K3hSDwYArr7wSGzZsgMPhwCeffIJJkyZ5TLJ+/PFHOBwOXHfddXA4HNJDq9Vi6NCh9cYMMJlMePXVV3HZZZehd+/e6N27NwYNGgSz2Yxjx45J+/Xr1w/btm3Da6+9hoyMDFgsbe+yM3bsWCmRB4CcnBwcP35cajFRN/ZRo0ahuLgYWVlZ9Y5x9g2Fbt26AUCD/tndunWr935///33iIqKwiWXXFLvPL169UJiYmKDcRV69eolJfJA7Y2Izp074+TJk61/A86YP38+1q9fX+/x0UcfNdhvxIgRHpNlAPVuSAB/lV33LAxu/fv3R7du3fDLL7/UWx8dHd0gkQeAl156CQcOHEBKSkqzrqWxpP9cNwPy8/Px+uuvY+7cudLNseZwOBz4+OOP0aNHD7+PZRFMWDNPRETkY6IowpRx7pHsWyNiUA8AQM2v527qSHQufXObaP6qrF8H1Ofwh43vq6j/Bb/Xb6uavW9bDB8+HCtXrsSpU6eQkZGBPn36SM1zhw0bhpUrV6KqqgoZGRlQqVQYMmRIm84XExPTYJ1Go4HV6rnFQmMmT56MW265BW+//TZKS0sbNDl3cw8e2VhNZd2a7X/84x/YsWMHZsyYgX79+sFgMEAQBNx///314nvqqaeQnJyMLVu2YPny5dBqtRg5ciQeffRRaeaJljp71PHTp08DAF555RW88sorHl9TVlZW7+ezk1v3zQFP6202W71zVVZWom/fvs06j7d+h55069atWQPgNTVK+9nb3DXldbt7uCUlJTW4CdHWEeDd7095eXmDZLy8vNzj+1fX888/j549e+KKK65AZWVt65yamhoAtS0SqqqqPHZ12bp1K4qLi3Hvvfe2Kf5Qx2SeiIjIx2w5hXCcKoOgVkk16Y1SCFKC3pwkRz+wdl/r0Tw4K81QRunbGq5PKRQKacAxhZe6G5D3NDUVor/2bQt3Mp+ZmYnMzEyMGvXXlI3uxH3nzp3IyMiQEtxAMGTIEHTp0gVLlizBhRdeiPbt23vcLzY2FgCwcOHCerXJZ6uqqsIPP/yAWbNm1Wvub7PZUFFRUW9fvV6P2bNnY/bs2SgpKcG2bdvw+uuvY/r06fjyyy8B1Ca3nqbIOzsxdju7ttad8N1///0NaprdunTp0uj1tERsbCxiYmKwYsUKj9sD5XdeV1O12429l0VFRUhOTq63raioSCojzTl2c/TsWfs/68iRI/VGm3c4HPVaWzTm6NGjyM/Px9ChQxtsu/322xEZGYldu3Y12LZ+/Xqo1Wpcd911bYo/1DGZJyIi8jF3E/uI/t3OOdCXIkLbov7DqsQYqDsmwp5XjJrfj8J48YA2xeprERER2Llzp9xhUIgaOnQolEolvvrqKxw9ehSPPPKItC0yMhK9evXCxx9/jPz8fFx77bXnPJ5GUzvgn8Vi8ThVmDc98MAD+Oqrr3Drrbc2us/IkSOhUqlw4sQJXHHFFY3uJwgCRFGU4ndbt24dnE5no69LSEjApEmTcOjQIaxevVqaxiwlJQVfffUVbDabdMyysjL8+uuvzRqZvGvXrujUqRMOHz6Mf/zjH+fcvy3GjBmDzZs3w+VyYcAA73we1i0HchsxYgSA2rnf+/fvL63/448/cOzYMUyfPt2r5xswYAASExOxcePGeiPKf/XVVzCbzbjsssuafP0bb7zRoJXD9u3bsXz5cjz33HMep6MrLi7Gtm3bcNlllzW4OUH1MZknIiLyMfOZJvD688/zyfH1g3qiIq8Y5l+PBHwyT+RLRqMRvXv3xrfffguFQtGgGf3QoUOxevVqAM3rL++ulVy+fDlGjRoFhUKB9PT0BkmyN1x33XXnrIXs2LEjZs+ejQULFiA3NxejRo1CVFQUSkpKsHfvXkRERGD27NkwGo0YOnQo3nnnHcTGxiIlJQWZmZlYv349oqKi6h1zypQpGDNmDNLT0xEdHY1jx47hk08+waBBg6T5yK+77jqsXbsWjzzyCP72t7+hvLwcK1asaNEUY8888wymT5+Oe+65B9dffz3atWuHiooKHDt2DPv378fChQtb/qZ5MH78eHz22We4//77MXXqVPTv3x9qtRqFhYXIyMjApZdees4E9Gw9etS2gProo49gMBig1WrRsWPHcyaaR48e9XjzJC0trd6I8y3RtWtX3Hjjjfi///s/KBQKjBo1ShrNvn379vUGMmzKk08+iY8//hjffPNNk/3mlUol5s6di0cffRRPP/00xo8fj5ycHLz66qu46KKL6rV+yczMxJ133okZM2Zg1qxZADwPHuke46BPnz4euyFs2rQJDocDU6ZMada1hDMm80RERD7m7s8eMfgcTexbKWJgd1R89hMse4/75PhEwWT48OHYu3cvevXq1SDZHDp0KFatWgW1Wo1Bgwad81jXXHMN9uzZgw8++ABLliyBKIrnnMrL16ZNm4Zu3brhvffew+bNm2Gz2ZCYmIi+ffvi5ptvlvZ7/fXX8eKLL+LVV1+Fw+HA4MGDsXLlSkybNq3e8UaMGIH//e9/Uk18u3btMHHixHo1vEOGDMH8+fOxbNkyzJgxA6mpqZg5cya2bdvWYEC5xgwfPhzr1q3D22+/jZdeegmVlZWIiYlBt27dcNVVV3nnzUFt8vnWW2/hvffewyeffIJly5ZBqVQiOTkZQ4cOlW7QtERqaiqefPJJvPfee7j99tvhdDoxb968Rsc2cHviiSc8rn/hhRfalKg+++yzSE1Nxfr16/HBBx/AaDTi4osvxj/+8Y9m12S7XC44nU6IonjOfa+77joolUosW7YMGzduRExMDK677rp6o+YDtePDNPeYTdmwYQNSUlJw4YUXtuk44UAQ2/pu+1hZWRliYmLa3N+DKBiIoigNJsIyT+EgHMq86HBiX9oNEC029MxYBl2PppMAl9mCwxfUfolO/+VtKPTnbtpb+c1OZN/4DLTndUL6z295JW5fMZvN6N27dhDAAwcOQK8P7D7+viBnubdYLMjKykKXLl183mycyM2d5DVnKjSiYHCuz1JRFP1S1lkzT0RE5EOWwycgWmxQROqh7db4gFUSEbDnFknLzaHrXTtwlPVoLlxWOxRa9TleIR9RFJGTkyMtExERUetwGFkiIiIfkprYD+wOwUejt6s7xEMZbQScLliPnPDJOYiIiCiwMJknIiLyoZrfzgx+d2YKOV8QBAG6Pp0BAJYD2T47DxEREQUOJvNEREQ+ZP71CAAgwofJPADo+tQ2ta/Zn+3T8xAREVFgaHGf+U8++QS7d+/Gvn37cOTIEdjtdo+jOdrtdvzvf//D999/j99//x0FBQUQBAHdu3fHxIkTcdNNN0GpVHrtQoiIiAKNy2aHZX8WAEDvo5Hs3dz95t3nIyIiotDW4mT+zTffRH5+PmJjY5GUlCTNE3i2EydOYPbs2TAYDBgxYgTGjh2LqqoqfP/993j++eexfft2vPXWWxzRkoiIQpb1zzyINgeU0Uao09r59FwRUjN7JvN0bhx8kIio9QLlM7TFyfwLL7yATp06ISUlBcuWLcPrr7/ucT+j0YhnnnkG119/PSIiIqT1ZrMZU6dOxffff48vv/zSq/NKEhERBRLrodrB6LTpqc2/eS0A2vQ0abm5tOd1AgA4TpXBUVIBVUJ0S0L1G0EQpKnpeEPf/9Tq2pkOzGZzve9nRETUfCaTCYIgSJ+pcmlxMn/hhRc2a7927drhlltuabBer9fjrrvuwj/+8Q/s3LmTyTwREYUsy5FcAIC2Z2qzX6PQ65D+y9stPpfSGAFNl/awZRXAciALxlEDW3wMf9Dr9di/f7/cYYQtpVKJmJgYFBXVTn+o1+t5U4V8jvPMUygQRREOhwOVlZWorKxETEyM7N3GZZlnXqWqPa3cF09ERORL1jPJvK5nml/Op+vTBbasAtTszw7YZJ7kl5ycDABSQk/kDy6XCwofTc9J5E9KpRLt27dHdLT8LeBkSeY3bNgAABg5cmSz9g+UPglEvuYu6yzzFC5CvcxbDtc2s9f07OiXa9T17ozKz3+GZX9WyL6noSAQyn1ycjISExNht9tli4HChyiKqKqqQmRkJGvmKaipVKp6LUwa+xwXRdEvZd3vyfzatWuxbds2jBgxAqNHj27WayoqKnwcFVFgYZmncBOKZV50uWA9dhIAYEuORnl5ebNe56qx4tT1/wIAtNv0bygitM0+p7NzEgCgeu+xZp/P38xmMy699FIAwHfffQe9Xi9zRPIJxXJP1BiNRgOr1Sp3GER+Exsb6/Nz+DWZ/+GHH/Dvf/8bKSkpePXVV5v9uujoaN7Fo7AgiiIqKipY5ilshHKZt+UXAzY7oFIivnc3CM3sWuZSW5B/tHammJioaCgMumafM+L83jgNwHE0D9GRkc0+pz+p1WocPnwYQO3/d4PBIHNE/hfK5Z7IE5Z5Cjf+annlt2R++/btePDBBxEfH4/Vq1cjKSmp2a8VBIF/+BRWWOYp3IRimbfnnAIAaNLaQaFq/r/buu9DS98XbZf2EPRaiGYr7NmF0Hbv2PyA/aQt1xdqwv36KfywzBN5l19Godi2bRtmzpyJ2NhYvPfee0hNbf6ovkRERMHIllUAANB0bu+3cwpKJbTdUgAA1j/z/XZeIiIi8j+fJ/PuRD4qKgrvvfceOnXq5OtTEhERyc6WU5vMazsn+/W82h61N8zd0+IRERFRaPJpMu9O5KOjo/Hee++hc+fOvjwdERFRwLBmFQLwb808AGi7u2vm8/x6XiIiIvKvFveZX7duHXbv3g0AOHLkiLQuMzMTADBu3DiMGzcOx44dw8yZM2Gz2TBs2DBs3ry5wbFSUlIwadKktsRPREQUkGzZ7mb2/q6Zr+0nz2b2REREoa3Fyfzu3buxadOmeuv27NmDPXv2AKhN0MeNG4eSkhLYbDYA8JjIA8CwYcOYzBMRUUiyZZ+pme/Swpp5AVCnJknLLaU708zeejQwm9kLgiB1ueNAWERERK0niP4aN7+VysrKEBMTw3/4FBZEUUR5eTnLPIWNUC3zzkoT9neeAgDok7Meykj/zaXuMlmwL7X2RnnvY2uhio3027mpeUK13BM1hmWewo0oin4p634ZzZ6IiCicuGvllQnRfk3kAUBh0EHdIQEAYD3KfvNEREShisk8ERGRl7n7y2v9PPidm9RvPkCb2hMREVHbMZknIiLyMqu7v3wrBr9z1Vhx9NK/4+ilf4erxtqq8wfyIHg1NTUYOnQohg4dipqaGrnDISIiClotHgCPiIiImvbXSPatqJl3iaj59ai03Bra7u5kPvCa2btcLuzatUtaJiIiotZhzTwREZGX2bLkmZbOTUrm2WeeiIgoZDGZJyIi8jL3AHjalk5L5yWarrXntZ04BZG130RERCGJyTwREZEXuWx22HKLALSymb0XaFISAaUCosUGx6kyWWIgIiIi32IyT0RE5EX23CLA5YIQoYUqOU6WGAS1CpqOSQAAW06hLDEQERGRbzGZJyIi8iJ3f3lt52QIgiBbHO7++tYz8RAREVFo4Wj2REREXmR1j2Tfhv7yyvioNseh6VSbzLv77weShIQEuUMgIiIKekzmiYiIvOivkexbl8wrDDr0OfrfNsfhvplgywmsmnmDwYDi4mK5wyAiIgp6bGZPRETkRe6a8LbUzHtDINfMExERUdsxmSciIvIi6/GTAACtTCPZu7n7zHMAPCIiotDEZJ6IiMhLRJdLSp41XTu06hiuGiuOXfsYjl37GFw11lbH4k7mHafK4DJbWn0cb6upqcGYMWMwZswY1NTUyB0OERFR0GKfeSIiIi9xFJZCtNgApQKajomtO4hLhOmnvdJya6liIqGMNsJZUQ1bzinoenVq9bG8yeVyYevWrdIyERERtQ5r5omIiLxEGsk+NQmCWv775WxqT0REFLqYzBMREXlJW0ey97a/BsELrBHtiYiIqO2YzBMREXmJlMzLPJK9m7tm3soR7YmIiEIOk3kiIiIvsZ5J5uUeyd5NambPmnkiIqKQw2SeiIjIS9xJc8DUzHOueSIiopAl/+g8REREIUJqZt+1bcm8oNd6IxzppoLtxCmILhcERWDcw9fr9XKHQEREFPSYzBMREXmBo6wKzvJqAIC2U+uTeYVBh355m7wSkyYlEVAqIFpscJwqg7p9vFeO2xYGgwEmk0nuMIiIiIJeYNyiJyIiCnLuJvaqdrFQGHQyR1NLUKug6ZgEgNPTERERhRom80RERF7g7pfu7qceKP4aBI/JPBERUShhMk9EROQF7ppvd/LcWi6LDVk3PoOsG5+By2Jrc1zumwvWABnR3mKxYPz48Rg/fjwsFovc4RAREQUt9pknIiLyAlvOKQCApg395QEATheqvtkpLbeVVDMfIM3snU4ntmzZIi0TERFR67BmnoiIyAukaek6tZM5kvo4PR0REVFoYjJPRETkBd5qZu9tgVYzT0RERN7BZJ6IiKiNRIcTtrxiAF5oZu9lms618TgKS+Eys486ERFRqGAyT0RE1Eb2kyWAwwlBo4K6fZzc4dSjio2EMtoI4K9+/URERBT8mMwTERG1kbsJuzqtHQRF4P1rVZ/px8+m9kRERKEj8L5xEBERBRn34HLaAJtj3k2TdiaZzy2SORIiIiLyFk5NR0RE1EbS4HdeSOYVBh36l25p83HqkpL5E/I3szcYDBBFUe4wiIiIgl6Lk/lPPvkEu3fvxr59+3DkyBHY7XbMmzcPkyZN8rh/dXU1Fi1ahK+//hrFxcVITEzE5ZdfjgcffBBGo7HNF0BERCQ3bybzvuBO5u0BkMwTERGRd7Q4mX/zzTeRn5+P2NhYJCUlIT8/v9F9zWYzbrvtNhw8eBAXXXQRxo8fj0OHDmHVqlXIyMjABx98AL1e36YLICIikpu7mX2gTUvnFkg180REROQdLe4z/8ILL+B///sfduzYgZtuuqnJfVesWIGDBw/i3nvvxbvvvotHHnkEK1aswMyZM3Hw4EGsWLGi1YETEREFCneS7I2aeZfFhpw7X0LOnS/BZbG1+XgAoE5LAhAYybzFYsGUKVMwZcoUWCycKo+IiKi1WpzMX3jhhUhJSTnnfqIoYt26ddDr9Zg5c2a9bdOmTUN0dDTWr1/PfnNERBTUnNU1cBSXA/BSzbzThYpPf0TFpz8CTlfbjwdA07G2Zt5ZVgVnpdkrx2wtp9OJ9evXY/369XA6nbLGQkREFMx8Npp9dnY2ioqKMHjw4AZN6bVaLc4//3ycOnUKOTk5vgqBiIjI52wnapvYK2MjoYwyyByNZ8ooPZSxkQAAW578tfNERETUdj4bzd6dpHfu3Nnj9k6dOkn7NbaPG2vvKVy4yzrLPIWLUCjzUn/5tHZeuY66xxBF0WvvjTotCc6yKthyTkHXq7NXjtkavrq+YBIK5Z6oJVjmKdyIoghBEHx+Hp8l81VVVQDQ6Ij17vXu/ZpSUVHhvcCIggDLPIWbYC7zVYeyahdS4lFeXt7m47nMf/UjL68oh8Kua/MxAUBIjgN+P4aKw9lwjUj3yjFbw2QyScvl5eWw2+2yxSK3YC73RK3BMk/hJDY21ufnCIp55qOjo/1yZ4NIbqIooqKigmWewkYolHlzUSUAwNg9FTExMW0+nkttgXuemJjoGCgM3knma7p1RA12QlVS5ZU4W0utVkvLMTExMBgCs2uCL4VCuSdqCZZ5Cjf+aoXis2Q+MrK2b151dbXH7e717v2aIggC//AprLDMU7gJ5jIvzTHfOdkr11D3GN58X+pOTyfne+2r6wtG4X79FH5Y5om8y2cD4Ln7xGdnZ3vc7u5T796PiIgoGNmyCgB4Z1o6X9J04lzzREREocRnNfOdO3dGUlIS9uzZA7PZXG9Ee6vVil27diEpKYnJPBERBS3R5fqrZr5Le68cU9Br0Td3o7TsLZrU2mTeLnMyr9frpdZ5Z892Q0RERM3ns5p5QRAwZcoUmM1mLFmypN62//znP6ioqMCUKVPY1IaIiIKWvaAUotUOqJTQdEzyyjEFQYDCoIPCoPPq/0h1am18zvJqOCtN59jbdwRBgMFggMFg4HcAIiKiNmhxzfy6deuwe/duAMCRI0ekdZmZmQCAcePGYdy4cQCAe++9F//73/+wYsUKHDx4EH369MGhQ4ewbds29OrVC/fee6+3roOIiMjvbNlnmtinJkFQKWWOpmnKSD2UcVFwllbClluEiD5d5A6JiIiI2qDFyfzu3buxadOmeuv27NmDPXv2AABSUlKkZF6v12PNmjVYvHgxvvrqK2RmZiIhIQF33nknZs2axeZ1REQU1KT+8p2908QeAFxWO/IfXgQASHnjQSi06nO8ovk0aUmoKa2E7cQp2ZJ5q9WKadOmAahtqafVeq8rARERUTgRRH+Nm99KZWVliImJYVM8CguiKKK8vJxlnsJGsJf5whdWo+iNtYi/ezxSXpvplWO6TBbsS50EAOibu9FrU9MBQM4dL6Lis5/QYd40JEy7zmvHbQmTyQSj0QigdmabcJ2aLpjLPVFLscxTuBFF0S9l3Wd95omIiEKd1Qc1876kdk9Pl8MR7YmIiIIdk3kiIqJWkvrMdwnsaencpLnmc5nMExERBTsm80RERK0k9Zn30rR0vqZJqx3RnjXzREREwY/JPBERUSs4yqvgLK+dL13bKUiSefdc87lFMkdCREREbcVknoiIqBXctfKqdrFeHaTOl6S55ivknWueiIiI2o7JPBERUSv81cS+g8yRNJ8yUg9lbCQAwMbaeSIioqDW4nnmiYiICLBlFwIAtJ29O/idoNei95EPpWVv06S1Q01ZFey5RbLMNa/X61FUVCQtExERUeswmSciImoFW05tMu/taekEQYAqIdqrx6xLnZqEmt//hO2EPIPgCYKAxMREWc5NREQUStjMnoiIqBWkZL5TO5kjaRnNmX7zbGZPREQU3JjMExERtYJ7ejdNJ+82s3dZ7cifuwT5c5fAZbV79djAX8m8XaaaeavVipkzZ2LmzJmwWq2yxEBERBQKmMwTERG1kOhwwpZXW7Pt7WQeDidOv7MZp9/ZDDic3j02AHVabUsCd/z+5nA4sHTpUixduhQOh0OWGIiIiEIBk3kiIqIWsucXA04XBK0aqnaxcofTIlIze5lq5omIiMg7mMwTERG1kNRfPq0dBEVw/SvVnKmZd56uhMtkkTkaIiIiaq3g+gZCREQUAKzZ7sHvvNzE3g+U0UYoogwAOAgeERFRMGMyT0RE1ELuweOCbSR7t79GtGdTeyIiomDFZJ6IiKiFpJr5tOCrmQf+ampvZ808ERFR0GIyT0RE1EJ2d5/5zsGZzKs51zwREVHQU8kdABERUbCxnfDNHPMAIERocN5vK6VlX5BzRPuIiAhkZWVJy0RERNQ6TOaJiIhawFldA0dxOQDf9JkXFAqpGbyvuJN5OZrZKxQKdO7c2e/nJSIiCjVsZk9ERNQC7sHvlDFGKKONMkfTOuozNws4AB4REVHwYjJPRETUAtYc305L57LZcfLpd3Dy6Xfgstl9cg53zbzjVBlcFptPztEYm82GuXPnYu7cubDZ/HtuIiKiUMJknoiIqAXsPk7mYXeiZPEGlCzeANidPjmFMi4KCoOu9nR5/m1qb7fb8dprr+G1116D3e6bmxVEREThgMk8ERFRC9hygnuOeQAQBAHq1DNN7U9wRHsiIqJgxGSeiIioBXzdzN5fNJyejoiIKKgxmSciImoBnzez9xNNmntEew6CR0REFIyYzBMRETWTKIp1auaDt5k9AKhZM09ERBTUmMwTERE1k7OkAqLZCtTpcx6sNFKfedbMExERBSMm80RERM1kO1Mrr24fD4VWLXM0bePuM29nzTwREVFQUskdABERUbDwRxN7IUKDnj+9JS37ijqt9hrsBafhstmh0Pjn5kRERAT27dsnLRMREVHrMJknIiJqJrs0LZ3vBr8TFAroenXy2fHdVIkxEHQaiBYb7CdLoO3c3ufnBACFQoE+ffr45VxEREShjM3siYiImsmaXQAg+EeyB2rnmpemp8thv3kiIqJgw2SeiIiomewnfF8z77LZUfjy/6Hw5f+Dy2b32XmAv67Dll3o0/PUZbPZ8Oyzz+LZZ5+FzWbz23mJiIhCDZvZExERNZNNambvw5Hs7U4UvfIBACDpwcmAD/uya7rUNq235RT47Bxns9vteO655wAAc+fOhUbju3EBiIiIQplfknlRFPHNN99gzZo1yMrKQlVVFZKTkzF8+HDcd999SE1N9UcYREREreay2aU52UOhmT0gT808EREReYdfkvn58+dj5cqVSExMxKWXXgqj0YhDhw7ho48+wueff47//ve/6Nmzpz9CISIiahX7iVOAywVBr4Wqfbzc4XiFpvOZZD6HyTwREVGw8XkyX1xcjNWrVyMlJQWffvopjEajtG3VqlWYN28eVq5ciXnz5vk6FCIiolazZtU2Rdd26QBBEGSOxjukZJ4180REREHH5wPg5efnw+VyYfDgwfUSeQAYM2YMAKC0tNTXYRAREbWJ7fhJAH/1Mw8FmrTaZN5ZVgVnRbXM0RAREVFL+DyZ79SpE9RqNfbs2YPq6vpfFLZu3QoAGDFihK/DICIiahPrmWRe27WDzJF4j9IYAVViDABOT0dERBRsfN7MPjY2FnPmzMErr7yCq6++GmPHjoXBYMCRI0fwyy+/4MYbb8Rtt93W5DFEUfR1mEQBwV3WWeYpXARTmbfWqZn3Zbx1jy2Kos/fG03nZDiKy2HNOgldv64+PRfg/+sLRMFU7om8gWWewo0oin7pkueXAfDuueceJCUl4emnn8aHH34orR80aBAmTJgAtbrpaXcqKip8HSJRQGGZp3ATDGXe8mceAMCWFIXy8nKfnUd0upC06XkAQIXFDMFu8dm5AAAdagfzqziYBXFUX9+eC4DT6cS3334LALBYLLDb7T4/Z6AKhnJP5E0s8xROYmNjfX4OvyTzS5cuxdKlSzFr1ixMnDgRUVFROHjwIF5++WXcfvvtWLBgAS6//PJGXx8dHR0ygw0RNUUURVRUVLDMU9gIljIv2h3IzS8BAMT36wl1TIxvTzgqzrfHr8PaIxVmAMqiCsT4+rrOGDt2rF/OE6iCpdwTeQvLPIUbf7VC8Xky/8svv+DNN9/EnXfeienTp0vrhwwZgv/85z+49NJLMW/evCaTeUEQ+IdPYYVlnsJNoJd5W34J4HBC0Gmg7hAf0LG2lKZz7YB+tuzCkLquYBDo5Z7I21jmibzL5wPguQe5Gz58eINtcXFxSE9Px8mTJzmiPRERBSzbsXwAtYmvoPDtv06XzY6ihetRtHA9XDbfN0H391zzNpsNr776Kl599VXYbDa/nJOIiCgU+bxm3t0XrrFk3b1eo9H4OhQiIqJWkeaY7+aHkeztThQ++y4AIOGeawBN0+PKtJWm05ma+dwiiA4nBJXSp+ez2+149NFHAQAzZszg/38iIqJW8nnN/ODBgwEAq1atQlVVVb1tmzZtQk5ODvr06dNgDnoiIqJA8dcc86EzLZ2bun0cBK0acDhhzy+WOxwiIiJqJp/XzF955ZX473//i8zMTFx++eUYO3YsoqKicPjwYfz000/QaDR48sknfR0GERFRq1mz3HPMt5c5Eu8TFApo0pJhPZoLa3YhNJ2S5Q6JiIiImsHnybxSqcQ777yD1atX44svvsDmzZtht9sRHx+Pa665BtOmTUPPnj19HQYREVGrWUO4Zh6o7TdvPZoLW3YhMFruaIiIiKg5/DI1nUajwX333Yf77rvPH6cjIiLyGtHhhD3nFIDQrJkH6g6CVyBzJERERNRcPu8zT0REFMzs+cUQ7Q4IWjXUKYlyh+MT7qb1tmz/jGhPREREbcdknoiIqAlSE/tOyT6flk4u/p6ejoiIiNrOL83siYiIgpXtzLR0mq7+6S8v6NTo+unL0rI/SMl8lu+b2et0Onz//ffSMhEREbUOk3kiIqImWI/lAwC0XfzTX15QKmEc2d8v53LTnplr3lleDUd5FVQxkT47l1KpxJgxY3x2fCIionARmu0FiYiIvMR6prZa2y1F5kh8R2HQQZUUCwCwnRnsj4iIiAIbk3kiIqIm2KRp6fxTMy/aHShZ8RlKVnwG0e7wyzkB/w2CZ7fbsWTJEixZsgR2u92n5yIiIgplbGZPRETUCNHphC37TM28n/rMizYHTj76FgAg7ubLIKj9869a0zkZ5p0HfT49nc1mw6xZswAAd955J9Rq/4wLQEREFGpYM09ERNQI+8kSiDYHBLUqZKelc+P0dERERMGFyTwREVEjrMfPjGTfORmCSilzNL4ljWjPZJ6IiCgoMJknIiJqhC3Lv/3l5fRXMu/76emIiIio7ZjMExERNcJdM6/t4p/+8nLSdq69YWHLLYLocMocDREREZ0Lk3kiIqJGSDXzfhr8Tk6q5DgIWjXgdMGeXyx3OERERHQOTOaJiIgaYT1Wm8xrw6CZvaBQQJNW29Teyn7zREREAY9T0xEREXkgulxS/3FNtxS/nVfQqtH5v89Ky/6k6ZwM69Hc2kHwRvvmHFqtFp9//rm0TERERK3DZJ6IiMgDe0EpRIsNUCmhSU3y23kFlRJRlw/z2/nqkgbB8+Fc8yqVCuPHj/fZ8YmIiMIFm9kTERF5IPWXT2sX8tPSuUlzzWdxRHsiIqJAx5p5IiIiD+TqLy/aHShb9z0AIHbKJRDU/vtX7Z6Cz5bjuz7zdrsd77//PgDg1ltvhVrt364EREREoYLJPBERkQdSzbwf+8sDgGhzIG/W/wMAxFx3sV+Tea27Zt6HA+DZbDbcddddAIApU6YwmSciImolNrMnIiLywHo8fEayd3M3s3eWV8NRXiVzNERERNQUJvNEREQeuPuNh8Mc824Kgw6qpFgAgC3nlMzREBERUVOYzBMREZ1FFEVYs8KvZh6oMwge55onIiIKaEzmiYiIzuIoOA3RbAWUCqjT2skdjl9J09Nlc0R7IiKiQMZknoiI6CzWY/kAamupFZrwGqCNNfNERETBgck8ERHRWdzJvNbPI9kHAml6OtbMExERBTROTUdERHQW659nkvnu/k/mBa0aae8+IS37m9bdzN5Hc81rtVp89NFH0jIRERG1DpN5IiKis0g183Ik8yolYiZe7PfzuknN7HOLIDqcEFRKrx5fpVJhypQpXj0mERFROGIzeyIiorOEczN7VXJcbYsApwv2/GK5wyEiIqJGMJknIiKqQ7Q7pMHfNN06+v/8DifKP96O8o+3Q3Q4/X5+QaGAJq22dt6a5f1+8w6HA+vWrcO6devgcDi8fnwiIqJwwWb2REREddhOnAIcTgh6LdTt4/x+ftFqx4m75wEA+uZu9Hoz9+bQdE6G9WiuT0a0t1qt+Nvf/gYAqK6uhkrFryJEREStwZp5IiKiOqQm9l1TICjC89+kNKK9jwbBIyIiorYLz28pREREjbAezQMAaLt1kDkS+fw11zynpyMiIgpUTOaJiIjqkHMk+0Ch8fH0dERERNR2TOaJiIjq+CuZ9//gd4FCK9XMM5knIiIKVEzmiYiI6rD9Gb7T0rm5m9k7y6vhKKuSORoiIiLyxK9DyH7zzTf44IMPcODAAdTU1CAhIQEDBw7E3Llz0b59e3+GQkRE1ICzugb2gtMAAE0YJ/MKgw7qDgmwnyyB9WgeVMN6yR0SERERncUvybwoinjmmWewdu1apKWl4eqrr4bBYEBRURF27tyJ/Px8JvNERCQ7W9ZJAIAyPgqq2EhZYhA0KnRcPEdalou2R8czyXwuDF5M5jUaDVauXCktExERUev45VvCmjVrsHbtWtx666345z//CaWy/py5DofDH2EQERE1yRoATewFtQpxt1wm2/ndtD06onrrb9J74i1qtRp33nmnV49JREQUjnzeZ95isWDJkiVITU3Fk08+2SCRBwCVSr6aByIiIjdp8LswbmLv5h4A0Ho0V+ZIiIiIyBOfZ9E//fQTysvLcf3118PlcuHrr79GdnY2IiMjceGFF6JTp07nPIYoir4OkygguMs6yzyFi0Ar8+5aaE23FNliEh1OVP1vNwAgcuwQCKqGN8H9QSMl83lefS8cDge++uorAMAVV1wRljf0A63cE/kayzyFG1EUIQiCz8/j8/+g+/btAwAolUpMmDABWVlZ0jaFQoE777wTjz32WJPHqKio8GmMRIGGZZ7CTaCUefORHACAo30MysvLZYnBZbYg/+bnAAApe9+BQq+TJQ5Hu9oxA6xZBSgrLoGg9s5XBpPJhGuvvRYAkJubC4PB4JXjBqNAKfdE/sIyT+EkNjbW5+fweTJ/+nTtqMArV65E7969sW7dOnTr1g0HDx7Ev/71L7z77rtITU3FLbfc0ugxoqOj/XJng0huoiiioqKCZZ7CRiCVeVEUkZ9VO6963ICe0MXEyBKHS22Bu5d6THQMFAZ5knkxKgqFei1EsxX6Ciu03RO8cly1Wi0tx8TEhGUyH0jlnsgfWOYp3PirFYrPk3n3hajVaixZsgTt2rUDAJx//vlYuHAhJkyYgJUrVzaZzAuCwD98Ciss8xRuAqHMO09XwlVhAgQB2i4dZIun7nnlfF8EpRLa7h1h+eMYrH/mQdejo3eOGyDXFwjC/fop/LDME3mXzwfAMxqNAIC+fftKibxbjx49kJqaihMnTqCystLXoRARETXK+mceAEDdMRGKCK3M0QQGbZ1+80RERBRYfJ7Md+3aFQAQGel5vl73eovF4utQiIiIGsWR7Bty18YzmSciIgo8Pk/mhw8fDgA4fvx4g212ux0nTpyAXq9HXFycr0MhIiJqlJTMd2cy78bp6YiIiAKXz5P5tLQ0jBw5Ejk5OVi3bl29bcuWLUNlZSXGjRsXllPTEBFR4HBPS8ea+b9oe55J5v/MP8eeRERE5G9+yaCfeeYZ3HTTTXjqqafw7bffomvXrjhw4AB27NiBlJQUPProo/4Ig4iIqFG2AGlmL2hU6PDKA9KynLRda98LZ2klHKcroIqPbvMxNRoNFi9eLC0TERFR6/jlW0JaWho2bNiAhQsXYvv27fjpp5+QkJCAW2+9FTNnzkR8fLw/wiAiIvJIdLlgPX4SAKCRuZm9oFYh4d5rZY3BTWHQQd0xEfa8YliP5nklmVer1Zg5c6YXoiMiIgpvfrvl3759e8ybN89fpyMiImo2e34xRKsdgkYFTWqS3OEEFG33jlIybxjRR+5wiIiI6Ayf95knIiIKdO4+4ZouHSAolbLGIjqdqP7xD1T/+AdEp1PWWABA2zMVwF9T97WV0+nEDz/8gB9++AHOALg+IiKiYMVR54iIKOwF0kj2osWO4xMeBwD0zd0IwSDvzQX3e2Lx0vR0FosFl1xyCQCguroaBoPBK8clIiIKN6yZJyKisMeR7Bun7eHdmnkiIiLyDibzREQU9pjMN84917wtqwAum13maIiIiMiNyTwREYU9WwA1sw806g7xUBh0gNMFW3ah3OEQERHRGUzmiYgorLmsdthOnAIAaFgz34AgCFLtvPVorszREBERkRuTeSIiCmu24ycBUYQiUg9VYozc4QQkbY8zyfwRJvNERESBgsk8ERGFNcuhHACALj0NgiDIHE1g0qanAQAsTOaJiIgCBqemIyKisGY5fAIAoD0vTeZIzlArkfzs3dJyINCdSeath060+VhqtRqvvPKKtExEREStw2SeiIjCmjtBdSesclNo1EiaPVnuMOrRnfdXzbzockFQtL5hn0ajwdy5c70VGhERUdhiM3siIgprUjP78zrJHEng0nRuD0GjglhjhT23SO5wiIiICEzmiYgojLlsdliPnwQAaAMkmRedTpj3HIF5zxGITqfc4QAABJVSGtHeffOjtZxOJ3bu3ImdO3fCGSDXR0REFIyYzBMRUdiyHTsJOJxQROqh7hAvdzgAANFix5/jHsKf4x6CaLHLHY7EfbPDPcZAa1ksFgwbNgzDhg2DxWLxRmhERERhick8ERGFLXdiypHsz02XngrAO4PgERERUdsxmSciorDlbjIeMCPZBzCdl2rmiYiIyDuYzBMRUdgKtJHsA5k01/zhExBdLpmjISIiIibzREQUtqRm9gEy+F0g03btAEGtgmi2wp5XLHc4REREYY/JPBERhSWXzQ7rsXwAf9U6U+NqR7RPAcCm9kRERIGAyTwREYWleiPZpyTIHU5QkEa0P9i26emIiIio7VRyB0BERCSHgB3JXq1E0qO3SMuBRJeehgoA1jbUzKvVajzzzDPSMhEREbUOk3kiIgpL0kj2AdbEXqFRI/nx2+QOw6O6g+C1lkajwbPPPuuliIiIiMIXm9kTEVFYkkay57R0zeZ+r6yHT0AURZmjISIiCm9M5omIKCwF6kj2ossFy8EcWA7mBNwUcO4R7V0mC+x5Ra06hsvlwv79+7F//364Auz6iIiIggmTeSIiCjuBPJK9WGPDkYsewJGLHoBYY5M7nHoEtQqabmdGtD/Uuqb2NTU16Nu3L/r27YuamhpvhkdERBRWmMwTEVHYkUayN0ZwJPsW0qWnAgCsh3NljoSIiCi8MZknIqKwE7Aj2QcBd7cE9wCCREREJA8m80REFHakkewDrL98MHB3S2jL9HRERETUdkzmiYgo7FgPcyT71pJq5jmiPRERkayYzBMRUdhxD96mC7DB74KBpmt7QKWEq7oG9vwSucMhIiIKW0zmiYgorNQbyZ7N7FtMoVFD27UDAMDKfvNERESyUckdABERkT/ZjhcE9kj2aiUSZt0gLQci3XmdYD2SC8vhE4gcd36LXqtWq/HII49Iy0RERNQ6TOaJiCisuAe/C9SR7BUaNTo8f4/cYTTJPQiepRWD4Gk0Grz66qveDomIiCjssJk9ERGFFcuBbABsYt8W7oEDrYc4oj0REZFc/J7ML1++HOnp6UhPT8dvv/3m79MTEVGYsxzIAgBE9O0icySeiS4XbCdOwXbiFESXS+5wPNLVqZlv6Yj2LpcL2dnZyM7OhitAr4+IiCgY+DWZP3bsGBYuXAi9Xu/P0xIREUks+7MBALo+AZrM19hwaOBdODTwLog1NrnD8UjTPQVQKuCqMsN+8nSLXltTU4MuXbqgS5cuqKmp8VGEREREoc9vybzT6cRjjz2G8847D+PGjfPXaYmIiCTOSjNsOYUAAjeZDwa1I9qnAACsreg3T0RERG3nt2R++fLlOHToEF566SUolYE5Oi8REYU2y8FsAIC6QwJUsZHyBhPk3P3mLZyejoiISBZ+SeaPHDmCxYsX44EHHkCPHj38cUoiIqIGLPtr+8uzVr7tpBHtDzKZJyIikoPPp6ZzOBx4/PHH0a1bN9x///2tOkZLB9chClbuss4yT+HC32W+Zt+ZZL5354D9O6sblyiKARunrl9XAEDN3mMtijFYrs+X+FlP4YZlnsKNKIp+mf7W58n822+/jcOHD+Ojjz6CWq1u1TEqKiq8HBVRYGOZp3DjrzJf/cdRAICzcxLKy8v9cs6Wcpkt0nJ5RTkUdp2M0TTO0SURQG3XhbJTxRC0zfsfbzKZpOXy8nLY7XafxBcM+FlP4YZlnsJJbGysz8/h02T+0KFDePvtt3H33XejT58+rT5OdHS0X+5sEMlNFEVUVFSwzFPY8GeZF10u5B/JAwDED+sDXUyMT8/XWi61BflnlmOiY6AwBGYyL0ZHoyjGCGd5NXSFFYgY0L1Zr6t7Yz8mJgYGg8FXIQYsftZTuGGZp3Djr1YoPk3mH3vsMaSmpuLBBx9s03EEQeAfPoUVlnkKN/4o87YTRXBV10DQqKDr3jFg/8YEtQrx94yXlgM2TkFAxIDuqN76Gyx7j0M/sHlj4qjVasyYMUNaDtTr8wd+1lO4YZkn8i6f18wDQL9+/Txuv/HGGwEAS5Ys4XR1RETkUzW/1Tax1/XtCkHt815mrabQqpHy6ky5w2iWiP7dUL31N9T88SeAK5r1Gq1WiyVLlvg2MCIiojDg028zkydP9rh+165dyM7OxtixYxEXF4eUlBRfhkFERCQl881tDk7nFtG/9r2s+f2YzJEQERGFH58m8y+++KLH9Y8//jiys7Mxbdo0DBw40JchEBERAQBqfv8TAJrdHFwuoijCeboSAKCMjwroJqkRA7oBAGr2Z0F0OiEoled8jSiKKCkpAQAkJCQE9PUREREFMr/MM09ERCQn0eWC+bfaZD5iYGDXzItmKw70vBkHet4M0WyVO5wmabp2gMIYAbHGCuvR/HO/AIDZbEZSUhKSkpJgNpt9HCEREVHoYjJPREQhz5ZVAFelCYJWDd15neQOJ2QICgUizsw3b/71iMzREBERhRdZkvmXX34Zhw8fZhN7IiLyi5oztfK6Pl0CevC7YBQxOB0AULP7sMyREBERhRfWzBMRUcgznxn8Tj8osPvLByP9kNpk3sxknoiIyK+YzBMRUchzD34XEeCD3wUj/flnaub3Z8FVE9h9/ImIiEIJk3kiIgpposOJmjP9ufWDesocTehRpyRC1S4WcDilmyZERETke0zmiYgopFkOZMNlskARqYf2vDS5wwk5giCwqT0REZEMOAoQERGFNFPmAQCAfmgvCIoguIetUiL25nHScjDQD05H5ZYdzUrmVSoV7rjjDmmZiIiIWof/RYmIKKSZMw8CAAzDeskcSfMotGqkLnlY7jBaJKIFNfNarRarVq3ycUREREShLwiqKIiIiFrPdCaZ1wdJMh+M9IN6AgoF7LlFsJ8skTscIiKisMBknoiIQpa94DTsJ04BCgX0Z+ZDD3SiKMJlssBlskAURbnDaRZllB4R/bsCAKp/3tvkvqIowmQywWQyBc31ERERBSIm80REFLLMO2tr5XW9O0MZpZc5muYRzVbsS52EfamTIJqDZ6o3w4X9AACmn/Y1uZ/ZbIbRaITRaITZbPZHaERERCGJyTwREYUs0w734HfnyRxJ6DNcdCaZP0fNPBEREXkHk3kiIgpZ1dt+AwAYzySa5DuGC/oAggDr0TzYT5XKHQ4REVHIYzJPREQhyVFcDsuBbACAcdRAWWMJB6qYSOj6dAEAmH5uuqk9ERERtR2TeSIiCknV234HAOj6doUqIVrmaMKD4cK+ANjUnoiIyB+YzBMRUUiSmtiPGiBvIGHEOLI/AKD6HIPgERERUdsxmSciopDkrpk3jh4obyBhxHBBHwCA9VAOHKcrZI6GiIgotKnkDoCIiMjbrNkFsOUUAiolDBf0lTucllEqED1hpLQcTFTx0dD16gTLwRyYft6H6GsvarCPUqnE5MmTpWUiIiJqHSbzREQUcqq31tbK64ekQ2mMkDmallHoNOi06km5w2g1w0X9YDmYg+qf9npM5nU6HdatWydDZERERKEluG75ExERNcNf/eUHyhpHODJeXDtGQfXW3+QNhIiIKMQxmSciopAiulyo3u7uL8/B7/zNcHH/2vnmD5+AveC03OEQERGFLCbzREQUUiwHc+AsqYCg10J//nlyh9NiLpMFf8RdjT/irobLZJE7nBZTxUQiYmB3AH+1kKjLZDJBEAQIggCTyeTn6IiIiEIHk3kiIgop7ubdxgv6QqFRyxtMmHLPIOCeUYCIiIi8j8k8ERGFFPaXl5/7va/+4VeIoihvMERERCGKyTwREYUM0e6A6ed9ADi/vJwMw3tD0KphLzgN69E8ucMhIiIKSUzmiYgoZJh3H4arugbKuCjo+naRO5ywpYjQwjC8NwDP/eaJiIio7ZjMExFRyHD30TaO7A9BwX9xcpL6zXOKOiIiIp/gNx0iIgoZVT/8CoBT0gUC4+hBAIDq7X9AdDhljoaIiCj0qOQOgIiIyBvsRWUwZxwAAESOO1/maNpAqUDkZUOl5WAVMaAblNFGOCuqYd59WGp2r1QqcfXVV0vLRERE1DpM5omIKCRUfv4zIIqIGNwTmtR2cofTagqdBl3WPid3GG0mKJUwjh2Mik3bUPXtLimZ1+l02Lx5s8zRERERBb/gveVPRERUR8WnPwIAoieMlDkScos608Kg6ttdMkdCREQUepjMExFR0HMUl6P6x70AgJjrmMwHishLhwAAan7/E/bCUpmjISIiCi1M5omIKOhVbP4FcLkQMbA7NJ2S5Q6nTVwmC/Z2vB57O14Pl8kidzhtokqMQcTgngCAqu9qa+dNJhMMBgMMBgNMJpOc4REREQU1JvNERBT0Qq2JvWi2QjRb5Q7DK9yDEVZ9vVNaZzabYTab5QqJiIgoJDCZJyKioOY4XYHq7bXzy4dKMh9Koi4fBgCo+t9uuGpC4wYFERFRIPD5aPanTp3CF198gW3btuH48eMoKSlBdHQ0Bg8ejHvvvRcDBnAuYCIiar3KLTsApwu6fl2h7dpB7nDoLBGDekCdmgR7bhGqvt0F1diBcodEREQUEnxeM79mzRrMmzcPubm5uPDCC3HXXXdhyJAh+O6773DTTTdhy5Ytvg6BiIhCmLuJfcx1F8scCXkiCAKiz/xuyj/eLnM0REREocPnNfP9+/fH+++/j/PPP7/e+l27duHOO+/Ec889h3HjxkGj0fg6FCIiCjGOsipUbf0NABA94SJ5g6FGxVw3EiWLN6Dq60zEsak9ERGRV/i8Zv7yyy9vkMgDwPnnn4/hw4ejvLwchw8f9nUYREQUgiq/2AE4nND16QJt945yh0ONiBjcE+rUJLhMFpj/t0fucIiIiEKCz2vmmzy5SlXvmYiIqCX+GsU+hGrlFQIMF/WTlkOBIAiImXgxihdtQPXG7Rg9ejQAQKHgOLxEREStJVsWffLkSfz8889ITExEz549m9xXFEU/RUUkL3dZZ5mncNGWMu+sqEb1978CAKKuvShk/m4EnQZdP31Z+jlUrivm5nEoXrQBpu924+vf10PdPh5A6FxfS/CznsINyzyFG1EUIQi+vyEvSzJvt9vx6KOPwmaz4ZFHHoFSqWxy/4qKCj9FRhQYWOYp3LSmzJs2bYdod0DVoyMs7aJgKS/3fmDkPe2ioBnSE7bdR1Cw8nNEzbhO7ohkx896Cjcs8xROYmNjfX4OvyfzLpcLTz75JHbu3Im//e1vmDhx4jlfEx0d7Zc7G0RyE0URFRUVLPMUNtpS5su/re17HXf9KMTExPggOvI28a7xyNt9BDUbtiH18akQwrSZPT/rKdywzFO48VcrFL8m86Io4qmnnsKnn36KCRMm4LnnnmvW6wRB4B8+hRWWeQo3LS3zzopqVJ8ZSC3muotD6u/FZbLg4MA7AQC9flsFhUEnb0BeFHPdxTj5xNuwZRfiynY9sClnLwwGg9xhyYaf9RRuWOaJvMtvt8TdNfIbNmzANddcg5dffpkD3xARUatUfPoTRJsDut6doevVSe5wvM55uhLO05Vyh+F1CoMOxom1c85faomSORoiIqLg5peaeZfLhX/+85/YuHEjrr76arzyyivn7CdPRETUmPINPwAAYiaPkTUOqm11V1NTA5PJJD2qq6vr/Vx3nVB5EuMBXKpOxsxb70SpywqLxQKHwwG73Q673S4te1rncrmaHZsgCFCpVFCpVFCr1dJz3WVP23Q6HXQ6HbRarcflprZptVoYDAZERkYiMjISBoOB33mIiMgnfJ7M103kr7zySrz66qv8p0ZERK1mLziN6u1/AABiJo2WOZrgZLPZUF5ejsrKSlRWVqKiokJa9vSoqqpqNEE3m80t7hvYKfIC9FXFQPXVHnxmOe6jqwwcer1eSu7dD51Oh9jYWMTExCAuLg7x8fGIi4ur94iPj0dsbCy0Wq3cl0BERAHI58n8kiVLsHHjRuj1enTu3BlvvfVWg33GjRuHXr16+ToUIiIKAeWbtgGiCP3w3tCktZM7HNm5B5YqKChAcXExSkpKzvmoqqrySSw6nQ4GgwEGgwFGo1FarvvQarX48N1P8aIqBvcl9sPwJ+ZCZzQ0WnN+9s8tqRBwuVwNavnP9Wyz2WC1WmG11rYYcD/q/tzYsvthMplQVVUFp9MJADCbzTCbzTh16lSr3leDwYC4uDgkJCQgKSkJSUlJaNeuncflpKQkaDSaVp2HiIiCi8+T+fz8fAC1/8jefvttj/ukpKQwmScionMSRRGl//c1gPBoYl9QUIDCilIUFhbWLp95rrtcWFgIi8XSquNHRkYiKiqq3iM6OrrBOqPR2Ghy7l6v1+ublWibTCbEvr0MD0ech/hqYEr7Pog5048+lIiiCKvViqqqKo+PU6dOwel0oqKiAqWlpfUep0+fRmlpKcrKyuByuaSWELm5uc06d0xMjJTYJycnIyUlBR06dJCe3ctGo9HH7wIREfmSIPpr3PxWKisrQ0xMDEe+pLAgiiLKy8tZ5ilstLTMm3bsx7Gr50LQa9H7wP9BGRWcI6FbLBbk5eUhNze3waM49yRW5LUHAIwo+xo1cDbrmNHR0WjXrh0SEhKa9YiOjpZlIFqTyQSj0YgZuh6YFtEd+vPPQ7evXg+rz7zmlnuXy4XKykopwS8pKUFRURFOnTqFoqKiBstFRUVwOBzNjiMyMrJBgt+hQwekpqaic+fO6NSpE2JjY8Pqd0O+we83FG5EUfRLWff7PPNEREStdXrlFgC1feUDNZG32+04efKkx0RdStiLixt9vRYK7IuMqP1BIaB9u/ZITk5G+/btpUfdn5OTk5GcnIyIiAg/XWHbKBQKnH/++TjkECAUqmHedQim7b/DOGqg3KEFHIVCgZiYGMTExKBr167n3N/lcqG8vFxK8k+dOoXCwkKcPHkS+fn59Z7dLQQOHTqEQ4cONXrMyMhIdO7cWUruz16Oj49nckZEJBPWzBMFEN65pnDTkjLvOF2Bg32mQrQ50P27BdAP6umnKP/icrlw6tQpnDhxotFEvaCgoFkDwkVERCA1NbXBIyUlRUrUExMTQ3rQ2PzH3sLp5Z/BMLI/un36stzh+E0gfNZXVVXh5MmT9RJ89/KJEyeQk5PTrD7+BoNBSvA9PZjsExAYZZ7In1gzT0REVMfpdzdDtDkQMaC7zxL5iooKKVH39JyXlwe73X7O46jVanTs2NFjsu5+xMXFhf2X2sQHJ6N01Rcw/fgHTDv2wzCij9whhY3IyEikp6cjPT290X3MZrOU2GdnZyM7O7veckFBAUwmE/bv34/9+/d7PIZ7AOS6D/dNK3fz/mBpVUJEFGiYzBMRUcBzVteg5O1PAACJs25o1TGsVivy8vKaTNabM8q7QqGQ+hU39khKSpKlP3qw0XRMROzN41D63pc49dp/0XX9v+UOierQ6/U477zzcN5553ncbrFYkJubKyX3Zz9OnjwJs9mMAwcO4MCBA42eJzY21uMAfXWf27VrB5WKX1uJiOripyIREQW80lVfwFlWBU3XDoieOLLB9rObv3t6bu60YHFxcUhLS0Nqamq9Z/dyhw4dfJpUuMwWHL5gOgAg/Ze3odDrfHYuOZjNZvTu3RsAcODAASQ+NAWl73+N6v/thnnXIejP95w4UuDR6XTo0aMHevTo4XG7p2Q/KysL+fn50sNisaCsrAxlZWWN1u4DtTfR2rdvj44dO6Jjx45ISUmRlt2PDh06QKvV+upyiYgCDpN5IiIKaC6TBUWL1gMACseehx+WL2+QrDe3+btOp6uXmJ/9nJqaCoNB5oH1RMCeWyQthxpRFJGTkyMtazu3R+zfxqLsw29R+NIadN34oswRkrecK9l396M+u+/+2X34CwsL4XQ6pRsAGRkZjZ4zMTERaWlpHvvvd+rUCZGRkb66XCIiv2MyT0REsrJarTh27Jg0gNzZifq4POBuRRrynWZMePVROBrJcN3N3xtL1NPS0jgYV4Bq99itKF//A6p/+BXV23+H8eIBcodEfiAIAmJjYxEbG4s+fRofL8HpdKKoqAh5eXn1Hvn5+fV+tlqtKC4uRnFxMXbv3u3xWPHx8R6TfPcyk30iCiZM5omIyGeaav7uXm6q+XuyoMMt0aMAAMtV+eg7cECjybqvm7+T72jS2iHuzqtwevlnKPz36rCbd56aplQqpRkehg4d6nEfURRx+vRpaVyMs/vv5+TkoLS0FKdPn8bp06cbTfbj4uI8JvvuR0xMjA+vlIioZfith4iIWu3s0d9b2/zdPU3b2Ql6v037oPv5MHTDemHDF5uZ4IWwpIdvROn/fQ3zrkOo+ioTUVcOlzskCiKCICAhIQEJCQkYOHCgx30qKyvrjcZ/9qO0tFR67Nmzx+MxoqKi6iX3Zz/atWvHzyki8hsm80RE1IC7lsvdjNXdV7Vu09aWjv7uqa96amoqoqKi0LVr1wajv5syDuDY3A2AICD1lRn8ghzi1O3ikDBtAooXrEPhC6sReflQCJwRgLwoKioK/fr1Q79+/Txudyf7nhL+nJwclJSUoLKyEnv37sXevXs9HkOr1SItLa3RZD8lJQVqtdqXl0lEYYTJPBFRmLHb7SgsLGw0SXevs1qtzTpefHx8o33Uz9X83T0A1tmJuuhy4eST/wEAxN56GSL6d2vbRVNQSJw9Gaff3QLLgWyUb9yK2MmXyB0ShZFzJfsmkwknTpyQEv6zH+7PzaNHj+Lo0aMej6FQKJCSktIgye/YsaN0gzM6Opo3L4moWZjMExGFkOrq6gYJ+tnLhYWFEMXmDZOemJgoTQPlngrK/ZyWloaOHTv6ZPT30v/7GjW/HoXCGIHkp+7w+vEDmgBo09Ok5VAjCII0Nd3ZCYsqJhJJsyej8IXVKHx+FaKuHAGlMUKOMIkaMBgM6NWrF3r16uVxu91uR15eXqPJ/okTJ2Cz2aTBPn/88UePxzEajfWS+9TU1AY/c6A+IgIAQWzuNzqZlJWVISYmhncoKSy4aylZ5ulsoiiipKSkyWbv+fn5qKioaNbx1Go1OnToUC9BPztZb9++vc/nbPZU5m0nTuHIyBlwVdeg/fP3InHWJJ/GQIHFZbbg8AXTYc8tQsKsG9Dh+XvkDsnr+FkfntwDgnpK9PPy8pCbm4vS0tJmHSs6Orpegu8p+Zd9ms06WOYp3Iii6JeyzmSeKIDwn134cTqdKC4uRmFhIU6dOoXCwkJpuaCgQErST5482exm75GRkY0m6O51iYmJDfqoy+HsMi+6XDg+8UmYfvwD+uG90e3z+RCUSrnDJD+r/DoT2Tc9CygV6PG/NxHRL7S6WfCznhpjMpmkqfbcNfjuwUTdy829aRsbG9tosp+amoqUlBRERPin5QvLPIUbJvNnMJmncMJ/dqFBFEWUlpY2SNA9JezFxcVwuVzNOq4gCEhKSmqyNj0lJSWoml+eXeZL3v4YJ59cBkGvRc9tS6Dt2kHuEEkmOXe8iIrPfoK2R0d0/+7NkGpuz896aouqqqomk/3c3FxUV1c361gJCQkeE373ckpKildaaLHMU7hhMn8Gk3kKJ/xnF7hEUURVVVWjSXndhL2oqKhZ07G5KRQKJCYmIjk5WXq0a9cOycnJ9ZL09u3bQ6PR+PAq/a9umbcezcPRMQ9CtNiQ8tpMxN89Xu7wZOEyW3D00ocAAD2+WwCFXidvQF5mNpulucJ37twJvV7vcT9HSQWOjp4Fe8FpxEweg9T/zA2Zz0V+1pMviaKIysrKJpP93Nxc1NTUNOt47dq1k7pedejQQXquu5yUlARlE62oWOYp3PgrmecAeEQUttwJelFREU6dOiU9N1aj3twvPm5xcXEeE/Szf05ISGjyS1A4cNnsyH3gNYgWG4yXDEbcXVfLHZJ8RMB6+IS0HGpEUcSBAwek5caoEqKR9s7jOHbtYyhf/wMMF/ZF/J1hXC6ImkkQBERHRyM6Ohp9+/b1uI8oiigrK2s02Xf/bLVacerUKZw6darJcyoUCrRr165egl836U9OTobBYEBkZGSjs5sQUcvxr4mIQorT6URJSYmUnJ+dqNd9LioqgsViadHxIyMjz5mcJycnIykpKeRq0X3p1L9Xo+bXo1DGGNFx4UOsuSEAgGFEHyT/604UPvsuTj7+NiIG9YR+QHe5wyIKeoIgIC4uDnFxcRgwYIDHfdwDr+bm5uLkyZPSo6CgoN7zqVOn4HK5UFBQgIKCgibP21jS3759eyQlJSExMRFJSUlISkriFH1EzcBknogCmiiKqKioQElJCUpKSlBcXOwxKXcvl5SUNHvaNTej0YikpCS0a9cOSUlJTSbrjTUJptar+XY3SpZuAgB0XDwHmpQEmSOiQJI4axJMO/aj6ssM5NzxInp88/+gSoyROyyikCcIAhITE5GYmIjBgwc3up/T6URRUZHHRL+1ST9QO+tK3eT+7GT/7J8DafR+In9hMk9EflVTU4Pi4mIpOa+bpJ+9zv1wOBwtOocgCEhISJCS87qJuqd1TNDlY/71KE4/tAQAEH//BERffYHMEVGgERQKpC59GH9e+hBsWQXIvu3f6PrJPCh0bPlCFAiUSqVUu94YURRx+vRp2Gw2FBYWekz03Tfni4uLUVlZCbvdLu3XHBEREfWS/Pj4eCQkJCA+Pr7Rh79G8yfyFSbzRNRiLpcLVVVVKCsrQ1lZGcrLy6Xls38+ffp0vcTcbDa36pxGoxEJCQlSkt5Ucs4+6MHBmlWAnFuehVhjhXHMIHT4971yh0QBShUTic4fPotjV/wD5p0HceLel9Fp5ZMQ1PwaQxQs3El/hw4dmqzpBwCLxYLi4uJ6Cb572dPPFosFNTU1yMnJQU5OTrNjioiIqJfcJyQkIC4uDlFRUdK4A3UfdddHRUWx/z/JjiWQKEy5B38rKytDaWlpo8+eEvXy8vJmT6fmibvpnDs5T0hIaPBz3XXx8fHQ6UJrRO9wZz9ZgqxJ/4SjqBzqXmlIY2JG56DrmYpO7/0TWX97GpVbduDE/a8gbfljEFS8cUcUanQ6nTRN3rmIoojq6uoGCf7p06cbfZSWlsLhcKCmpgZ5eXnIy8trVZwGg8Fj4n/2uqioKERGRiIyMlJarruONwWotVhyiIKcxWKREu2mknJPz06ns03n1ul0iImJQWxsrPSo+3NMTEyDBD0hIQGRkZEc1CaMOU5X4PgNT8GWUwhN1w5IWPkYlFHs6iARAHVqkrQcagRBQKdOnaTlljBePACd3nsKOVP/jYpPfkSuSonUtx5hQk8UxgRBkJLirl27Nus17un7Gkv0KysrUVFR0eDhXu+e3cZkMsFkMjVrDICmRERENJroN2dd3W1qtbpNsVBw4TzzRDITRREmkwkVFRUoLS1Fbm4u7HZ7k03X6z5aOhr72bRaLeLi4hAbG9vg2dOjbrLO2nJqKWelGcevfwI1vx6Fun08um55FeYoLT/nqUUqv8xA9u0vAA4nIi8fik7vPgGFPng+jzjnNoWbUCvzNputQcLf2A2AiooKVFVVSY/Kykrp2WazeT02rVYLg8EAg8EAo9EoLXt6NLXd0zZ2YWw+f80zz2SeqA3sdnuDD/Gzn5uzrS1N1oHaqV5iYmIaTcqbeubgL+Qvtrxi5Ez9N2p+/xPK+Ch0+/wVaHumhtQXPPKfyq8ykHPXPIgWGyIGdEfaO49D27WD3GE1S6glNkTnwjLvmdVqbTTRb8m6yspKWK1Wn8fb1I2CiIgIaLVa6HQ6aLXaesvNXadWq6FSqaRH3Z89bVMoFD6/5tZiMn8Gk3nyBlEUYbPZYDabYTKZUF1dXe+5OcvuD8u6yXhba8XrUiqViI2NRXR0NOLj4z3WhDf2iIyMDOgPNCLTjv3IufMlOIrKoIyPQpd1/4Z+YA9+waM2MWUcQPatz8NZWgmFMQIpb8xC7ORL5A7rnFjuKdywzPue3W6Xkn1P32cbe5xrn+rq6hZP+esvgiA0muirVCoolUooFAoIggCFQtHoo6ntdbe5y27d96Ox5dTUVKxcudL37wGTeZKTKIrSCKRms7ne4+x1bd2nrbXfTak7AMrZI502d517ejT+s6NQc/q9L3Fy7lKIdgd0fbqg8/tPQ5PWDgC/4HniqrHi2DWPAgC6ff4KFBFamSPyrpqaGowaNQoAsG3btja3DrLllyD3/vkw/bIfABAz5RJ0mD8dqpjINsfqKyz3FG5Y5oOX+7v6uRJ+i8UCq9Xa4LmxZU/rHA4HHA4H7HZ7vWW73S7329Aq/kizOQAeAaidasxms8Fms8FqtZ5zubkJ+LkS7pqaGr/f7VOpVDAajfWaBzV32VNC7s2pSQL83hpRi4h2B04+tRynl38GAIieMBKpSx6GwhA8fZtl4RJR8+tRaTnUuFwu7Nq1S1puK01KArp+8jJOvfYhil77L8rXfQ/Tj3+g46I5iBzb9PRXRETUNEEQEBERgYiICCQkJMgWh8vlapDoe0r86y67XC7pIYpivZ/PfjS1ve62ujejzr4xVffntLQ0v7wvTOb9QBRFOJ3OZiXJci07HA653yao1Wro9XrpERER0eTPrdknIiICGo1G7kslCnnm3//EyUeWwLz7MACg3ZNTkfSPm1gjQz4hqJRIfvw2RF56PnJnvAbbsZPImvwU4u8Zj/bP3sMbSEREQU6hUECj0QTN93h/VdAFfDL/zTffSIlm3Tsjoii2adnlcsHpdJ7zjk5Ty3a7vdkJc7DVuKpUKmi1WumPxtOye7CLtibY7p85xyZR8HOUV+HUS2tw+t0tgMsFhTECqW8/guirL5A7NAoDhqHnoefWxSh4fhVOL/sUp9/ZjMovM9HhpfsRdc2FvJlEREQhJeCzpxtvvFHuEHyisQS5pcveOMbZyxqNhoOpEVGLiKKIsv9+h4Jn3oGzpAIAEHPDaLR//l6o28fLHB2FE4Veh5SXpyPqqhHI+/ubsJ84hZw7XoRxzCAkPXwjDBf1Y1JPREQhIeCT+fHjx6OmpqbeaIKCILRp2f1cd9TD5kx/4Onn1iTZKpWKXySIKCSITicqv8pE0RtrUbPnCABA2yMVKa8+AOOogfIGR2EtcvRApP/8FooWrEPxwnWo/uFXVP/wK3R9uiBh+nWImTQ65AYXJCKi8MLR7IkCCEd7pWDgstpR/f0elH+yHVXf7IKztBIAIOi1aPfoLUiYPhEKjbpZx2KZb8hlsmBf6iQAQN/cjSHX39tkMsFoNAIAqqurYTAYfH5Oa1YBSpZsROl/v4Vorp2LWRFlQMz1oxB7y2XQn5/u1/LHck/hhmWewo2/5pkP+Jp5IiKSnyjWjrBe9uE3KN+wFc7yammbMsaIuLuuRsK066BOipUxytChjI+SOwSf8veIyNou7ZHy2ky0++ftKF3zJU6/sxn23CKUrv4Cpau/gLZHR8TePA7R114ETdcOTDaIiCgo+K1m/o8//sCiRYvw22+/wW63o3v37rjjjjtw7bXXNvk61sxTOOGdawoUoijCllUA08/7UL39d1Rv/x2OwlJpu6p9PGImjETUtRfCMKw3BJWy1edhmSd/E10umH7ai7IPv0X5pz9KtfUAoO6QAMPIfojo1w26Pl0Q0acLVIkx3j0/yz2FGZZ5Cjf+qpn3SzKfkZGBe+65B2q1GuPHj0dkZCS+/vpr5OXlYc6cOZg+fXqjr2UyT+GE/+xIDi6zBbbsQtQcyELN78dQ8/ufqPnjGFyVpnr7CRFaRI+/ALE3j4Nx1AAIytYl8HWxzJPcnFVmVHz6Y+389Dv2Q7Q1nKpVlRgDXe/O0PXpUvvo3Rm69DQodK2bIonlnsINyzyFm5BJ5h0OB6666ioUFhZi7dq16N27N4DafnI33XQTsrKysHnzZnTu3Nnj65nMUzjhPzvyBdHhhKO4HLacQthyCmHNKqhdzq79uW6Ne12CVo2I/t1hHDUAxtEDoT//vFYnL43GxjJPAcRltsCUeRDmjAOwHMhGzcFs2I6dBDx9VVIqoO2WAt15naBKjoM6KRaqpFiokmKgSoyBKjEWqsQYKLQNx49guadwwzJP4SZk+szv2LEDJ06cwKRJk6REHgCMRiNmzJiBOXPmYOPGjXj44Yd9HQoRUcBz2ewQa6xwmSxwmS1wSctWuGrOPJvOrDfX7iOa/1p27++sMsNZWglHaVWDGnZPFJF66NLTEDGwOyL6d0fEwO7QpadBUHNoFX9z1ViR9benAQBdPno+5EZcr6mpwVVXXQUA+OKLLxARESFzRH9R6HWIHDMIkWMGSetcJgssh0/Asj8LNfuzYDmYDcu+LDjLqmA9kgvrkdwmj6mMNtYm+AnRUMZHQxUfDWW0AVbBBXtMNBQ6DQSdFooIzZllDQStBgqtGkKEFgqtBoJOXfscoal91qohcApZIqKw5/NvaZmZmQCAkSNHNth20UUX1dunMQE+4D6R17jLeiCX+cqvM1Hx8Y8Na6o8xdzIdXhc29g1ezxuI8G1JIbmHlcUAVGE6HQBLhdElwg4XRCdTsAl1lnnPLOPCNHlqt3nzLN7nfQa55nXuOq8xuGEq8YKOJyNXFwbKRRQd0yEplMyNJ2Ta5+7tJd+VsYYPd5B9nVZDIYy72+is7Y/t3s51N4bp9OJrVu3SsuBfn2CXouIQT0QMagH3MM7iqIIR2EpLAeyYD2aB8epMjiKy2EvLoejuAyOonI4Syog2h1wVlTDWVEN69G8BseubEtgKiUEpQJQKCAoBEAQAIUCEFCb6CsE6RnCmX0Uwl/7KxSAIPy1rKidxlfaR6izvu4+Z15X7/gKBQQBdY7pXn/2PmfiDKCaWW3XDkj8x42sLfYxftZTuAmZmvns7GwAQKdOnRpsi46ORmxsLHJycpo8RkVFhS9CIwpYgVzmC19YDfv+bLnDCH1KBYQILQS9FooIbe3ymZ+FCE3DdToNFHrdmXUaKIwRUMQYoYiNrH2ONngcpM4GwAYnIHOZC+Qy728us0VaLq8oh8IeelPTuZWXl8Nut8sYTRtEKIEh3aEa0t3jlylRFOGqMMFVUgFnSQVcpVVwlVXBWVoJV6UZosX218NmP7Nsh2i1A9YzyzYbRGvtOtFiq70Z6OZwQjxz84/pUdsorhoCVUqi3GGEBX7WUziJjfX9DD8+T+arq2unL4qMjPS43Wg0orCwsMljREdH844phQVRFFFRURHQZV73n7mo+m63542eYm7kOjyubuyaPe/cyL7NP67H99jTru6aLKXiTC2TonZZqhU787N7nwbr6zwrhNrt7n3qPCsitFDotRD0umbP0x7sgqHM+5tLbUH+meWY6JiQm2derf6rbMfExPhlnnnZxMYCnTs2WN2aci+KIuBwwmWpTfBdVltty6G6LYRcZ1oSuVzSNtHlOmufM609zuzbYB/xrOO5l6XX1DlOg31cdWI4O66/XhdINJ3bI7pPD7nDCHn8rKdw469WKEHRGVIQBP7hU1gJ5DIf0bsLInp3kTsMCjGBXOb9re77EIrvS6hfX0u05PoFQQA0irC50UehKdz/5om8zeejpxiNRgBAVVWVx+3V1dWN1toTERERERERUUM+T+bdU8556hdfUVGBsrIyj/3piYiIiIiIiMgznyfzQ4cOBQD8+OOPDbb99NNPAIBhw4b5OgwiIqKgIehrBzYMVXq9Hnq9Xu4wiIiIgprPk/kLLrgAqamp+Pzzz3Hw4EFpfXV1NZYuXQqVSoXrr7/e12EQEREFBYVBh355m9Avb1PIDX4HAAaDASaTCSaTKbQHvyMiIvIxnw+Ap1Kp8MILL+Dee+/FLbfcgmuuuQZGoxFff/018vLy8NBDD6FLFw6mRURERERERNRcfhnNfsSIEfjggw+wcOFCfPHFF7Db7ejevTv+/ve/Y8KECf4IgYiIiIiIiChk+G1quv79+2PFihX+Oh0REVFQcllsyLnjRQBAp9X/hEKnkTki77JYLLjhhhsAABs2bIBOF3pdCYiIiPwhKOaZJyIiChtOF6q+2Skthxqn04ktW7ZIy0RERNQ6Ph8Aj4iIiIiIiIi8i8k8ERERERERUZBhMk9EREREREQUZJjMExEREREREQUZJvNEREREREREQYbJPBEREREREVGQEURRFOUOgoiIiIiIiIiajzXzREREREREREGGyTwRERERERFRkGEyT0RERERERBRkmMwTERERERERBRkm80RERERERERBhsk8ERERERERUZBR+fNkf/zxBxYtWoTffvsNdrsd3bt3xx133IFrr7222cdwuVz44IMPsHbtWuTk5ECv12P48OGYM2cOOnfu7LvgiVqpreV+165d+Pbbb5GZmYn8/HyYzWakpKTg0ksvxbRp0xAVFeXjKyBqGW981tdlt9sxefJkHDp0CF26dMGXX37p5YiJ2sZbZb66uhrvvvsuvv76a+Tm5kKtViM1NRWXXnopZs2a5aPoiVrHG+W+srISK1euxLfffou8vDxoNBp07NgR119/PaZMmQKtVuvDKyBqvk8++QS7d+/Gvn37cOTIEdjtdsybNw+TJk1q0XG8ncv6bZ75jIwM3HPPPVCr1Rg/fjwiIyPx9ddfIy8vD3PmzMH06dObdZx//etf+Oijj9C9e3eMHj0ap0+fxpYtW6DVavHf//4X3bt39/GVEDWfN8r9RRddhLKyMgwZMgS9evWCIAjIzMzEgQMHkJaWhv/+97+Ij4/3w9UQnZu3PuvrevPNN7Fq1SqYzWYm8xRwvFXmT548iTvuuAO5ubm48MIL0atXL9hsNpw4cQInT57EZ5995uMrIWo+b5T7yspKTJo0Cbm5uRgyZAgGDBgAm82Gbdu24cSJExgxYgRWrlwJhYINiUl+Y8eORX5+PmJjY6HX65Gfn9+qZN7ruazoB3a7XRw3bpzYt29fcf/+/dL6qqoqcfz48WLv3r3FrKyscx7nl19+EXv27CnecsstotVqldb//PPPYnp6unjrrbf6InyiVvFWuf/Pf/4jnjp1qt46l8slPvPMM2LPnj3FZ5991tuhE7WKt8p8Xfv27RN79+4tvvfee2LPnj3FK664wstRE7Wet8q8w+EQb7jhBrF///7iL7/84vE8RIHCW+V+2bJlYs+ePcWXXnqp3nqr1SrecMMNYs+ePcXMzExvh0/UKj/99JOYl5cnimLtd/OePXuKGzZsaNExfJHL+uVW144dO3DixAlcc8016N27t7TeaDRixowZcDgc2Lhx4zmPs27dOgDAQw89BI1GI62/4IILMHLkSOzcuRNZWVnevwCiVvBWub///vuRlJRUb50gCJgxYwYAYOfOnd4NnKiVvFXm3Ww2Gx5//HEMGDAAt912my9CJmoTb5X5r776Cnv37sXdd9+NESNGNNiuUvm1VyRRk7xV7nNzcwEAo0ePrrdeo9HgoosuAgCcPn3ai5ETtd6FF16IlJSUNh3DF7msX5L5zMxMAMDIkSMbbHP/sbr3aUpGRgb0ej0GDx7cYJv72ExsKFB4q9w3xv3lTqlUtvoYRN7k7TK/ePFi5OTk4MUXX4QgCN4JksiLvFXmt2zZAgC48sorUVBQgA8//BDLli3DF198AZPJ5MWIidrOW+W+R48eAIDt27fXW2+32/Hzzz9Dp9Nh0KBBbQ2XKGD4Ipf1y63e7OxsAECnTp0abIuOjkZsbCxycnKaPIbZbEZxcTF69uzpMXlxDxjgPheR3LxR7puyYcMGAH/94ySSmzfL/B9//IEVK1Zgzpw56NKlizfDJPIab5X5ffv2AQB2796NefPmwWazSdvi4uKwYMECDB8+3DtBE7WRt8r9lClT8Mknn+Ddd9/Fvn370LdvX9jtdmzfvh0VFRV4/fXX0a5dO2+HTyQLX+WyfqmZr66uBgBERkZ63G40GlFVVdXkMdzbjUZjo8eoey4iuXmj3Dfm4MGDWLJkCeLj43Hvvfe2OkYib/JWmbfZbHjiiSfQq1cv3H333V6NkcibvFXm3U2JX3jhBdxxxx3YunUrfvnlFzz11FOoqqrCzJkzUVRU5L3AidrAW+Vep9NhzZo1mDBhAjIzM/Huu+9izZo1UhN+T7WXRMHKV7ksh4ckCjK5ubmYNm0anE4n3njjDcTFxckdEpFXLViwADk5OXjppZfYjYTCgnhmYqExY8bgkUceQXJyMuLi4jB16lTceeedqKqqwvr162WOksi7SktLcdddd+H333/HsmXLsGvXLvz000947rnnsHHjRvztb39DRUWF3GESBTS/JPPuOw2N3aWrrq5u9O6em3t7Y3cr3Osbu9tB5G/eKPdny8/Pxx133IHS0lIsXLjQ40BJRHLxRpnfv38/Vq1ahenTpyM9Pd3rMRJ5k7c+593HGTt2bINtl1xyCYC/muITyc1b5f7ll1/Gr7/+ioULF2L06NGIjIxEQkIC/va3v2Hu3LnIzc3F6tWrvRo7kVx8lcv6JZl39wHw1H+moqICZWVlHvvd1KXX65GYmIj/397dvEL3xnEc//zyVJIs7CaipoaUNBllJTILJaGJhdiwoIg/wEpsEVIWVp6bYuMpK2rEhmwkIgszC1OsUB6m32+hM93TuPu5b5cxp96vOpvrms5cV33PaT5zHq5gMKhIJBLXbz1fYH0X8NNM1P2vgsGg2tvbFQ6HNT4+Hv2BByQLEzV/fn6uSCSiyclJuVyumE2Srq+v5XK5VF5ebnz8wJ8ydZ633guRnZ0d12e1PT8/f2GkgDmm6n5vb085OTkqKiqK67MuVpyenn5tsECS+K4sm5Aw7/F4JEmBQCCub39/X5JUUVHxv/upqKjQ09OTjo+P4/qsfVvfBfw0U3UvvQf5jo4OhcNhjY2Nqba21txAAUNM1HxBQYF8Pt+Hm/T+z7bP51NjY6PZwQN/wdR53goul5eXcX1W21eXRAJMMVX3Ly8venh4iHnho+X+/l6SYpbvAuzuO7JsQsJ8ZWWl8vLytL6+rrOzs2j7w8ODpqenlZqaqqampmj7/f29rq6uogeypaWlRdL785S/HvgHBwcKBALyeDy89RhJw1TdW0H+9vZWo6Oj8nq9CZsD8CdM1Lzb7dbIyMiHmyTl5uZqZGREg4ODiZsY8BumzvPNzc1KT0/X/Py8bm9vY/YzMzMjSaqrq/vm2QCfY6ru3W633t7eND09HdP+8vISbWMVB9hRIrPsP/9ab135ZoeHh+rq6lJaWprq6+uVlZWlnZ0dBYNBDQwMqKenJ/rZyclJTU1Nqbe3V319fTH7GRwclN/vl9PpVFVVle7u7rS5uamMjAwtLy/L6XQmYjrAp5io+5qaGoVCIZWVlX24pqukuOME+CmmzvUfcblcKiws1Pb29ndOAfgjpmp+bm5Ow8PDysnJkdfrVXp6unZ3dxUKhdTa2qqhoaFETw34LRN1f3Z2pra2Nj0+Pqq0tFRut1vPz88KBAK6ublRSUmJlpaWlJGR8RNTBGL4/X4dHR1Jki4uLnR6eiq32x19pKS2tjZ652wis2xC1pmX3m8hW1xc1MTEhLa2tvT6+iqn06n+/n41NDR8ej9DQ0NyuVxaWVnR3NycMjMzVV1dzVrESEom6j4UCkmSTk5OdHJy8uFnCPNIFqbO9YBdmKr59vZ2ORwOzc7OamNjQ5FIRE6nU93d3dGrOUCyMFH3xcXFWl1d1czMjA4PD7WwsKCUlBTl5+err69PnZ2dBHkkjaOjI62trcW0HR8fR2+Zdzgcn3oM1nSWTdiVeQAAAAAAYAbrzAMAAAAAYDOEeQAAAAAAbIYwDwAAAACAzRDmAQAAAACwGcI8AAAAAAA2Q5gHAAAAAMBmCPMAAAAAANgMYR4AAAAAAJshzAMAAAAAYDOEeQAAAAAAbIYwDwAAAACAzRDmAQAAAACwmf8AJOqExUDBf1IAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(10, 4))\n",
"az.plot_dist(paternity_inference.posterior[\"p_father\"], color=\"k\")\n",
"p_father_mean = paternity_inference.posterior[\"p_father\"].mean()\n",
"plt.axvline(\n",
" p_father_mean,\n",
" color=\"k\",\n",
" linestyle=\"--\",\n",
" label=f\"Without Measurement Error: {p_father_mean:1.2f}\",\n",
")\n",
"\n",
"az.plot_dist(paternity_measurement_inference.posterior[\"p_father\"])\n",
"p_father_mean = paternity_measurement_inference.posterior[\"p_father\"].mean()\n",
"plt.axvline(p_father_mean, linestyle=\"--\", label=f\"With Measurement Error: {p_father_mean:1.2f}\")\n",
"plt.xlim([0, 1])\n",
"plt.legend()\n",
"\n",
"plt.legend()\n",
"\n",
"print(\"Actual average paternity rate: \", PATERNITY[\"is_father\"].mean().round(2))\n",
"print(\"Measured average paternity rate: \", PATERNITY[\"is_father*\"].mean().round(2))"
]
},
{
"cell_type": "markdown",
"id": "2b3d595c-ca66-47d0-b4ef-4a8262b87258",
"metadata": {},
"source": [
"- Including measurment error, we're able to accurately recover the _actual_ average paternity rate.\n",
"- Without including the measurement error in the model, we recover the paternity rate observed in the presence of misclassification error.\n",
"- At least for with this simulated dataset, including measurment error gives us a much tigher posterior on the estimated paternity rate, when compared to not modeling the misclassification error in the model."
]
},
{
"cell_type": "markdown",
"id": "8ddee423-2126-4386-90de-b8a26613d37f",
"metadata": {},
"source": [
"## Measurement & Misclassification Horizons\n",
"\n",
"There are a number of problems and solutions related to modeling measurment error and misclassification\n",
"\n",
"- Item response theory (IRT)\n",
" - e.g. NJ wine judging example earlier\n",
"- Factor Analysis\n",
"- Hurdle models\n",
" - measurments need to cross a threshold before they are identifiable\n",
"- Occupancy models\n",
" - considering the existence of phenomena without detection\n",
" - big in applied ecology: just because a species isn't detected doesn't mean it isn't there"
]
},
{
"cell_type": "markdown",
"id": "9a1d7494-5445-4c65-b391-870f235a1805",
"metadata": {},
"source": [
"# BONUS: Floating Point Monsters\n",
"\n",
"- Working on log scale avoids (er, minimizes) issues associated with floating point arithmetic overflow (rounding to one) or underflow (rounding to zero)\n",
"- \"ancient weapons\": special functions for working log scale:\n",
" - `pm.logsumexp`: efficiently computes the log of the sum of exponentials of input elements.\n",
" - `pm.math.log1mexp`: calculates $\\log(1 - \\exp(-x))$\n",
" - `pm.log(1 - p)`\n",
"\n",
"### Logs make sense\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"P(X^*=0) &= (1-p)(1-f) \\\\\n",
"\\log P(X^*=0) & = \\log (1-p) + \\log (1-f) &\\text{put on log scale (used by HMC)}\n",
"\\end{align*}\n",
"$$\n",
"\n",
"### Devil's in the detail\n",
"\n",
"Some terms can become numerically unstable\n",
"\n",
"- e.g. if $p \\approx 0, \\log(1-p) \\approx \\log(1) = 0$\n",
"- e.g. if $p \\approx 1, \\log(1-p) \\approx \\log(0) = -\\infty$"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "0a794d91-6cae-4b85-a05a-a8d24454a5a1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p: 0.01 , log(1-p): -0.01005033585350145\n",
"p: 1e-10 , log(1-p): -1.000000082790371e-10\n",
"p: 1e-90 , log(1-p): 0.0\n"
]
}
],
"source": [
"for p in [1e-2, 1e-10, 1e-90]:\n",
" print(\"p:\", p, \", log(1-p):\", np.log(1 - p))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "6ff68523-8921-459b-9dff-348458492769",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"p: 0.01 , log1p(1-p): -0.010050335853501442\n",
"p: 1e-10 , log1p(1-p): -1.00000000005e-10\n",
"p: 1e-90 , log1p(1-p): -1e-90\n"
]
}
],
"source": [
"def log1m(x):\n",
" return np.log1p(-x)\n",
"\n",
"\n",
"for p in [1e-2, 1e-10, 1e-90]:\n",
" print(\"p:\", p, \", log1p(1-p):\", log1m(p))"
]
},
{
"cell_type": "markdown",
"id": "86118a97-d54f-4ca8-99c1-cea4abe193b4",
"metadata": {},
"source": [
"### `log1p` and Taylor series approximation for small $p$\n",
"\n",
"- when $p>e{-4}$, just calculate $\\log(1 + p)$\n",
"- when $p 1e-4:\n",
" return np.log(1 + x)\n",
" else:\n",
" # second order Taylor expansion\n",
" return x - x**2 / 2\n",
"\n",
"\n",
"# Compare results to numpy log1p\n",
"for p in [1e-3, 1e-10, 1e-90]:\n",
" print(\"p:\", p, \", numpy.log1p:\", np.log1p(p), \", my_log1p\", my_log1p(p))"
]
},
{
"cell_type": "markdown",
"id": "4eb0ae38-44b2-4469-a080-6f52afa25b60",
"metadata": {},
"source": [
"## `logsumexp`\n",
"\n",
"- Use when you need to take the sum of log of multiple terms.\n",
"- Want the log because it will be numerically stable\n",
"- But logs don't apply to sum, only products, e.g.\n",
"\n",
"$$\n",
"\\begin{align*}\n",
"P(X^*=1) &= p + (1-p)f \\\\\n",
"\\log P(X^*=1) &= \\log [p + (1-p)f] \\\\\n",
"\\log P(X^*=1) &= \\text{pm.math.logsumexp}([\\text{pm.math.log}(p), \\text{pm.math.log}(1-p) + \\text{pm.math.log}(f))]) \\\\\n",
"\\log P(X^*=1) &= \\text{pm.math.logsumexp}([\\text{pm.math.log}(p), \\text{log1m}(p)) + \\text{pm.math.log}(f))])\n",
"\\end{align*}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"id": "a6917cfe-6350-4cb4-9889-31f04a68f5ae",
"metadata": {},
"source": [
"## Previous Paternity measurement model with log-scaling tricks"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "09f90af0-43d3-454d-8fad-3cac68d6093f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(-2.9957323, dtype=float32)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p_father = 0.5\n",
"# pm.math.logsumexp((pm.math.log(p_father), log1m(p_father) + )).eval()\n",
"pm.math.log(FALSE_POSITIVE_RATE).astype(\"float32\").eval()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "2f50eb61-e351-490f-bbfa-5265256be901",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Initializing NUTS using jitter+adapt_diag...\n",
"Multiprocess sampling (4 chains in 4 jobs)\n",
"NUTS: [beta_M, beta_T, alpha, T, M]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "60a00c90ff1542a7a79928cb023a0396",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" \n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 7 seconds.\n"
]
}
],
"source": [
"MOM_ID = PATERNITY.mother_id\n",
"\n",
"with pm.Model() as paternity_measurement_lse_model:\n",
"\n",
" beta_M = pm.TruncatedNormal(\"beta_M\", 0, 1, lower=0.01)\n",
" beta_T = pm.TruncatedNormal(\"beta_T\", 0, 1, lower=0.01)\n",
"\n",
" alpha = pm.Normal(\"alpha\", 0, 1.5)\n",
" T = pm.Normal(\"T\", 0, 1, shape=N_DYADS) # Relationship strength\n",
" M = pm.Normal(\"M\", 0, 1, shape=N_MOTHERS) # Mother traits\n",
"\n",
" p = pm.Deterministic(\"p\", pm.math.invlogit(alpha + M[MOM_ID] * beta_M + T[DYAD_ID] * beta_T))\n",
" f = FALSE_POSITIVE_RATE\n",
"\n",
" # # For reference: the original custom logp with vanilla parameterization\n",
" # custom_log_p_x1 = pm.math.log(p + (1 - p) * f)\n",
" # custom_log_p_x0 = pm.math.log((1 - p) * (1 - f))\n",
"\n",
" # Custom logp using log-space reparameterization\n",
" custom_log_p_x1 = pm.math.logsumexp(\n",
" [pm.math.log(p), pt.math.log1p(-p) + pm.math.log(f)], axis=0\n",
" ) # this line is problematic\n",
" # First compute (1-p)*f in log space, then combine with p\n",
" custom_log_p_x0 = pt.math.log1p(-p) + pt.math.log1p(-f)\n",
"\n",
" pm.Potential(\"X*=1\", custom_log_p_x1)\n",
" pm.Potential(\"X*=0\", custom_log_p_x0)\n",
"\n",
" paternity_measurement_lse_inference = pm.sample(target_accept=0.95)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "b80acb5c-1af8-4906-8d0f-50dea153969a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo2JJREFUeJzs3Xd4k9XbB/BvkqZ7pLuljEKhZe9SQJYVWQ6GIPxUcLFkqCAqIMpQKS4UGbKU9SKyZSoKMlRkg8hebYGW7qa7zXreP9KEpk13Vun3c11eljxPzrmTnKZ3Ts5zbpEgCAKIiIiIiMjkxNYOgIiIiIjoUcVkm4iIiIjITJhsExERERGZCZNtIiIiIiIzYbJNRERERGQmTLaJiIiIiMyEyTYRERERkZkw2SYiIiIiMhMm20REREREZsJkm6iGGDlyJMLCwnDy5MkSx/Ly8vDZZ58hMjISLVq0QFhYGKZPn64/np6ejlmzZqF79+5o1qwZwsLCsHjxYkuGT2QxJ0+eRFhYGEaOHGntUEoVGRmJsLAw3L9/39qhEJGZ2Vk7AKLaIDIyEnFxcfp/i0QiODs7w83NDY0aNULr1q3xzDPPoHHjxlVqf9asWdi7dy+cnJzQtGlT2NvbIzg4WH98woQJOHfuHNzc3NCyZUvY2dkhMDCwug/LpuzYsQNxcXEYPHgw6tatW+n7F3+NAMDBwQF+fn4IDw/Ha6+9hiZNmpgq3Efe2rVrkZWVhZdffhnu7u7WDseiDh48iKtXr6J3795o1qyZtcMhIitjsk1kQcHBwfDy8gIAFBQUQC6X4/jx4zh+/DiWL1+Ovn37Yu7cufD09Cxx38DAQDRs2BBOTk4Gt2dkZGD//v1wcnLCL7/8UiKJvnbtGs6dOwd/f3/s27cPbm5u5nuAVrRz506cOnUKnTp1qlKyrVP0NcrKykJMTAx27NiBvXv3YtGiRYiMjDRVyI+09evX6z/8WDrZdnJyQsOGDa32gfLgwYPYuXMngoKCSk2269WrB3t7e0ilUgtHR0SWxmSbyILGjRuHIUOGGNyWlpaGPXv24LvvvsOBAwdw8+ZNbNmypURS/PnnnxttMzY2FhqNBk2aNDGaXNy5cwcA0L59+0c20Tal4q9RSkoK3n33XRw/fhwzZszAH3/8ARcXFytGSOVp3bo1fv31V2uHUaZ169ZZOwQishCu2SayMi8vL7z88svYvn07fH19cefOHcyfP7/C98/PzwcAODo6Gj1eUFBQ5nEqm4+PDz7//HPY29vrv4kgIiKqKJEgCIK1gyB61OnWA0dFRZWY2S7q4MGDmDhxIuzs7HDw4EGDmeqRI0fi1KlTWL9+PSIiInD//n088cQTpbYVFRWFGTNmlHr8+vXr+p8FQcD+/fuxbds2XLlyBTk5OfD398fjjz+OcePGwdfX1+C+J0+exKhRo9CpUyesWbMGa9aswe7du3H37l14e3vjjz/+0J97+/ZtrF69GidPnkRSUhJcXFzQpk0bvPrqq+jSpUupz9WhQ4eQkpKCJUuW4N9//4VSqUTz5s0xefJkg/vpYinreSjrOS/eb2nnP/PMM7hx4wamTZuGMWPGIDk5Gb/++iuOHDmC6OhoJCcnw9HREWFhYRg6dCgGDRpUog3daxYUFIQ//vgDW7ZswebNm3Hnzh3k5ubqX5N79+7hl19+wZ9//om7d+8iNTUVrq6uaNGiBUaOHIlevXqVaLvoa7J27Vp8//332LlzJ+Li4uDj44PBgwfjjTfegJ2dHfLz87F8+XLs27cPCQkJ8Pf3x/DhwzF69GiIRCKjz8/FixexZs0anDlzBunp6XB3d0fHjh0xfvx4NG/eXH/ejh07yhx3uvGrI5fLsWbNGhw6dAj379+HSCRCkyZNMHToUAwdOhRiseGc0PTp07Fz505ERUUhPDwcS5cuxd9//43U1FS88cYbmDx5ssFzsWHDhhKvcVkGDx6MBQsWAADUajUOHz6MQ4cO4eLFi0hISIBKpUKdOnXw+OOPY/To0folRwDK/Z2cNGkSJk+ebBDLoUOHSix7UiqV+Omnn7Br1y7cuXMHGo0G9evXR//+/fHKK6+UWEpWfFzt2rUL69atw+3bt+Hg4IDOnTvj3XffRb169UrEdOPGDaxYsQJnzpxBamoqHB0d4eXlhVatWmHgwIHo0aNHmc8XEZWPy0iIbEhkZCT8/PyQlJSEv/76C8OGDSv1XAcHB7Rv3x7Z2dm4ceMGXF1dERoaqj/esGFDtG/fHmlpaYiJiYG3tzcaNGhQoh2lUolp06bpv3b38/NDQEAAYmNjsWHDBvz666/YsGEDGjZsWOK+giBg4sSJOHLkCOrXr4+QkBAoFAr98f379+O9996DUqmEi4sLGjdujJSUFBw9ehTHjh3DBx98UOqOEUeOHMGCBQvg4uKCevXq4e7duzh79ixGjx6NH374QZ+wubm5oX379rhx4ways7MRGhoKV1dXfTve3t7lPOsVU3xeYuvWrVi0aBEcHR3h5+eH0NBQpKWl4fTp0zh9+jTOnz+PuXPnltre7Nmz8dNPPyEwMBCNGjXC3bt39ceWL1+Obdu2wdnZGX5+fggLC0NiYiL++usv/PXXX3jnnXcwduzYUtueMmUKDhw4gJCQENSpUwcxMTFYsmQJ4uPjMWfOHIwaNQqXLl1C48aN4evri3v37uHLL79EXl4e3nzzzRLtrV27FgsWLIAgCJDJZGjSpAni4+Nx4MAB/PHHH1i4cCH69OkDQPt8t2/fHpcuXYJCoUDLli1hb2+vb6voUqabN2/i9ddfR2JiIqRSKRo0aACFQoGLFy/i33//xV9//YVFixYZ/QAQHR2NqKgo5Ofno0mTJnB1dS31g4JOy5Yt4e/vb/TYrVu3kJmZaXBbcnIyJk6cCLFYrP/9ycvLQ1xcHL7//nv8+uuv2LJlC3x8fAA8/J2MjY1Famqqwfp/ABVaQ56fn49x48bhxIkTAICQkBDY2dnh5s2buH79Og4cOIA1a9YYva4DAL766iusXLkSQUFBCA4Oxp07d3DgwAGcO3cOu3fvNojn4sWLGDlyJPLz8+Hm5oaQkBBoNBo8ePAAe/fuRV5eHpNtIlMQiMjsHn/8cSE0NFTYvn17uedOnjxZCA0NFT788EOD21966SUhNDRUOHHihMHtJ06cEEJDQ4WXXnrJaHvbt28XQkNDhffff9/o8S+//FIIDQ0VBg0aJFy5ckV/e15enjBnzhwhNDRUGDJkiNE+mzVrJnTp0kU4d+6c/lh+fr4gCIJw9epVoWXLlkKrVq2EzZs3C2q1Wn/OoUOHhPbt2wvNmjUTrl69atC27rlq0aKFsGLFCkGlUgmCIAgKhUJ45513hNDQUGHYsGElHkdpz09FlfUaJSUlCS1bthRCQ0OFAwcOCIIgCKdPnxb++ecffXw6V69eFfr37y+EhoYKJ0+eNDh27949/fPWtm1b4eDBg/pjeXl5+p+PHDkiXLhwQdBoNAb3P336tPDYY48JzZo1E2JjYw2O6V6TFi1aCD169DB4LU+ePCm0aNFCCAsLE8aPHy88/fTTwt27d/XHd+/eLYSGhgotW7YU5HK5QbtHjx4VwsLChIiICP1j19myZYvQvHlzoV27dkJiYqLR5/PevXslnk9BEIScnByhd+/eQmhoqPDxxx8LWVlZ+mM3b94UnnrqKSE0NFT4v//7P4P7vf/++/rncPz48UJ6err+mG7slfc7Udzp06eFFi1aCC1atBBOnz6tvz0zM1PYsWOHQR+CIAgZGRnCvHnzhNDQUGH69Okl2tPFWNbve2nPz4IFC4TQ0FChW7duwqVLl/S3x8TECP369RNCQ0OFt956y+A+unHVvHlzoX379sKRI0f0x5KSkoRnnnlGCA0NFb744guD+40bN04IDQ0VFi5cKBQUFBgcu3jxorB79+5S4yeiiuOabSIbExAQAEB74aS5paWlYe3atXB1dcV3331nsHOCo6MjPvzwQ7Rq1QqXLl3CmTNnStxfrVZjzpw5aNeunf42BwcHAMDSpUuhUCgwbdo0PP/88wbLASIjIzFlyhSo1WqsX7/eaGzdunXD2LFjIZFIAABSqRQzZ86Evb09/v33X2RkZJjkOShPamoq3nvvPSgUCnh4eKBr164AgI4dO6Jz5876+HSaNm2KDz/8EACwZ88eo22q1Wq8+eabBksOiq6p79mzJ9q0aVNiprZjx4546623oFarsX//fqNtK5VKfPjhhwavZadOndC3b18IgoDDhw/js88+M1hS8Mwzz6Bt27ZQKBQ4deqUQXvffPMNBEHAp59+qp+91hk2bBhGjRqFnJwcbN261Wg8pdm+fTvu3r2LJ598ErNmzTL4NqJx48b48ssvIRKJsGbNGqP39/LywldffQWZTKa/TTf2KiM+Ph6TJ0+GUqnErFmz0LFjR/0xNzc3DB482KAPAHB3d8eHH36IwMBA/PLLL1CpVJXu15js7Gxs2rQJgPabjxYtWuiPNWjQAJ999hkA4NdffzX4JkRHpVJh0qRJ6Nmzp/42X19fvP322wCAY8eOGZwfExMDABgzZozBtw8A0KpVKzzzzDPVfkxExGUkRDZHtx4zJyfH7H0dPXoUCoUCkZGR+iS/KLFYjF69euG///7DqVOnDBIRQJuMGFujqlAocPToUUgkklLXS0dGRuLjjz/G6dOnjR43toTGy8sLQUFBiI6Oxr179+Dh4VGRh1kpK1as0CeOuq3/lEolpFIpPv74Y4OkMDs7G/v378fZs2eRnJyM/Px8CIKgX0pz7dq1UvsZOHBgmXHodqm5ePEiUlNT9Re6Zmdnl9m2TCZD7969S9zetGlT7N27F82bNzdYY63TrFkzXLhwAffu3dPfFhcXh8uXL8Pb27vUtciRkZH44YcfSn0dS/Pbb78BMP466+INCgrCvXv3kJCQUGJ89unTB87OzpXqs7i8vDxMnDgRaWlp+N///ocRI0YYPe+ff/7B4cOHERMTg5ycHGg0GgDa8ZGXl4fY2FiEhIRUKxYAOHv2LPLy8lCnTh2jz3fr1q3Rrl07nD9/Hn///Tfq169f4pyhQ4eWuK1Vq1YAYPDaAtplLdHR0fjll1/KXLJGRNXDZJvIxuTm5gKAQVJnLjdu3AAA/Pvvv/jf//5n9JzU1FQAQGJiYoljDRo0KDGzC2hnzAoKCiCVSjFmzBij7QqFa6CNtQvAaCIBaNcER0dH658nU4uJidHP+EmlUvj6+qJjx4547bXXDGaLr1y5gnHjxiEpKanUtkqbfff09DRYO1vcX3/9hbfffhtZWVmVbtvYRXAA9P2Vd7zo86obHwUFBaWOD92HgNJex9Lo2l60aBGWL19u9Jz09HR928WTbVMktx988AGuXLmC8PBwfPDBByWOKxQKTJkyBQcPHiyzHblcXu1YAO06dABo1KhRqevPGzdujPPnz+vHaFGenp5Gt/fUXbdQ/Hfm5ZdfxvHjxzFr1iz88MMP6NatGzp06ICIiIhS14QTUeUx2SayMQ8ePACAMpMxU9Elcw8ePND3WxpdUlVUaTOLunaVSiXOnTtX6XYBlNhxQUe3HEUw00ZKFdm9RK1W4+2330ZSUhJ69uyJMWPGoHHjxnB3d4dEIkFsbCz69OlT6vKCsmZkMzMzMXXqVGRlZWHQoEF44YUX0LBhQ7i6ukIsFuP48eN49dVXS227tOdNl7yVd7zo86p7HbOzs6v8OpZGN0N/+fLlcs/VbW9ZVGmPo6JWrFiBffv2oU6dOvj222+NFpdZuXIlDh48CF9fX0ybNg3h4eHw9fXVL7n43//+h3PnzplsGYkuGS7rd1+XOBv75qu0cVV8RxedXr16YeXKlfjuu+/w77//4s6dO1i/fj3s7OzQu3dvzJw5s9QLSomo4phsE9kQjUaDCxcuANB+ZWxuuj/O48ePx5QpU0zWrq7oi7+/f4l1oo+CixcvIjY2FkFBQViyZEmJ9a7lfXApy7Fjx5CRkYF27dphwYIFJWY4q9N2ZenGR/v27fVriU3ZdmZmJn777Teju+SY09GjR/HNN9/AyckJy5YtKzW51a25j4qKQvfu3UscT0hIMGlcuue7rOs1dN80maqwUs+ePdGzZ0/I5XKcOXMGJ06cwN69e/Xrwrds2cIql0TVxAskiWzIwYMHkZycDKlUim7dupm9v8aNGwPQbsFmSg0aNIBUKkVycrLJvmK3Jbq9mlu0aFEi0QbKXqtd0bbbtm1rdClBddquLN340O31bEq6ZSCmHnvluXPnDt555x1oNBrMnz+/1HLqwMPXougFwDrp6emlLp0pbwvC0ui217x9+3ap39zcunULABAcHFylPkqjW+s/a9Ys7N27F25ubrhy5QouXbpk0n6IaiMm20Q2Ii4uDvPmzQOgvXjOEl/f9uzZE1KpFMeOHTO6BrSqnJyc0K1bN2g0GoOiIuak283D2JIDc/WVkpJS4phSqSx1h5WK0O2oYazt9PR0bNu2rcptV1ZwcDBCQ0Mhl8vx888/V+q+uueotOUlup1N1q9fb7YlQcVlZWVhwoQJyMrKwvjx4zFgwIAyz9c9Bt1sclFr1qyBWq02ej/da1jZsdihQwc4OTnhwYMHOHToUInj//33H86fPw+RSITHHnusUm1Xho+Pj77QTlnXJBBRxTDZJrKytLQ0rF+/Hs899xySk5PRuHHjMivwmZK/vz9efvllKJVKvP766zh58qTBcUEQcPHiRcyePbvETgbleeutt2Bvb4/vvvsOK1euLJF4JCUlYd26dSZbnqC78K+yu2JURZs2bWBnZ4dz584ZJKFZWVmYNm2a0US5onQ7vvz6668GpeGTkpLw5ptvlprgmcu0adMgEokwb948bN26tcT65Hv37uG7777T7y6io3s9im8lqDN8+HDUq1cPJ0+exLRp00okdTk5Odi/fz+ioqJM8jg0Gg3eeecdREdH4/HHH8dbb71V7n06dOgAAFiwYIF+jbQgCPj555/xww8/lLrVoO6xnzlzplIfJFxdXfUXos6bNw9XrlzRH7t79y6mT58OAOjfv3+pFxBXxpQpU3DkyBGDQlSAduzduHEDIpGoxM41kZGRCAsLw44dO6rdP1FtwTXbRBZUdFs5hUKB9PR0g/LR/fr1w9y5cy2yE4nOlClTkJSUhN27d2PUqFHw9fVFYGAgFAoF7t27p08yyiqJbkyzZs2wcOFCvPvuu/jqq6+wZMkSNGrUSL+8RLf2uLTdSiprwIAB2LhxI1atWoXff/8dvr6+EIlEGDNmjMmr4Pn6+mLUqFH44Ycf8P7772PRokXw9PTE7du3oVar8cEHH2DOnDlVartly5bo27cvDhw4gFdffRUNGjSAs7Mzbt68CQcHB7zzzjuYP3++SR9PWXr27IkPP/wQn376KWbNmoWoqCgEBwdDJBIhISFB/8Gi+OPt378/jhw5gjlz5uDHH3/U71U9c+ZMNGvWDC4uLlixYgXGjh2LvXv3Yv/+/foLQTMyMnDv3j2o1Wq0adPGJI8jPj4eR48eBaBd9/7iiy+W+njHjx8PAJg8eTKOHz+OP/74Az169ECDBg2QnJyMpKQkDBw4EA8ePDD6YeLJJ5/E119/jX379uHChQsIDAyEWCzG4MGDy7349q233sLly5dx8uRJDB48GI0bN9ZXkFSr1WjatCk++uijaj4bWn/++Sf2798Pe3t7BAcHw8HBAQkJCUhOTgYATJgwodTda4io4phsE1lQ0W3lnJ2d4e7ujq5du6J169Z49tlnTbKdWWXZ2dnhiy++wNNPP40tW7bg33//xdWrV+Hu7o7g4GC0a9cOffv2NVquvTxPPvkk9u3bh7Vr1+Kvv/5CdHQ0xGIx/P398eSTT6J3796IjIw0yePo2LEjvvrqK6xbtw63bt3SP8+DBw82SfvFvffeewgICMBPP/2Ee/fuIS8vD126dMEbb7xR7RLxX375JUJCQrBr1y7Ex8dDJpOhb9++mDRpkj4RsqQXX3wR4eHhWL9+PU6cOIFbt27B3t4eAQEB6Ny5M5588kmDQioAMGjQIGRmZmLbtm2IjY3Vb/VXtCS67jH++OOPOHjwIG7fvo179+7B19cX4eHh6NmzZ4lCOqZQ1rr3ohdrtmzZEhs3bsQ333yD8+fPIzo6Gg0aNMDYsWPx0ksvlfoBtH79+li+fDlWrFiBK1euID4+HoIgoFOnTuXG5ujoiO+//x6bNm3Crl279OvlQ0JCMGDAALzyyivV3olFZ8GCBTh27BjOnz+PpKQk5ObmIiAgAE8++SRefvllhIeHG5yvVqv12zE2bdrUJDEQ1QYiwVKL5YiIiKjGunz5MoYMGYKIiIhqXZdAVNtwzTYRERGVS7fX+muvvWblSIhqFibbREREVK7z58+jUaNGJZYMEVHZuIyEiIiIiMhMOLNNRERERGQmTLaJiIiIiMyEyTYRERERkZkw2SYiIiIiMhMm20REREREZsJkm4hqlZEjRyIsLAwnT56s1TEQEBYWhrCwMGuHQUSPOJZrJyKTiIyMRFxcXLnnRUVFYciQIRaIiMqzdu1aZGVl4eWXX4a7u7u1w7EZO3bsQFxcHAYPHoy6detaOxwiquGYbBORSQUHB8PLy6vU497e3haMpqTAwEA0bNgQTk5OVo3DFqxfv16fVDLZfmjnzp04deoUOnXqxGSbiKqNyTYRmdS4ceNseub6888/t3YIRERUi3DNNhERERGRmTDZJiKri4uLw7Rp09ClSxe0adMGzzzzDDZu3AhBEBAZGYmwsDDcv3/f4D7lXdxW2v2MXZw4ZMgQhIWF4ddffy21vQ0bNiAsLAyTJk3S35afn4+9e/diypQp6Nu3L9q1a4d27dph4MCBWLZsGXJzcyv7VAAALl68iClTpqB79+5o2bIlunbtijfffBNXrlwxen7R5+Lo0aN48cUX0a5dO3To0AGjR48ucb8dO3YgLCxMv8b+iSee0LdR0Qs379+/j7CwMERGRgIAtmzZgueeew7t2rUr8bokJCTgk08+Qd++fdG6dWt07NgRI0eOLPX5zs3NxZIlS/DMM8+gbdu2aNWqFXr27ImRI0di5cqVUCqV+nNPnjyJsLAwjBw5skJxlkXX1qlTpwAAo0aNMnheduzYoT/3xo0beOedd9CzZ0+0bNkSHTt2RJ8+ffDOO+/g2LFj5fZFRLUHl5EQkVXdvn0bL7zwAuRyORwcHNC4cWOkp6dj3rx5uHXrlkVieOaZZ3D58mXs27cP/fr1M3rOvn37AABPPfWU/rZLly7hnXfegZ2dHXx8fNCoUSNkZ2fj1q1buHbtGg4ePIgff/wRjo6OFY5l7dq1WLBgAQRBgEwmQ5MmTRAfH48DBw7gjz/+wMKFC9GnTx+j9920aRPmzp0LHx8fNGzYENHR0fjzzz9x9uxZbNu2DSEhIQC06+bbt2+PS5cuQaFQoGXLlrC3t9e34+bmVuF4AWD27Nn46aefEBgYiEaNGuHu3bv6Y6dOncKECROQlZUFR0dHNGjQAFlZWTh16hROnTqF1157De+//77+fJVKhVdffRUXLlyAWCxGgwYN4OLigqSkJJw5cwanTp3CiBEjIJVKKxVjRbi5uaF9+/a4ceMGsrOzERoaCldXV/1x3fUGFy9exMiRI5Gfnw83NzeEhIRAo9HgwYMH2Lt3L/Ly8tCjRw+Tx0dENROTbSKyGkEQ8O6770Iul6Nbt2746quvIJPJAGiT2/fffx+CIJg9jgEDBuDzzz/H0aNHkZ2dbZBgAdrZ0QsXLsDFxQWPP/64/vbAwEB888036NGjB1xcXPS3Jycn4+OPP8aBAwewevVqg9nwshw7dgwLFiyATCbDvHnzDJLqrVu3Ys6cOZg+fTratm0LPz+/Evf/7LPPMH/+fP2a+ezsbEyaNAn//PMPlixZgq+//hoA0LNnT/Ts2VO/g8yiRYuqfCFgQkICdu/ejWXLluGJJ54AoJ3xB4DExERMnjwZ2dnZmDp1Kl599VV9Un/u3Dm8/fbb+OGHH9CpUyf983ro0CFcuHABTZs2xYoVKxAQEKDvKy0tDXv27DFLog0AzZs3x6ZNmzBy5EicOnUKs2bNQkRERInzli1bhvz8fIwfPx4TJ040+KDy33//ISYmxizxEVHNxGUkRGRSM2bMMPjqvfh/mZmZ+nNPnDiBy5cvw9HREV988YU+0Qa0M8gjRoyASqUye8z+/v4IDw9HQUEBfv/99xLH9+/fD0EQ0Lt3b4NZ6qCgIPTv398g0QYAX19ffP7555BKpdizZ0+F4/jmm28gCAI+/fTTErPXw4YNw6hRo5CTk4OtW7cavf/QoUMNLk51dXXFjBkzAAB//vlnheOoDLVajTfffFOfaAPQP0dr1qyBXC7Hyy+/jHHjxhkkpe3bt8fcuXMBaGfzdWJjYwEAzz33nEGiDQBeXl54+eWXrb6TjC6ZHjNmjMFjAoBWrVrhmWeesUJURGSrOLNNRCZV3tZ/EolE/7MuAezXr5/R+7zwwgvYsGGD6YM04plnnsHJkyexd+9eDB482ODY3r17AQBPP/10iftpNBr88ccf+Pvvv3Hv3j3k5ubqZ+NFIhFiYmKQl5dXboIYFxeHy5cvw9vb2yBxLSoyMhI//PADTp8+bfT40KFDS9wWFhYGBwcHZGVlIT09HZ6enmXGURUDBw40evtvv/0GQPtBwZju3btDKpXi/PnzUKlUsLOz0yfYR48exbBhw6yeWBsTGBiI6Oho/PLLL6U+NiIiHSbbRGRSldn6TzdDqFtLXFxwcDDs7OwsMrvdt29fzJ07FydOnEBaWpo++b916xauX78OLy8vdO3a1eA+mZmZGDt2LM6fP19m25mZmeUmjTdu3AAAFBQU4H//+5/RcwoKCgBol2cYU79+faO3e3l54cGDB8jNzTV5su3p6Wn0g1JOTo7+AswPP/ywzDYKCgogl8vh4+OD3r17IygoCH/99Re6d++O7t27o2PHjujUqROaNGli0tir6uWXX8bx48cxa9Ys/PDDD+jWrRs6dOiAiIgIs3yYIaKajck2EVmNbreO0hIUsVgMT09PJCcnmz0Wd3d39OjRA4cOHcIvv/yCF198EcDDWe1+/frBzs7wLTMqKgrnz59Hw4YNMXXqVLRp0waenp76pQU9evRAYmKiwe4ZpcnKygKgXWd97ty5Ms/VJd3FOTs7G71dLNauGDTH+vfS+szOztb/XN7jAR6u83Z2dsaPP/6IRYsW4cCBA9i/fz/2798PAGjcuDGmTZtmsG7eGnr16oWVK1fiu+++w7///os7d+5g/fr1sLOzQ+/evTFz5kz4+/tbNUYish1MtonIanSJWnp6utHjGo0Gcrm8zDYEQYBIJCpxe1W23Xv66adx6NAh7Nu3T59s6xK9oruQANpdM3Rb1y1btgyNGjUqcTwlJaXCfeuei/bt22PTpk2Vjt3WFE3CL126VKmLGgMCAhAVFYWPP/4Yly9fxsmTJ3HgwAFcunQJEydOxKZNm9CmTRsA0L/2pX2QyMvLq8ajKJ3uIlO5XI4zZ87gxIkT2Lt3L3799VfcvXsXW7ZsMduFnERUs/ACSSKymuDgYADAnTt3jB6PjY0tdVZYl8ylpaWVOKZbn1xZkZGRcHZ2xrlz5xAfH4+LFy8iNjYWderUQYcOHQzOTUtLQ25uLmQyWYlEGwBu3rwJtVpd4b4bN24MQPtcaDSaSsdua9zc3PQ7plR1C0c7Ozu0adMGY8eOxfbt2/HUU09BrVZj+/bt+nN0y3OMjQPg4QWX5iKTydC7d2/MmjULe/fuhZubG65cuYJLly6ZtV8iqjmYbBOR1XTr1g0A8OuvvxpNjn/88cdS76vbqu6///4rcay03TrK4+joiN69e0MQBOzbt0+/hGTAgAElZs91O25kZ2frl0AUtXr16kr1HRwcjNDQUMjlcvz8889Vir+ydI+htGUp1aXbUWXdunUmaU83m52UlKS/rV69egCAe/fuGR1D27Ztq3Q/uufF2OtaFh8fH/24LBojEdVuTLaJyGq6dOmC5s2bIy8vD++99x4yMjL0x/bv349NmzaVWCetoysa8s033xgs1zh27BiWLl1a6v3Ko9txZM+ePfjll18AwOhWbu7u7mjSpAlUKhXmz58PhUIBQLsV3sqVK7F///5KLyOYNm0aRCIR5s2bh61bt5a4MPTevXv47rvv9Lt8VJcuUdVVTDS1MWPGQCaTYefOnYiKijLY9hEA5HI5tm3bhmXLlulvW7t2LdauXVtiCU58fLw+cW7evLn+dplMhtatW0OhUGDBggX6b0J0r8Nff/1V6bh1z0tpu75MmTIFR44c0b/mOr/++itu3LgBkUhkECMR1W5cs01EJrVixYoyZ5b79++PUaNGAdCut/3888/x0ksv4dixY+jRo4e+gmRcXBxeeOEFHD16VL+rRVGvv/46du3ahatXr+Lxxx9HSEgIMjMzERcXh7Fjx2Lfvn1G71eexx57DF5eXrh+/ToA7U4pTZs2NXru1KlTMWHCBGzevBkHDhxA3bp1ERcXh/T0dEyYMAG7du2qVAw9e/bEhx9+iE8//RSzZs1CVFQUgoODIRKJkJCQoE9A58yZU+nHZUz//v1x5MgRzJkzBz/++KN+n/OZM2eiWbNm1W4/ICAAy5Ytw8SJE7F27Vps3LgRDRs2hJOTE9LS0nD//n0IgoABAwbo7xMXF4f169cjKioKQUFB8Pb2RnZ2NmJjY6FWqxEaGopXX33VoJ9p06bhtddew88//4w//vgD9evXx/3795GdnY0ZM2bg448/rlTcAwYMwMaNG7Fq1Sr8/vvv8PX1hUgkwpgxY9CjRw/8+eef2L9/P+zt7REcHAwHBwckJCToL+SdMGGCPmEnImKyTUQmFRMTU2YFvZYtWxr8u0mTJti2bRu++eYb/PXXX7h58yYaNGiADz/8EC+++GKpe057eXlh06ZN+PLLL/HPP/8gOjoajRo1wqRJkzBkyBB9efXKsrOzQ79+/fRLWIztra0TGRmJVatWYenSpbh69Sqio6PRpEkTzJw5E88++yx27dpV6f5ffPFFhIeHY/369Thx4gRu3boFe3t7BAQEoHPnznjyySfRs2fPKj224gYNGoTMzExs27YNsbGx+u0Hi89AV0eHDh2wf/9+rFu3DkeOHMHdu3eh0Wjg7++P7t274/HHHzco4DNixAh4eHjgxIkTuHv3Lq5evQoPDw99sZihQ4caFBYCgIiICKxevRqLFy/GlStXEBMTgzZt2mDixInw9/evdLLdsWNHfPXVV1i3bh1u3bqlH8+6/dcXLFiAY8eO4fz580hKSkJubi4CAgLw5JNP4uWXX0Z4eHj1njQieqSIBEvUQiYiqiJdSfFDhw5VuaQ4ERGRtXDNNhERERGRmTDZJiIiIiIyEybbRERERERmwmSbiIiIiMhMeIEkEREREZGZcGabiIiIiMhMbD7Zlsvl4OQ76QiCwDFBBmr6mFCr1bh4OhYXT2uLtpBp1PRxQabHMUHFWWos2HxRG/5SUHEcE1RcTR4TeVkK9P9bAgC43kQBV5mTlSN6dNTkcUHmwTFB1mDzM9tERERERDUVk20iIiIiIjNhsk1EREREZCZMtomIiIiIzITJNhERERGRmTDZJiIiIiIyE5vf+o+I6FFm5yDBS3nRhT/7WS0OtVoNpVJptf5NTRAEKBQK5OfnQyQSWTscsgEcE7WHnZ0dJBKJzbzONl+uPT09HTKZzGaeMLIuXVECjgnS4ZioHkEQkJCQALlcbu1QTE6j0UAs5he49BDHRO0hkUjg5+cHDw+PUv82CIJgkb8bnNkmIqrFdIm2n58fnJ2dH5kPLIIgQK1W29TsFlkXx0TtIAgCVCoVMjMz8eDBA+Tl5SEwMNCqMTHZJiKyIrVajdgbyQCABqG+kEgkFu1bl2h7e3tbrF9LYGJFxXFM1C5ubm5wcHBASkoK/Pz8LPreWhy/SyEisqK8LAW6H1Ch+wEV8rIUFu1bt0bb2dnZov0SEVmCi4sLBEGw+vUoTLaJiGo5zvIR0aPIVt7bmGwTEREREZkJk20iIiIiIjOpdLK9a9cufPTRRxgyZAhatmyJsLAw7Nixo0L3vXfvHtq1a4ewsDB89NFHlQ6WiIioPBMnTkSbNm2QmZlZ6jnvvPMOWrRogZSUFJP3v3jxYoSFhRncNnLkSIwcOdLgtrCwMCxevNjk/ddWt27dwuLFi3H//n2ztG/sdTWlPXv2YO3atUaP2eJYuXfvHiZNmoSOHTuiXbt2ePXVV3H58uVKtyMIAl588UWEhYVh3rx5Bsd27NiBsLCwUv9buXKlqR6OWVV6N5JFixYhLi4Onp6e8PPzQ1xcXIXuJwgCZs6cWekAiYhqi9cOZGBOpATNfe2tHUqNNnToUBw8eBD79u3DSy+9VOJ4VlYWDh48iF69esHHx8fk/Q8bNgzdu3c3ebtUtlu3bmHJkiXo1KkT6tata/L2zf267t27Fzdv3sQrr7xS4tjmzZsREBBgtr4rKy0tDS+88AI8PDwwf/58ODg4YMWKFRg5ciS2bduGRo0aVbitjRs3IjY21uixXr16YfPmzSVu//bbb/H333+jd+/eVX4MllTpme1PPvkEf/zxB06cOIERI0ZU+H4bNmzAuXPn8NZbb1W2SyKiR5JKI2D28Wz9v/9+oMLwHSlIy1NbMaqar0ePHvDz88POnTuNHt+7dy/y8/MxdOhQs/QfEBCAtm3bmqVtaxMEAfn5+dYOw6Ly8vIAWPd1bdu2rU0l26tXr0Z6ejpWrFiBPn36oGfPnli5ciXs7e3x7bffVrid+/fv46uvvsLs2bONHvfy8kLbtm0N/gsNDcX58+fRoUOHSiX11lTpZLtr164ICgqq1H1iY2OxcOFCjB49Gs2aNatsl0REj6SFJzLx040CAECwMgsN3MVIy9Pgm5NZVo5MS5OTX/p/+YqKn5tXUOVzq0IikWDQoEG4fPkyrl+/XuL4jh074Ovrix49eiAtLQ1z5szBgAED0K5dO3Tp0gWjRo3CmTNnDO5z//59hIWF4fvvv8eaNWsQGRmJdu3aYfjw4bhw4YLBuVVdblDRWEoTGRmJcePG4ffff8czzzyDVq1a4YknnsD69esNzisoKMCCBQswcOBAdOjQAZ06dcLw4cNx8ODBEm3qvtrftGkT+vfvj1atWuk/xCxZsgTDhg1Dp06d0L59ewwePBhbt25F8cLUurgOHz6MQYMGoXXr1ujfvz8OHz4MQPt69O/fH23btsXQoUPx33//lYjjv//+w/jx49GpUye0atUKgwYNwv79+/XHd+zYoZ/MGzVqlH6ZQdFlrsePH8drr72GDh06oE2bNhgxYgT++ecfg350r93ly5fx5ptvIjw8HE8++aTBsaJ9lra8oeiSoY0bN+LFF19Ely5d0LZtWzzzzDNYtWqVwXZ0I0eOxJEjRxAXF2fQTtHXofgykhs3buCNN95AeHg4WrVqhYEDB5b4gHny5EmEhYVh7969+Prrr9GtWze0b98er7zyCu7cuVPiea6ogwcPIiIiwiAfdHV1RZ8+fXD48GGoVKoKtfPRRx/hscce0z/HFbF//37k5uZi2LBhlY7bWsxe1Eaj0WDGjBmoU6cOJk6ciPPnz5u7SyIim5eYo8Z3Z7VJ9eJ+XhjStC4Ox+TjpZ9TsO1qDj7o5gEHO+tuW3Wp3pBSj7k9GY6Gm+fq/3057H8Qco0nyi6PtULIns/0/77a9hWoU42vp3Zq1wRNDi2qYsQPPffcc1i1ahV27NhhsITx1q1buHjxIsaOHQuJRKIvUz9p0iT4+PggNzcXv//+O0aOHIm1a9ciIiLCoN2NGzeiUaNG+jYXLVqEsWPH4tChQ3Bzc6tWzJWNxZirV69i/vz5+jb27NmDTz/9FEqlEq+//joAQKFQICMjA6+99hr8/f2hVCpx/PhxTJ48GVFRURg0aJBBmwcPHsSZM2cwceJE+Pj46AsgxcXFYfjw4ahTpw4A4MKFC/jkk0+QmJiISZMmGbRx7do1LFy4EOPHj4erqyuWLl2KyZMnY+zYsfjnn38wdepUiEQifPHFFxg/fjwOHToER0dHAMCJEycwevRotGnTBnPmzIGbmxv279+PKVOmID8/H0OGDEGvXr0wdepULFy4EB999BFatGgBAKhfvz4A7fVm77//PiIjI7FgwQJIpVJs3rwZr7/+Or7//nt06dLFIN7JkydjwIABGDFiBHJzc40+18aWOFy4cAFRUVFo3Lix/ra7d+/i6aefRt26dSGVSnHt2jUsX74cd+7cQVRUFABg9uzZ+PDDD3Hv3j0sWbKk3Nf5zp07GDFiBLy9vfHBBx/A09MTu3fvxvTp05GSkoIxY8YYnL9w4UK0b98en376KbKzs/Hll1/ijTfewP79+/XFXk6ePIlRo0Zh0qRJmDx5cql95+fn4+7du0aXcISFhSE/Px/37t1Dw4YNy3wMW7duxcWLF7Fv375yH29R27Ztg6urK/r161ep+1mT2ZPtdevW4fz58/jxxx9hb1+1dYjFPyVT7aUbCxwTpFNTx8TaC9lQqIHwQHsMCnWEIAjoXs8e/i5iJOZocCQ2D30aOZk1hqLPXeWfv8rdp8LnCqZ5LRs0aICOHTti9+7dmDZtGqRSKQDtH2oAGDJkCARBQMOGDQ2+wlar1XjssccQFxeHDRs2oFOnTgbxu7i4YPny5foExc/PD8OGDcPRo0fx1FNPGZxb9HGUNk6LPvcVjaU0giAgKSkJO3fuRNOmTQFol9SkpqZi2bJl+N///gcnJye4urpi/vz5Bv107twZmZmZWLduHQYOHGjQbm5uLnbv3g0PDw+Dvoq2odFoEB4eDkEQsH79ekyYMEG/x7EgCJDL5di8eTP8/f31z9ugQYOwZcsW/Pbbb3ByejjWJ06ciL///huRkZEAgLlz56JJkyZYu3Yt7Oy0aUu3bt2QlpaGhQsXYuDAgfD09NQn1iEhIWjTpo1B/J9++il69eqFb7/9Vv/a9ejRA0OGDMHChQuxZcsWg9dn4MCBePPNN42+Trr/e3p6wtPTU3/OnTt38N133yEiIgLTp0/Xnzd9+nSD56lDhw6QyWSYOXMm3n//fXh4eCAkJARubm6QSqUGsRcfQ7p/L168GEqlEuvWrdOXIu/RowcyMzOxdOlSDB8+HG5ubvrzGzdujC+++ELfllgsxttvv42LFy8aLI3RVdcs63dQLpdDEAR4eHiUOM/d3R0AkJ6ejuDg4FLbSExMxGeffYZp06bBz8+vwu9Fd+7cwfnz5zF8+HA4OjqW+15RXruCIFhkL26zJtvR0dH45ptvMGrUKLRr167K7WRkZJgwKnoUcExQcTVpTKg1AjZf1q4Dfb6xgFtX7wEAvANcEVlXjE3XNfj9RiY6eVV/SUVZFAoFNBoN1Go11OqS68SbRm8p/c4SscF9wi5vKP1cscjg3CZnVlf43OoYMmQIZsyYgYMHD6JPnz5QqVTYvXs3OnTogHr16un72bx5M7Zu3Yrbt29DoXi4PKZRo0b6czQaDQBtQgNAf7tuBvP+/fv623R/1I09juK36UqI61QklrI0btwYTZo0MTh3wIABOH78OP777z906NABAHDgwAGsX78e169f169JBgAHB4cS/URERMDV1bXE7SdOnMCqVatw6dIlZGdnGxxLSkoyuPi0adOm8PHx0bfRoEEDAEB4eDjs7e31t+sSNN3zGRsbizt37uDdd98tMU67d++OI0eO4NatWwgJCdG/RroxrXP27FlkZGTg2WefhUqlMlji8Nhjj+GHH35AVlYWnJ2d9a9d7969jb5WgPHXNTk5GWPGjIGvry8WLVoEiUSiP+/q1atYsmQJzp8/X+J96s6dO2jdurXBbaW9zkXHysmTJ9G5c2f4+fkZnD9w4EAcO3YMZ8+eRffu3fXPSa9evQzOKzpuW7VqBQDo0KEDLl68WGYMwMPfheJjt7xjRX300UcICwvDc889Z3BeeffbunUrAO3vdkV+H9RqNTQaDTIzM0u91qDoByZzMVuyrVs+4ufnh7fffrtabXl4eNhMFSCyLkEQkJGRwTFBejVxTJyKK0Bibi48HETo08AVbf5Pu3bz2stOiGzshE3X03AmGZDJZGaNIz8/H2lpaZBIJPrZvqIk7i4Vbstc51ZHnz59MH/+fPz888/o378/jh49itTUVEybNk3/eNesWYPPPvsMI0aMwFtvvQVPT0+IxWJ8++23uH37tv48sVh7iZOnp6fBc6WbkVUoFPrbdePQ6HNa7DaRSFTpWMri6+tb4jzdbHJWVhYkEgl+++03TJ06Ff369cPo0aPh4+MDiUSCn376Cdu3by9xfz8/vxK36ZbidOrUCR9//DH8/f0hlUpx6NAhLF++HEql0uA+Hh4eRp83mUxmcLuDgwMA6O+vW1rzxRdfGMzMFpWZmQmJRKJ/jcRisUGb6enpAIApU6aU+rxlZ2fDzc1N/9oFBAQYfa2Akq9hdnY2JkyYAJVKhVWrVhn83sbHx2PUqFEIDg7GBx98gKCgINjb2+O///7DvHnzDMaNTmmvc9GxIpfLjb4uuosoda91aeNWt0THWP/l8fT0hEgk0j/vRWVlZRntr6hff/0Vf//9NzZu3FhiiY5KpUJOTg6cnJz030bpKJVK7N69G02bNjWY/S+L7jlwd3fXP+aiLPWNqNmS7fXr1+PChQtYt26dwddDVSESiWrMH1GyDI4JKq4mjYnDsdoZ68eDHeFo9/A6dZFIhC71tMnGzTQV0vM18HKq3B/CytA9XzXpuasoQRDg6OiIp556Clu3bkVycjK2b98OFxcX9O/fX/949+zZg06dOmHu3LkG98/JyTF4Xsp7rko7t+jx4rcVv19FYymNSCRCSkpKifN0e4nLZDKIRCLs2bMHdevWxTfffGNwru5CyrJi1Nm/fz/s7OywYsUKfYIMAIcOHTL6fFTkeSvat+523azjuHHjSr2IrmHDhkb709G1MWvWLLRq1QpisbhELD4+PmW2UTw2HaVSibfeegt3797Fxo0b9Us6ij4fubm5WLJkicHFhLoLdyv6PBU/VyaTITk5ucS5SUlJ+sdc1uOpzu++k5MTGjRogBs3bpS4740bN+Do6Ij69euX2u6tW7egUqkwfPjwEse2bt2KrVu3YunSpSXWhOs+LBddolQeW3mPM1uyfe3aNQiCgFGjRhk9vnnzZmzevBlPPPEEli1bZq4wiIhszrG72q8zHw82nGmJm7kcoYsmo6HMDtFyFS4mKtEr2HzJdm3w3HPP4aeffsL333+PY8eOYfDgwQYTQCKRqMT1RNeuXcOFCxdKJE7mZopYbt68iWvXrunXbAParQ5dXFz0Fw2KRCJIpVKD5CM5OVmfKFc01qIzp4D2m5Ldu3dXuI2KaNSoEYKDg3Ht2jVMnTq1zHN1z13x5QLt27eHu7s7bt++jf/973/6dcmm8MEHH+DUqVNYtWqVwXOuo+un6OsqCIJ+jXjx+Cu6rWKXLl3w+++/IzExUf/NBaC9ENTJycnsWxT27t0b69atw4MHD/RjMzs7G7///jsiIyP1a+uNGTx4sNHrD0aNGoXevXtj1KhRaNKkSYnj27Ztg4ODA5555hnTPRALMVuyHR4ebvQrhOTkZBw9ehSNGjVC+/bt0bx5c3OFQERkc/JVAq4ka5eNRNRxQEF0LADtzGDG9qNIDquLNqGR2mQ7SYFewSW/+qSKa9WqFcLCwrBu3ToIglBib+1evXph2bJl+PbbbxEeHo7o6GgsW7YMdevWNdna8YoyRSx+fn544403MGnSJPj6+mL37t34+++/MW3aNP2HjF69euG3337DnDlz0LdvXyQkJGDZsmXw8/NDTExMhfrp2bMn1qxZg3feeQfDhw+HXC7H999/X+WNEMoyd+5cjBkzBq+//joGDx4Mf39/ZGRk4Pbt27h8+bJ+X2ddgrZlyxa4uLjAwcEBdevWhaenJ2bNmoXp06dDLpejb9++8PHxQVpaGq5du4a0tLQS3yZUxOrVq7Fr1y6MHDkSTk5OBltAurq6onHjxujatSukUimmTp2K0aNHQ6FQYNOmTUarm4aGhuK3337Djz/+iJYtW0IkEunXUxc3ceJEHD58GKNGjcLEiRPh4eGBPXv24MiRI3j33XertDPOqVOn8Morr2DChAkldpMp7vXXX8euXbswduxYvPXWW5BKpVi1ahUKCgpK3Ff3jcTvv/8OAKhbt26pRYf8/f2N7rqTmJiIP//8E/379ze4ULemMFuy/dxzz+G5554rcfvJkydx9OhRhIeHlyjLSUT0qLuaooRSA3g5iVHXXYKbq/cCjR++VyYv3o6W65/AzwAuJipKbYcqbujQofj000/RuHHjEms9x48fj7y8PGzbtg2rV69G48aNMWfOHBw8eBCnTp2yaJymiKVZs2YYMmQIFi9ejJiYGPj5+WHGjBkGVQmfe+45pKam6tdo16tXD2PHjkVCQkKFtp0DtDOr8+fPx6pVqzB+/Hj4+/vj+eefh5eXFz744IOqPPxSde7cGVu3bsXy5csxf/58ZGZmQiaTISQkBP3799efV69ePcycORPr16/HqFGjoFarERUVhSFDhmDgwIEIDAzE6tWrMXv2bOTm5sLLywvNmjXD4MGDqxTXrVu3AGiL9m3YYHiBcKdOnbBhwwaEhIRg8eLF+OabbzB58mTIZDI8/fTTeOWVV0pszzdq1CjcvHkTX3/9NbKysiAIgtF94gHtjP9PP/2EhQsXYt68ecjPz0dISIj+8VaF7uLEiqxj9vLywo8//ojPPvsM77//PtRqNdq2bat/zEWZ4kPrzp07oVara9Te2kWJhEquDt+6dSvOnj0LQLs25/Lly2jfvr3+yuLevXuXWT5Tt4/j8OHDK5Rsp6en69eZEem2kOKYIJ2aNibW/ZuNmYfliAx2xNreLjjX6lUMeutLAMCeHz+G3a17uD/7LYwRWiDITYJTr5tvKUN+fj6io6PRsGFDoxcP1WS6xMGUSwZsXWRkJJo0aYIVK1ZYOxSbVBvHRG1X3nuczW79d/bs2RIVis6dO4dz584BAIKCgmpMrXoiIku7na7ddizM2w7yHUch5D5co+nzxmDI3/kWPit+BMZ+irgsNVJz1fB25rptIqKaqtLJ9oIFC7BgwYIqdxgREVHq1yJERI+6mAxtsh0ss0Pa+l8h1mjQ9+5/kMhc4fNaT+Qu2QpEP0Aw8hADJ1xMUuJxXiRJRFRjmb2CJBERPRQj1ybbdeQpyDt3A/Z2Eqyc0QV2vjIAgN87I3B/0teof+sGYhq3wY00ZYldS4iM+eOPP6wdAhEZIS7/FCIiMgWVRsDdwpltj/1HtP/v31mfaAOA5/ORsG8YiKB4bVXJ22mq4s0QEVENwmSbiMhC4rPUUGoABwlg/9MvAADZS32RLc9DtjwPGo0GIjsJvF7sg3opCQCAW+lKa4ZMRETVxGSbiMhCdEtI6ooKIGRkQVrPD+IOzRC2NhVha1ORm6mtLOka2f5hss2ZbSKiGo3JNhGRhUQXJtuBqYUllZ9/HCJxybdhp9YhqFeQAQBIzdMgLc+yxVWIiMh0mGwTEVmIbicS/9u3AQBuT5YsWQwAIrEYnmF14ZuRBuDhdoFERFTzMNkmIrIQ3cx2wIM4iF2d4Nw+tNRznVqHoF7KAwBcSkJEVJMx2SYishD9tn/pSXBq0xgiu9L3z3Zq01i/bvtmGi+SJCKqqZhsExFZgFojILZwGUmdtCQ4tW1S5vlOrUMQlJoI4GGSThW3Y8cOtGjRAk2bNkVYWBiaN2+Obt26YcqUKYiJibF2eI+cPXv2YO3atWZrPzIyEtOnTzdL23l5eVi8eDFOnjxZ4tiOHTsQFhaG+/fvm6Xvqtq3bx8GDhyIVq1aoVu3bvj000+Rk5NT6XZu3bqFli1bIiwsDP/995/BsZEjRyIsLKzU/5KTk031cB55LGpDRGQBCdlqKNSAnUYN34x0OLVqVOb5jqH1EJAjBwDEpuSXeS6Vbv78+QgJCUFBQQHOnTuH5cuX4+TJk/jll1/g4eFh7fAeGXv37sXNmzfxyiuvmKX9JUuWwNXV1Sxt5+XlYcmSJZg0aRIiIiIMjvXq1QubN2+Gn5+fWfquit27d+Pdd9/FsGHDMGPGDMTExODLL7/E7du38cMPP1S4HbVajZkzZ8LT0xNJSUkljs+ePRvZ2dkGt+Xl5WHMmDFo0aIFfH19q/1Yagsm20REFhBdOKsdkJkGiaCBQ5O6AACxnRiPy2MKf374x0sktUMDL3sAwL1sDQRBgEgksmzQj4AmTZqgdevWAICIiAio1WosXrwYBw8exHPPPWfl6ConPz8fDg4OtWoc5Ofnw9HREc2bN7dK/15eXvDy8rJK38ao1Wp8/vnn6NatGz755BMAQOfOneHi4oJp06bh6NGj6NmzZ4XaWrt2LRISEjBmzBh8+umnJY43bty4xG07d+6EUqnE0KFDq/dAahkuIyEisoBY3bZ/ydp12A6Ntcm2s6sD/m9ON/zfnG5wdnUwuE+Dum4AgByNGOn5GgtG++hq1aoVACA1NdXg9v/++w/jx49Hp06d0KpVKwwaNAj79++vUJsnT55EWFgYdu3ahaioKDz22GNo3bo1XnrpJVy5cqVEP1OmTEFkZCRat26NyMhITJ06FXFxcQbn6ZYv/PXXX5gxYwY6d+6MNm3aQKFQIDY2FjNmzECfPn3Qpk0bdO/eHePHj8f169eNxrVnzx588cUX6NatG9q1a4fx48cjJSUF2dnZ+PDDDxEREYGIiAjMmDGjxFIEQRCwceNGDBw4EK1bt0Z4eDjefPNN3Lt3T3/OyJEjceTIEcTFxRksM9BRKBRYtmwZ+vXrh5YtW6Jz586YMWMG0tLSDPqKjIzEuHHj8Ntvv2HQoEFo1aoVlixZoj9WdBlJWUscduzYAQBIS0vDnDlzMGDAALRr1w5du3bFq6++ijNnzujbuX//Prp06QJAO3uua0PXV2nLSLZt24Znn30WrVq1QqdOnTBx4kTcLtxlSGf69Olo164dYmNjMWbMGLRr1w49e/bEggULoFAoUBUXLlxAcnIyhgwZYnB7v3794OzsjIMHD1aonZiYGHz77beYPXt2pb4x2LZtG5ydnTFgwIBKxV3bcWabiMgC7mVq98r2l6dAGugNiZtzuffxCK0L78x0pLp74m6GGl5OpV9QaQ65ytITfLFIBEc7UYXOFYlEcKriuaamS5qCg4P1t504cQKjR49GmzZtMGfOHLi5uWH//v2YMmUK8vPzSyQ2pfn666/RvHlzfPLJJ8jKysKSJUswcuRI/Pzzz6hXrx4AIC4uDg0bNsRTTz0FDw8PJCcnY9OmTRg6dCj27dtXYhZ15syZ6NWrFz7//HPk5eXBzs4OSUlJkMlkeOedd+Dl5YWMjAzs3LkTzz//PHbu3IlGjRqViCsiIgJRUVGIi4vDZ599hqlTp8LOzg5hYWFYuHAhrly5gq+//houLi6YNWuW/r4fffQRdu7ciZEjR2LatGnIyMjA0qVLMWLECOzatQs+Pj6YPXs2PvzwQ9y7d0+fHOtoNBpMmDABZ8+exeuvv4727dsjLi4OixcvxsWLF7F9+3Y4Ojrqz798+TJu376NN954A3Xr1oWTk5PR59rYEodFixbh5MmTaNiwIQBALpcDACZNmgQfHx/k5OTg999/x6hRo7B27VpERETAz88Pq1evxujRozF06FAMGzYMAMqczV6xYgUWLlyIp59+Gu+88w7S09OxZMkSDB8+HNu2bTMYW0qlEm+88QaGDh2K1157DadPn8ayZcvg6uqKSZMm6c+bPn06du7ciUOHDqFu3bql9n3z5k0AMPgwAwBSqRSNGjXSHy+LIAiYNWsWevXqhSeeeEL/4aQ8MTExOHPmDIYNGwYXF5cK3Ye0mGwTEVlAXJY22fbNSINDaL0K3cchtB4CDqUg1d0TsRkqtA2wN2eIJTRZGl/qschgR2wY5KP/d+sVD5CnEoye2yXIHtuGPVzzGvFDAtLyjCfcbfyl2P8//ypGXJJGo4FKpdKv2f7uu+8QHh6OyMhI/Tlz585FkyZNsG7dOtjZaf8sdu/eHenp6Vi4cCEGDRoEsZHiQ8V5eXlh6dKl+mUeHTp0QN++fbFixQr9V/79+vVDv3799PdRq9Xo1asXHnvsMezduxejRo0yaLNLly6YN2+ewW3h4eEIDw83aKNnz554+umnsXnzZsyYMcPg/NDQUERFRen/fefOHaxbtw4jR47E+++/DwB47LHHcOHCBezZs0efbF+4cAFbtmzB9OnT8eqrr+rv37FjR/Tt2xdr1qzBu+++i8aNG8Pd3R329vZo27atQd+//PIL/vzzTyxevBh9+vTR3960aVMMHToUO3bswAsvvKC/PS0tDfv27dMnzKUpvsTh+++/x/Hjx/Hxxx+jXbt2AIBGjRphzpw5+nNUKhW6dOmC+Ph4bNiwAREREbC3t0eLFi0AAAEBASXiLy4zMxPLli1Dz5498dVXX+lvj4iIQJ8+fbB48WKD25VKJSZPnoz+/fsD0L6ely5dwt69ew2SbbFYDIlEUu4SId0HCGPXG8hksgpdyLlx40bcuHGjwt/c6Gzbtg0AuISkCphsExFZQFyWdhmJX0YaHDoH6W/PluchbK12ScP1V7zhKns4k+cYVh8B2/7B5fpNcDeD2/9VxfDhww3+HRISgmXLlumT6tjYWNy5c0efdKpUD3d+6dGjBw4fPozo6GiEhIQYHANQIjl6+umnDf4dFBSEdu3aGexykZOTg2XLluG3335DXFwc1OqH1UGLL0MAYJCg6qhUKqxevRq7d+/G3bt3oVQ+HBvG2nj88cdLPAeA9uK/4rcfPHgQOTk5cHFxweHDhyESifDss88aPHYfHx80bdoUp06dKtFXcYcPH4a7uzsef/xxgzaaNWsGX19fnDp1yiDZDgsLKzfRLm7v3r344osv8MYbb+D55583OLZp0yZs2bIFt27dMli6UXz2v6LOnz+P/Px8DB482OD2wMBAdO7cGSdOnDC4XSQSGXywA7SPsfh58+fPx/z58yscR2lJeXnJelxcHL766ivMnDkTPj4+ZZ5blEqlws8//4wmTZqU+4GESmKyTURkAfd1y0gyUuHQpEOF7mMfHIiALO261pj4bACW3T3j5sQ6pR4TF/ujfnFcYKnnFk8ATr4WUOFzq+uzzz5DSEgIcnJysH//fmzevBlTp07F6tWrAQApKSn68z777DOjbaSnpwOAfgZUJyoqymCJibHkxcfHB9euXdP/+5133sGJEycwYcIEtGrVCi4uLhCJRBg7diwKCgpK3N/Yjg8LFizAxo0bMWbMGISHh8PDwwMikQizZs0y2kbxWVCpVFrm7QUFBXBxcUFqaioEQUDXrl1LtAlAvzSmLKmpqcjMzETLli2NHtc9tzqV3eHixIkTmD59OgYNGoS3337b4NiaNWuwYMECjBgxAm+99RZkMhkA7drsO3fuVKofHd3MsrE4/fz8cPz4cYPbnJyc4OBgeC2Gvb290depInSPQS6Xlxhvcrlcf7w08+bNQ2hoKPr27YvMzEwA2h1GACA3NxdZWVlwc3Mrcb+jR48iOTkZo0ePrlLctR2TbSIiM1NpBCRkF1lG0qT0NZlFiewkqGuvvV9ssuW3/3OWVvwaenOdW12NGjXSXxTZuXNnaDQabN26Fb/++iv69esHT09PAMC4cePw5JNPGm1DN9Oq+xpdp/jaWl3iXvw2XQKUlZWFI0eOYNKkSRg7dqz+HIVCgYyMDKN9G/vwsXv3bgwaNAhTp041uD09PR3u7u5G26kKT09PiEQibNy4Efb2JZcwGbvNWBsymUz/4aa44mt/K/Nh69q1a5g4cSI6deqEjz/+uMTx3bt3o1OnTpg7dy4A7VpltVpdpf2odXSvpbE9ppOSkvTjyVxCQ7VVZ2/cuGGwlEalUuHOnTt4+umny7z/zZs3ERcXZ7AMSWfUqFFwc3MzuIBUZ9u2bZBKpRg4cGA1H0HtxGSbiMjMErPVUAuAnVoFr6wMODSp2JptAGjgpZ0Vu5djfD00Vc67776L3377Dd9++y369OmDRo0aITg4GNeuXSuRvBanS9pLs3fvXrz66qv6hDEuLg7nz5/XJygikQiCIJRIUrdu3WqwnKQ8IpFIPwutc+TIESQmJqJBgwYVbqc8vXr1wsqVK5GYmFju7hP29vbIzy/5gbBXr17Yt28fNBoN2rRpY7LY4uPjMWbMGNSrVw/ffvttiecD0D5PxZ/r69ev48KFCwgMfPhNjO4cY/EX165dOzg6OmL37t36ddgAkJCQgBMnTqBv375VfUgV0qZNG/j6+mLHjh0Gr8mBAweQm5tb6gdGnYULF5aYVf/zzz+xatUqzJ071+h2f8nJyTh27BiefPJJs3+YeFQx2SYiMrP7hRdH+mSmw87FAdI63hW+b/262pnKREHKvbZNwMPDA2PHjsUXX3yBPXv2YODAgZg7dy7GjBmD119/HYMHD4a/vz8yMjJw+/ZtXL58Gd9++22F2k5LS8PEiRPx/PPPIysrC4sXL4a9vT3GjRsHAHB1dUV4eDi+//57eHp6IigoCKdOncK2bdsqNSPdq1cv/a4jYWFhuHz5Mr7//nsEBJS+PKcqOnTogOHDh2PmzJm4dOkSwsPD4eTkhOTkZJw9exahoaH69dahoaH47bff8OOPP6Jly5YQiURo1aoVnnrqKezZswdjx47FyJEj0bp1a0ilUiQkJODkyZN44oknyk0QjRkzZgyysrLw0Ucf4datWwbH6tevDy8vL/Tq1QvLli3Dt99+i/DwcERHR2Pp0qWoW7euwYcbV1dXBAUF4dChQ+jSpQs8PDzg6elpdFcQd3d3TJgwAQsXLsR7772Hp556CnK5HEuXLoWDg4PBRY+VMXPmTPz888/4/fffERQUVOp5EokE7777Lt577z189NFHeOqppxAbG4svvvgCjz32GHr06KE/99SpU3jllVcwYcIEfVzG1lvrtp1s0aKF0Q+UO3fuhEql0u/UQpXHZJuIyMx0O5H4ZaTBPiQIogrsbKFTN9QfolgNlCIJ0vI08Ha27PZ/j6KRI0di48aNWLZsGZ5++ml07twZW7duxfLlyzF//nxkZmZCJpMhJCTEYPayPFOmTMF///2HGTNmIDs7G61bt8bChQtRv359/TlfffUVPv30U3zxxRdQqVRo37491qxZo0/IK+KDDz6AnZ0dVq5cidzcXDRv3hyLFy/GokWLKvU8VMS8efPQpk0bbN68GZs2bYJGo4Gfnx/at2+vLxYEaJcg3Lx5E19//TWysrIgCAKuX78OiUSC7777DuvXr8euXbuwcuVKSCQSBAQEIDw8XL8sorJ0Cbax5Fa3ln78+PHIy8vDtm3bsHr1aoSEhGD27Nk4dOgQTp8+bXCfTz/9FJ9//jneeOMNKBQKDB48GAsWLDDa97hx4+Dl5YUNGzZg//79cHR0RKdOnTB16lSDbf8qQ6PRQK1WQxDK/wZr4MCBkEgkWLlyJXbs2AGZTIaBAwdiypQpBufpls1UpM2ybN++HUFBQaWu3afyiYTqvgpmlp6eDplMxtkcAqB989BdBMIxQUDNGBPfnsrEZ8cz0fvCcXwsjUb9Ve/rj5W1GwkA5F+JQcftOUh388Cv//NFK3/Di62qIz8/H9HR0WjYsKHBXsePAl2iUZHt1Krr5MmTGDVqFBYtWmSwrR/ZFkuOCbIN5b3HWerbQlaQJCIyM91OJL6ZaSXWa4vtxOiSfhdd0u9CbFfyLdk+JAg+WXIAQFx8ltljJSIi0+IyEiIiM0vIKboTSXODY86uDtg2t/SvZ8UOUvgqc3ATwP276UC7iu+NS0RE1sdkm4jIzFIKk23PnMwKV48syl+iLQYSl5xr0rjINCIiInD9+nVrh0FENorLSIiIzCwlR5ssy3Ky4NCo9EIxpQlw1r5VP5AryjmTiIhsDWe2iYjMSBAEpORqAIjg42EPsZPhBY7Z8jy0XhUPALg4pk6JCyQBoE7hXtsJBbyoi4iopuHMNhGRGeUoBRQI2iQ5IEhm9JwCqQMKpKXvMlInQFs+OVEoWbjDFGx8Uyoioiqxlfc2JttERGaUnKsBADgq8iELCSznbOPqB3sBAFLsXco5s3J0Vfdyc7kWnIgePTk5OUYrrloal5EQEZlRSq724khZThYcGpdeGa4s9Zr4AyfSkWvvCHlqDmTepkm6JRIJZDIZkpKSAADOzs6PzP7D3FOZiuOYqB0EQYBKpUJmZqa+QJVEYt1iYEy2iYjMKLVwZtsjJwv2Vbg4EgDcvF3gmh+HbEdn3L2RCFmXRiaLT1fiW5dwP0o0Gg3ElajWSY8+jonaQyKRIDAwEB4eHtYOhck2EZE5JRfuROKZkwmHhlUrTQ0APspcZDs6I/5+OlqXf3qFiUQiBAYGws/PD0ql0oQtW5cgCMjMzIS7uztnMQkAx0RtYmdnZ1PfYDDZJiIyo8TEbACALDcb0iDfKrfjAyViACQk5ZgmsGIkEonVv2o1JUEQkJ+fD0dHR5v5g0vWxTFB1sJkm4jIjJJTcgA4wstOA5FdyWRWJBGhbfr9wp9Lrw7pY6+9qj4xvcAscRIRkXkw2SYiMqNkeQEAR/g6G581dnFzxL65ncttx99FDKiApMI14EREVDPwKgEiIjPSbf3n61n6PtoV4V94/xQFv/4mIqpJmGwTEZlRmkqbHPv5Vm+7vgA/VwBAMuyrHRMREVlOpZeR7Nq1C2fPnsWlS5dw48YNKJVKREVFYciQIQbnKZVK/PHHHzh8+DD+/fdfPHjwACKRCI0bN8agQYMwYsSIR+piHCIiY9JE2uTYv67M6PFseR46fRcLADj1RgOj5doBILCuDLicgzQHF2hy8yF2djRHuEREZGKVTrYXLVqEuLg4eHp6ws/PD3FxcUbPu3v3Lt588024uLigc+fOiIyMRFZWFg4fPox58+bhzz//xHfffccrgonokaXSCMh0cAYABDTwLvW8DCfXctsK8HMBkIN0V3co4lLg2KSuqcIkIiIzqnSy/cknn6BBgwYICgrCypUr8dVXXxk9z9XVFbNnz8bgwYPh5PRwpiY3NxcjR47E4cOH8euvv6J///5Vj56IyIalZGn3rRZrNPCpI6tWW/4u2rfrbCcXZMUmMdkmIqohKr1mu2vXrggKKr/ksL+/P1544QWDRBvQlgN+9dVXAQCnT5+ubPdERDVGYnwmAMA9NxsOvtWrYubuIIK9RlsgJ/5uerVjIyIiy7DKBZJ2dtoZGq7ZJqJHWVKiNtn2LMiBqJrvdyKRCN4a7R7biYlZ1Y6NiIgswyr7bG/fvh0A0K1btwqdLwiCOcOhGkQ3FjgmSMeWx0RiSi4Ae3iq80uNr+jtgiCU+Th8JWo8AJCQWnp7pGXL44Ksg2OCihMEwSLXDlo82d68eTOOHTuGzp07o2fPnhW6T0ZGhpmjopqGY4KKs8UxEZ+cDUAGmUYBuVxu9JzszDz9z/JMOVQovUKkl70GUAIJGQWltkeGbHFckHVxTFBRnp6eZu/Dosn2kSNH8PHHHyMoKAhffPFFhe/n4eHBXUsIgPZTaEZGBscE6dnymMgo0MbjKxUgk8mMnmMvcURY+iUAgJdnSzi7lb6lXx2vNCARSFGKS22PtGx5XJB1cExQcZb6lsNiyfaff/6JyZMnw9vbG+vWrYOfn1+F7ysSifiLQQY4Jqg4WxwTKfkC4Ah4O4lLjc3F3Ql/zA2vUHuBvi5AogopkAIaTbXXgdcGtjguyLo4JsjSLHKB5LFjxzBx4kR4enpi/fr1qFevniW6JSKyqlSV9i3Wz8U08xr+ftoqlOnO7lAlyU3SJhERmZfZk21dou3u7o7169ejQYMG5u6SiMgmpAhSAICfzDQl1v3dtEl7mqsHlAmpJmmTiIjMy6zLSHSJtoeHB9avX4/g4GBzdkdEZFPS7bTrr/28nUs9JyczD90X3QIA/PlWY7i4Gy/XDgD+LtplI2luHlAmpJkwUiIiMpdKJ9tbt27F2bNnAQA3btzQ33bq1CkAQO/evdG7d2/cvn0bEydOhEKhQKdOnbBv374SbQUFBWHIkCHViZ+IyCZpBAFpulLtAaWXYxc0QKKbp/7nsvg6a5NtuYsbCuJjTRMoERGZVaWT7bNnz2Lnzp0Gt507dw7nzp0DoE2ge/fujZSUFCgUCgAwmmgDQKdOnZhsE9EjKS1bCY1Ymxz7B1WveqSOj7MYIkGARixBckImKn6ZORERWUulk+0FCxZgwYIF5Z4XERGB69evVykoIqKaLqFIqXYn30CTtGknFsETSqTBHolp+WhhklaJiMicrFKunYjoUZeQoC2p7pWfDZGd6bbo87XTrjVJzFCarE0iIjIfJttERGaQlJILAPBU5Zu0XT9n7f7ASXnlLPAmIiKbwGSbiMgMEuXasus+gsKk7fq5abcTTFayKAcRUU3AZJuIyAySslUAAB+7smegRWKgQUYyGmQkQ1SBd+QAb+3WgKkSR2jyTZvIExGR6VmsXDsRUW2Ski8ADoCPY9nnubg74fjsdhVu18/LEUAB0txkUCWmwb5BQPUCJSIis+LMNhGRGaQUlmr3dTXtnIa+sI2rB5QPWEWSiMjWMdkmIjKDFEFbot1f5mDSdnWFbTJc3KBKlpu0bSIiMj0uIyEiMgNdqXb/Mkq1A9py7U9+fQ0A8PuUpmWWawe0hW0AbRVJVXKCCSIlIiJzYrJNRGRiKo0AuYM2aS6rVDugLdEe6+Gr/7k8PoUz2zmOzshJksO7eqESEZGZcRkJEZGJpWYrIYjEEGs08K0jM2nbHg4iSAqz8uQ00+7hTUREpsdkm4jIxB480JZq98jNgoOfzKRti0QieIm12womZ3DrPyIiW8dkm4jIxBISsgEAnvk5Ji3VruMjFQAAKblqk7dNRESmxWSbiMjEdKXavVR5Zmnfx0n71p1SYJbmiYjIhJhsExGZWJKuVDuUZmnfx1Vbsj1NxZLtRES2jsk2EZGJJWVrl3d4l1OqHdCWa/fPSod/VnqFyrUDgJ+ndu/udKkTNHmc3iYismXc+o+IyMR0pdp9HcufeXZxd8K5D1tVqn0fmQOAAshd3KFKkcO+nn8VIyUiInPjzDYRkYnpS7W7mWc+Q7fXttzFDaokuVn6ICIi02CyTURkYqnQrqn28zBtqXYd3QWScmeWbCcisnVcRkJEZGJpdtrqkf4+ZZdqB4CcrHw889V/AIA977SCi5tjuffxdSmc2XZ1hyo5rhqREhGRuTHZJiIyIYVaQKa+VLtbuecLagHXZYH6nyvCu3BmO8PZDQrObBMR2TQuIyEiMqHkbO12fxK1Gj51PMzSh7eTdmZbLZEgLTnbLH0QEZFpMNkmIjKhxAdZAABZTibsfWVm6cPBTgQ36Eq2c+s/IiJbxmSbiMiEkhILk+2CXIik5lupp9vDOyVHZbY+iIio+phsExGZUHKqtlS7TG3eGWdvB+0e3im5FVvnTURE1sFkm4jIhFIKS7V7icw74+xTuCMJS7YTEdk2JttERCaUUniBpGcFSrXreORlwyOvchc6+sq0e3iniuwhKLmUhIjIVnHrPyIiE0rN0wAOD5d5lMdV5oQrM5pWuh9tsq1EhrMbVCkZkAZ6V7oNIiIyP85sExGZUJpSm2R7u5p3LsPHRdu+3MUNqhS5WfsiIqKqY7JNRGRC6RptEuxjplLtOr7OhSXbXd2hSpKbtS8iIqo6LiMhIjIhudgeAODjWX7ZdUBbrv35Ly8AALZMa1uhcu0A4ONcWLLd2Q0qVpEkIrJZTLaJiExIbq8t1e7rX36pdkBbov2CZ139zxWlK9kud3GHMim6klESEZGlcBkJEZGJ5CvUyLXXzkz7B7ibtS/dzHauoxNyUrLM2hcREVUdk20iIhNJfpAJAJCo1fAKkpm1Lw8HEeyg3V4wOT3PrH0REVHVMdkmIjKRpAcZAACP/BxI7KVm7UskEsFLrAYApGQqzdoXERFVHZNtIiITSUrOAQDIlJaZafbRXouJ5LyKF9AhIiLLYrJNRGQiKYXLOWSCwiL9eRdu/5dqme6IiKgKKr0bya5du3D27FlcunQJN27cgFKpRFRUFIYMGWL0/OzsbCxevBi//fYbkpOT4evriz59+mDy5MlwdXWt9gMgIrIVyRnarNdTpK7U/RyUBVXqz9dNCqRpkK6WQNBoIBJz/oSIyNZUOtletGgR4uLi4OnpCT8/P8TFxZV6bm5uLl566SVcvXoVjz32GJ566ilcu3YNa9euxcmTJ/Hjjz/C2dm5Wg+AiMhWpOWoAEfA277i93GVOeHOuyFV6s9H5gjE5kLu7Ap1ehbsvD2q1A4REZlPpadBPvnkE/zxxx84ceIERowYUea5q1evxtWrVzF69Gj88MMPmDZtGlavXo2JEyfi6tWrWL16dZUDJyKyNamFE9ReTpaZYfYpLAmf4ezKKpJERDaq0n8RunbtiqCgoHLPEwQBW7duhbOzMyZOnGhwbNy4cfDw8MC2bdsgCBUv4kBEZMvSVSIAgI+beXci0fEu3Gs7w9kNquR0i/RJRESVY7bpl5iYGCQlJaF9+/Ylloo4ODigY8eOSExMRGxsrLlCICKyqDRok2wfWcVKrgNAbnYBhs4+jqGzjyM3u3Jrt3Uz6BkublClZFTqvkREZBlmK9euS6KDg4ONHm/QoIH+vNLO0eHsN+noxgLHBOnY0piQS7RJto+3U4XjUSvV+Mezvv7nyjwOXcn2DGc3KFNibeI5sBW2NC7INnBMUHGCIEAkEpm9H7Ml21lZ2vLBpe04ortdd15ZMjI4Y0OGOCaoOGuPCUGjQYaD9ls8ZxcR5HJ5he6XnflwT255phwqVHx2W6rU7q+d4eKG7PuJsKtgn7WJtccF2R6OCSrK09PT7H2YLdk2JQ8PD4t88iDbJwgCMjIyOCZIz1bGRF6yHNlO2mS7UWgQZB4OFbqfHRwApAEAZO4yuMqcKtynnbMGQB4KpPZQ5ighk8kqGfWjy1bGBdkOjgkqzlLfcpgt2XZzcwOg3WfbGN3tuvPKIhKJ+ItBBjgmqDhrj4mU+EwAEog1Gnh7OFQ4lqLnVfYxuNqL4QANCiBGSoYCofydKMHa44JsD8cEWZrZLpDUrcmOiYkxely3plt3HhFRTZaUkAkAcFfkQWyhP+QikQieEu1SkpRslUX6JCKiyjFbsh0cHAw/Pz+cO3cOubm5BscKCgpw5swZ+Pn5MdkmokdCcqr2fU6myrdov96Fq1VS8zUW7ZeIiCrGbMm2SCTCsGHDkJubi6VLlxocW7FiBTIyMjBs2DB+lUNEj4SUdG2S7QnLzjB7u2j32k5X8r2UiMgWVXrN9tatW3H27FkAwI0bN/S3nTp1CgDQu3dv9O7dGwAwevRo/PHHH/pKki1atMC1a9dw7NgxNGvWDKNHjzbV4yAisqqULCXgBHjaqSt1P1eZE+Lerlvlfn3c7IFkJdJE9tAolBDbW6agDhERVUylk+2zZ89i586dBredO3cO586dAwAEBQXpk21nZ2ds2LABS5YswYEDB3Dq1Cn4+PjglVdewaRJk0oUuyEiqqlSczWAE+DtYNkZZl8PewBKZLi4QZ2SAXEdH4v2T0REZat0sr1gwQIsWLCgwue7ublhxowZmDFjRmW7IiKqMdKU2v97O1t2R9WHJdtdoUrJgJTJNhGRTakR+2wTEdm6dI026fXxqNwyjtzsAoz98jQAYOW0cDi7Vmx/bh0fXbLt4s6S7URENojJNhGRCaSL7AEAvp4VL0oDABqVBodlwfqfK8tLX7LdFaoUeaXvT0RE5mW23UiIiGoLQaOBXKpNsn19XS3at7c+2XaDKllu0b6JiKh8TLaJiKpJLc9GhrM2yfYNcLdo37plJHIXNyi5jISIyOYw2SYiqqaCRDmynLS7K2l3B7Ec3cy2QmqPrJQsi/ZNRETlY7JNRFRNKQ/kEETat1NPJ8u+rTpLRXCAdq13cpbSon0TEVH5mGwTEVVTclI2AMBdmQc7sWX32RaJRPCy0ybbqdlMtomIbA2TbSKiakpOzQMAyNQKq/SvK6STli9YpX8iIiodt/4jIqqm5IwCwBnwFKsqfV9ndwdcf8Vb/3NVeLtKgBwgVcX5EyIiW8N3ZiKiakrN0SbZXtLKzyyLxWK4ypzgKnOCWFy1t2QfN+1FmXI7R2hy8qvUBhERmQeTbSKiakotXL7h42idt1Qfd22yneHiBlUqt/8jIrIlTLaJiKopXaVdM+3tWvmVeXm5CoyZ9yfGzPsTeblVW/OtL9nOwjZERDaHa7aJiKopTZACAHxkjpW+r1qhxn73hgCArxVqwLny/eurSLq4sWQ7EZGN4cw2EVE1CIIAuUR7YaOvt5NVYvAqTLblzm5QJXMZCRGRLWGyTURUDWp5NjKcXAAAvn5uVolBv4yEM9tERDaHyTYRUTWoktKR4axNsn0sXKpdR7+MxNkVyhTObBMR2RIm20RE1aBIkiPTWTuz7e0ksUoMPs7at3KF1B6ZadlWiYGIiIxjsk1EVA1pCRnQiLVJtm7ttKU5S8VwRGHJ9gzrVLEkIiLjmGwTEVVDckoOAMBVrYC9RGS1OHQFdVJyKl/FkoiIzIdb/xERVUNKemGpdqFqM8rO7g44N9RF/3NVeTuKEK8EUguq3AQREZkBk20iompIylQAzoCXRF2l+4vFYvjX9ax2HN4udkCWBukqMQRBgEhkvVl2IiJ6iMtIiIiqIS1Xm2R72Vs3udWVbJc7ukCTmWPVWIiI6CEm20RE1ZBWuHrE27lqO5Hk5Srw1id/4q1Pql6uHQB83LRfVGY4u7JkOxGRDWGyTURUDWlq7duoj7u0SvdXK9TY5toQ21wbQq2o2lIU4OG2gxnOblBxr20iIpvBZJuIqIoEQUC6SJtk+3g6WjUWXWEbuYsbZ7aJiGwIk20ioipSZ2Qjw9EVAODr42rVWLyddVUk3aBK5cw2EZGtYLJNRFRFqiQ5Mpy1SbbuAkVr0S8j4cw2EZFNYbJNRFRFqmQ5MlzcADycWbYWnyLLSJRcs01EZDOYbBMRVZEyMR2ZhTPb1irVrqNL9pV2UmSmZls1FiIieojJNhFRFaUnZ0El0W65p1vGYS3OUjGcRBoAQGqm0qqxEBHRQ6wgSURURSmpOYAz4KJRwtGuakVtnNzs8WdfO/3P1eEpFZCnAFJyq76FIBERmRaTbSKiKkpKLwCcAU+RqsptSCQSNGoWYJJ4vB1FiFcAqQWCSdojIqLq4zISIqIqSs3RJtmedraR3Pq4avf8TtfYQVBzdpuIyBYw2SYiqqLUfG2S7e1YtSUkAJCfp8D7UX/i/ag/kZ9X9XLtwMPtBzOcXaFOy6pWW0REZBpMtomIqihFpX0L9Xet+oo8VYEa/+fUEP/n1BCqgurNRnu76Eq2u3KvbSIiG2GRNduCIOD333/Hhg0bEB0djaysLAQEBCAiIgJjxoxBvXr1LBEGEZHJCIKAFJEDAMDf08HK0Wj5FO6IIndxZxVJIiIbYZFk+7PPPsOaNWvg6+uLJ554Aq6urrh27Rq2bNmCvXv34qeffkJoaKglQiEiMglNZg7SnLQFbfx9nK0cjZZur2/ObBMR2Q6zJ9vJyclYt24dgoKCsHv3bri6uuqPrV27FlFRUVizZg2ioqLMHQoRkckok+RIc3UHAATIbGRm21mXbLtBlZJq5WiIiAiwwJrtuLg4aDQatG/f3iDRBoBevXoBANLS0swdBhGRSamS05Hu6gEA8HOxjctfvPXLSNw4s01EZCPM/heiQYMGkEqlOHfuHLKzDUsIHz16FADQuXNnc4dBRGRSysSHM9t+LtatHqnjrVtG4uIGZQrXbBMR2QKzLyPx9PTElClT8Pnnn2PAgAGIjIyEi4sLbty4gX/++QfDhw/HSy+9VGYbgmAbe9iS9enGAscE6VhrTKQmZUJlp93X2sdJXOX+i95PEIRqPQ4vJ+0WhEo7KTLTcmr17wnfK6g4jgkqThAEiERV37q1oixygeTrr78OPz8/fPTRR9i0aZP+9nbt2uHZZ5+FVCot8/4ZGZyhIUMcE1ScpcfE3Xg54Am4qwuQl52BvCq2o1arsa2NNvYCtSNU8oJqxeUIDfIhRqI8D3Xk8mq19SjgewUVxzFBRXl6epq9D4sk28uWLcOyZcswadIkDBo0CO7u7rh69SoWLFiAUaNG4ZtvvkGfPn1Kvb+Hh4dFPnmQ7RMEARkZGRwTpGetMZGer+3LR6yCTCarVlvevbxNEFFhW/aZiFMA8gJRteOqyfheQcVxTFBxlvqWw+zJ9j///INFixbhlVdewfjx4/W3d+jQAStWrMATTzyBqKioMpNtkUjEXwwywDFBxVl6TCRnawvQ+Npb5mvIivJ2kiBOAaQqYFNxWQvfK6g4jgmyNLNfIKm7CDIiIqLEMS8vL4SFhSE+Pp47khBRjZJUuNrDz7l6b6P5eQrM/fIvzP3yr2qXawcA78JqlnJIoSlQVrs9IiKqHrMn20ql9s2+tGRad7u9vb25QyEiMpkUjTap9XOv3nuXqkCNlXbBWGkXXO1y7QDg6669BibDxQ1qVpEkIrI6syfb7du3B6AtYJOVlWVwbOfOnYiNjUWLFi1K7MFNRGSrBLUaqWJtIZtAb0crR2PI27nIXtvc/o+IyOrMvma7X79++Omnn3Dq1Cn06dMHkZGRcHd3x/Xr1/H333/D3t4eM2fONHcYREQmo0rJQFphQRt/X9uaKNAVtslwZmEbIiJbYPZkWyKR4Pvvv8e6devwyy+/YN++fVAqlfD29sbTTz+NcePGITQ01NxhEBGZjCopHeku2oI2/u4W2dSpwrz1JdtdoUqRWzcYIiKyzNZ/9vb2GDNmDMaMGWOJ7oiIzEqZkIY0t8KZbRupHqmjqyIpd3GHKjnBytEQEZHZ12wTET1qshPlyHF0BgD4OttWsu3jrFtG4goVL5AkIrI6JttERJWUmJQDAHDQqOHuYFv79T6c2XaDkmu2iYiszrYWGxIR1QAJafmAD+CDgmoXx3B0kWJ7u3z9z9WlS7ZVdlJkpudUuz0iIqoeJttERJWUmKXSJtt2mmq3ZSe1Q+eejU0QlZaTVAxnkQa5ghgpWSxqQ0RkbVxGQkRUScl52iTb19G2lpDoeBXW2UnNrf6HASIiqh7ObBMRVVKySnsRor9b9d9C8/MUWLzyNABg8thwODpVv5qul5MY9wuAVE5sExFZHWe2iYgqQRAEJIu0CbG/Z/WrR6oK1PhGaIBvhAYmKdcOAD5uhSXbJY7Q5OSbpE0iIqoaJttERJWgycpDuqO2amSgr4uVozHOx1WbbGtLtsutGwwRUS3HZJuIqBKUiWn6Uu1+Xg5WjsY4H10VSReWbCcisjYm20RElaBKStcn27ZWPVLHu7CwjdzZDaoUFrYhIrImJttERJVQ8CANGS5uAAA/G022vZyKzGwz2SYisiom20RElZCUmAmNWAyRIOgLyNgaH10VSWeu2SYisjbb/EtBRGSjEtK0u3t4ahSwE9vmPtu+hTPucld3rtkmIrIy7rNNRFQJSRkKwA3wlahM0p6jixTrQzMLfw4wSZu+ujXbLm4ouJ9pkjaJiKhqmGwTEVVCUk5h9Uh7wSTt2Unt8MSA5iZpS8fbSQwRBGjEEqTJ89HQpK0TEVFlcBkJEVElJCu0S0ds9eJIAJBKRPCUaD8UJOWaplAOERFVDWe2iYgqIUXQvm36y6pfVh0AFPlKrPzhDABg7GsdYe8oNUm7vo4ipOUAyQW2ua6ciKi24Mw2EVEFaRRKpNg5AQD8fZxN0qYiX4UoRT1EKepBkW+adeAA4Ouq/VCQohJDEEyz5IWIiCqPyTYRUQWpkuRId9MWtAkwUbJtLgEe2pn3dGc3qDOyrRwNEVHtxWSbiKiCVIlpSHMpTLbdbHsVnl9hfOmu7lAls7ANEZG1MNkmIqogRWK6fmZbt72erdLttZ3u4g51KpNtIiJrYbJNRFRBGYlyFEi1yzP8XGz77dOv8MNAuqsHC9sQEVmRbf+1ICKyIQ+ScgAAzholnKW2/fbpW/hhII1VJImIrMq2/1oQEdmQRLkCAOALpZUjKZ9uH/B0Vw8ok9KtHA0RUe1l21f4EBHZkORsFeAP+Eo1JmvTwVmK7+qlFv5smnLtwMM15dlOLsiN5ZptIiJrYbJNRFRBSfna//s6m+5LQam9HZ59ro3J2tPxcBBBCg2UECNJno9GJu+BiIgqgstIiIgqKFmtnS32t/Ft/wBAJBLBx66wZHuW7S97ISJ6VDHZJiKqAEEQkCpyAAD4ezuZrF1FvhI/fH8KP3x/Cop80ybFvk7aUu3JuaZb9kJERJVj+9MzREQ2QJ2ehTQXNwBAgK+LydpV5KvwYVYdAMDz+SrYO0pN1rafqxTI0iBZLYGg0UAk5vwKEZGl8Z2XiKgCVAlpSHMtrB5ZWArd1vl7amfi053coE7LsnI0RES1E5NtIqIKUCamIb0w2dZtq2frdCXb01zdoUxKs3I0RES1E5NtIqIKyEtMR6azKwDbrx6p41u0imQC99omIrKGmvEXg4jIyh4kZgMA7AQ1ZI41463zYWEbdygTObNNRGQNNeMvBhGRlSWlajfZ9hYUEItEVo6mYnT7gae7eEDFZJuIyCqYbBMRVUBClgoA4CNRWzmSiis6s61IYLJNRGQN3PqPiKgCkvO0e1X7OZi2XQdnKRb6Jhb+bLpy7QDgW5hsK6T2yEjJRl2Ttk5ERBVh0WT7999/x48//ogrV64gLy8PPj4+aNu2Ld59910EBgZaMhQiokpJVmiXjvi5mW4fbEBbrn34ix1M2qaOk50IbiI1sgQJkjIK0MIsvRARUVkskmwLgoDZs2dj8+bNqF+/PgYMGAAXFxckJSXh9OnTiIuLY7JNRDZLEAQkQbu3doCXo5WjqRwfByArH0jKYRVJIiJrsEiyvWHDBmzevBkvvvgiPvjgA0gkhnvUqlQqS4RBRFQlmqxcpDhpq0cG+ZuueiQAKBUq7Nj6LwBgyLA2kNqb9m3Zz0WC6HwgWWHSZomIqILMnmzn5+dj6dKlqFevHmbOnFki0QYAOzsuHSci26V8kIpUNxkAINDTtIu2C3KVmJrsDwB4Kldp+mTbwx5IVSDNzgnq7DxIXJ1M2j4REZXN7Fnu33//DblcjsGDB0Oj0eC3335DTEwM3Nzc0LVrVzRo0MDcIRARVYsyIQ2p7p4AgADXmlE9UsfP3R6AQlvYJjENEtcga4dERFSrmD3ZvnTpEgBAIpHg2WefRXR0tP6YWCzGK6+8gvfff7/MNgRBMGuMVHPoxgLHBOlYYkxkx6Ui0zkMABDgIjZpX0XbEgTB5I9Dv9e2qzsUD1Jh36iOSdu3VXyvoOI4Jqg4QRAgskDdBLMn26mpqQCANWvWoHnz5ti6dStCQkJw9epVfPjhh/jhhx9Qr149vPDCC6W2kZGRYe4wqYbhmKDizDkmou+mAI5hsNeogfxMyAtM9+acnZmn/1meKYcKBSZrGwBcRUoA2pLtGbfvQdWinknbt3V8r6DiOCaoKE9PT7P3YfZkW/cJUiqVYunSpfD3165N7NixI7799ls8++yzWLNmTZnJtoeHh0U+eZDtEwQBGRkZHBOkZ4kxkZYNwBHwFQrg6VnfpG3bwQGAtuCMzF0GV5lp11Q38MkHkIo0F3fYZ8ZDJpOZtH1bxfcKKo5jgoqz1LccZk+2XV1dAQAtW7bUJ9o6TZo0Qb169RAbG4vMzEy4u7sbbUMkEvEXgwxwTFBx5hwTCVkqwAfwl2pM3kfR9szxGB5WkfSAKv6/Wvd7w/cKKo5jgizN7OXaGzVqBABwc3Mzelx3e35+vrlDISKqksTCt6cA55r3B1qXbGe4uCH/AUu2ExFZmtlntiMiIgAAd+7cKXFMqVTi7t27cHZ2hpeXl7lDISKqkkS19q0ywN201SMBwN7RDh+7xRf+7F/O2ZXn7SSGGAI0YjGSU3PRyOQ9EBFRWcw+s12/fn1069YNsbGx2Lp1q8GxlStXIjMzE7179+Ze20RkkwSNBslibdXIIF/T71Ft7yjFa693wmuvd4K9o+mTeYlYBC+pdl1iUpbS5O0TEVHZLJLhzp49GyNGjMCsWbNw8OBBNGrUCFeuXMGJEycQFBSE9957zxJhEBFVmjotCymuHgCAOv6uVo6manydJUjJEJCcL0DQaCASm32ehYiIClnkHbd+/frYvn07hgwZgsuXL2PDhg2IjY3Fiy++iK1bt8LX19cSYRARVZoyoUj1SJm96dtXqLB7+7/Yvf1fKBUqk7cPFFaRBJDu5ApVstwsfRARkXEWW7sRGBiIqKgoS3VHRGQSivhUpLr5AAACzVA9siBXiTfueQMArpuhXDtguCOJ8kEqpP68RoaIyFL4XSIRURmSH2RAZaddS61LWmsaXdxpLu5QPki1cjRERLULk20iojLEJ+UAADzV+bCX1Lyt/wDAz6WwZLubB1RMtomILIrJNhFRGeLTteXT/UQ1dycP/8KZ7VQ3GZQPUqwcDRFR7cJkm4ioDAk5GgCAv71lyvqaQ5CbNtlOdveCMp4z20RElsRkm4ioDEkK7dIRc1wcaSlB7tqLLlPcZchjsk1EZFFMtomIypAoaLfNC/A0/bZ/luLrLIZUJEAjliAhQ2HtcIiIahWWbSQiKoWgUiNZ6gwACPJ1MUsf9o52mGF/r/Bn05drBwCxSIRAJ+BuLhCfZ5YuiIioFEy2iYhKoUpKR6qrDABQJ8A81SPtHaWYNKGLWdouKshDiru5KiRKXaDOyoXEzdnsfRIREZeREBGVSpmQhhR3GQAg0F1q3WCqKaiw+mWyhxf32iYisiAm20REpciKT0O2k3b5SICZLpBUKVU4tP8KDu2/ApXSPOXagYc7kiS5M9kmIrIkLiMhIipFfEIWAMBBo4KHg3kK2uTnKDHqhjsA4HpXJVxl5nlb1m//5+HFwjZERBbEmW0iolLEJ2uvJvTT5EMkqpnVI3WC3LRJfJKHFwvbEBFZEJNtIqJSPMjUVo30k6itHEn1Bbk/nNnmMhIiIsthsk1EVIqEXG3VSH9HKwdiAnUK15znODojPTHDytEQEdUeTLaJiEqRWFg9so5Hzd6JBABc7MXwEGtn6OMyzHchJhERGWKyTURkhCAISBZpt8sL9Hk09qSu46z98MDCNkRElsNkm4jICE1mDlKctLuE1K3jZuVoTCOocIY+QbCHoKr569CJiGoCbv1HRGSEIi4ZqW4yAECgt/kWbds5SPC2KLbwZz+z9QMAdb0dgbgcJLt7QpmYDvsgH7P2R0RETLaJiIwquJ+CVDdt8muugjYA4Ohkj3ffesxs7RdV171w+z93LyjjU5hsExFZAJeREBEZkXQvDWqJBCJBgJ+z+ZJtS6pTpLCNMp57bRMRWQJntomIjIhLzAGcAS9NAaQS8xW0USlVOHM8BgDQsWsw7KTme1vWl2z38IIyPsZs/RAR0UOc2SYiMiI+LR8A4Ccx7zZ5+TlKPHfeEc+dd0R+jtKsfQUVLiNJcfdEflyyWfsiIiItJttEREYkZmt36wh4BAra6Pg5i2EHDTRiCRKScqwdDhFRrcBkm4jIiHildslF0CNQ0EZHIhbB366wsI3cvLPoRESkxWSbiKgYQaNBvMQJAFDfz8nK0ZhWHWft2358vvnWoRMR0UNMtomIilGlZCDJzQsAUL+Ou5WjMa26ntqqmA9Y2IaIyCKYbBMRFaOMS0aShzbZrleYnD4q6vpqZ+qT3TyhTEizcjRERI8+JttERMXk3EtGqrsnAKCu+6Oxx7ZOXY/CwjYeXlByRxIiIrPjPttERMXcu58JAHDQqODtZN45CTsHCcaqYgp/Nm+5dgAIctO+7bOwDRGRZTDZJiIq5m5yHuABBGryIRKZ90JCRyd7zJ7Wzax9FGVQ2CbussX6JSKqrbiMhIiomPuZ2gsH60gfvQsIdcl2tpML0uPTrRwNEdGjj8k2EVExcQXa2ewgV/O/RarValw8HYuLp2OhVps/uXexF8MT2j2276bmm70/IqLajstIiIiKeaDR7kBS39vB7H3lZSnQ/2/tbPP1Jgq4ysy/r3eQgwbpBcD9bI3Z+yIiqu04s01EVISgUiPe0Q0AUD/Q1crRmIfuIsk4xaO10woRkS1isk1EVIQyIRX3vf0BAKENHq2CNjr1fR0BAA8kztAoWLadiMicmGwTERWREpOMDBdtkt3I69EqaKNT388ZAJDo4QUVC9sQEZmVxZPtVatWISwsDGFhYbhw4YKluyciKtOtu9o9tr0LsuFq/2jOR9TTF7bx5l7bRERmZtG/JLdv38a3334LZ2dnS3ZLRFRht5K1O3Q0UOVYORLzqeeuTbYTZd5QsIokEZFZWSzZVqvVeP/999G0aVP07t3bUt0SEVVKdKYAAGggfXTXMutK0Gc5uyL9PpeREBGZk8WS7VWrVuHatWuYP38+JBJeAU9EtilGqZ31behm3sqROnYOEryUF42X8qJh52CZ90ZXezE8NAoAwL2kXIv0SURUW1lkn+0bN25gyZIleOONN9CkSRNLdElEVCWxYhcAQGN/8+93DWjLtX82o7tF+iqqjp0KGRp73E1XWLxvIqLaxOzJtkqlwvTp0xESEoKxY8dWqQ1BEEwcFdVUurHAMUE6phwTao0G911kAIAmwbJHepzVdRXjaiZwP0d4JB8n3yuoOI4JKk4QBIhE5v8W0+zJ9vLly3H9+nVs2bIFUqm0Sm1kZGSYOCqq6TgmqDhTjIn4uCwUSB0gUavhHeAAuVxe/cDKoVarcf9OOgCgbiNPiy2z83cTA5lAvEqK9PR0i/zBsQa+V1BxHBNUlKenp9n7MGuyfe3aNSxfvhyvvfYaWrRoUeV2PDw8Htk/BFQ5giAgIyODY4L0TDkmzpxNAeCEwKw0+AW2NUl85cmW5+Gp49odUK41cbZIuXYAaNJQBMRlI9FVBlclIPWTWaRfS+F7BRXHMUHFWepbDrMm2++//z7q1auHyZMnV6sdkUjEXwwywDFBxZliTNyOywbghHrKLIuNr6L9WHJc1/dyAJCNRA9vKGMTYe/vZZF+LY3vFVQcxwRZmtlntgGgVatWRo8PHz4cALB06VJuB0hEVncnTQmIgGDJo7vtn079wr22Ezx9oIiNh0unZlaOiIjo0WTWZHvo0KFGbz9z5gxiYmIQGRkJLy8vBAUFmTMMIqIKuZMnBpyBRm7WjsT8Gnho14ZnO7kgKToZ5l+1SERUO5k12f7000+N3j59+nTExMRg3LhxaNu2rTlDICKqsLsi7XrpED/LrJu2JiepGH5CAZJEDriTkIswawdERPSIsmi5diIiW6VQC3jgoJ3SbtJQZt1gLKSBowYAEJOhsnIkRESPLibbREQAYlILoBGL4VSQj7ohvtYOxyKCZdovN+8qLFLfjIioVrJKsr1gwQJcv36dS0iIyGbcuJ0GAAhKT4I00Nti/UrsJRiaHY2h2dGQ2Ftmj22dRnW01TLvS12hyWclSSIic+B0BhERgFv3sgC4oF5BJkRiy81DODnbY9Esy5drB4BGga7A+TTEe/lCEZsAx7D6VomDiOhRxmUkREQAbqUUAACCxQVWjsRyGnpq51viPf2giE2wcjRERI8mJttERABicrVFLhq6WrZfjUaDxPvpSLyfDo1GY9G+gz20yXamixtS7iRZtG8iotqCyTYREYBYwREA0CTA2aL95mYWoP22HLTfloPcTMvOqrvYi+Gj0fZ5816mRfsmIqotmGwTUa2XWaBBmlS7t3aTEMtdHGkLQhy02/7dTH30q2YSEVkDk20iqvVup2pndz2zMuAdVsfK0VhWqI8UAHC7gNfLExGZA5NtIqr1dNv+1U1PhLRu7dhjW6dpsAcAINrZC+rMXCtHQ0T06GGyTUS13s272vXK9VU5EEksu9e1tTUN0l4RetcnEAW37ls5GiKiRw+TbSKq9W4Xrldu6FD7ypaHemuXjyR6+iD9OpNtIiJTY7JNRLXercL1yk08a9+6ZS8nCTzV+QCAG9Fy6wZDRPQIYrJNRLWaSiPgrkRbtrxpfTeL9y+xl2BAZjQGZFq+XLtOiFRbqv16Ur5V+iciepTVvmkcIqIiYuRKqMQSOCryEdyyrsX7d3K2x6qPrFOuXSdUZoczacDNvNq1Xp2IyBI4s01EtdrVO3IAQL2URDiH1bNuMFYSVjijH23nBkGltnI0RESPFibbRFSrXbup3fYvuEAOsZODxfvXaDTIluchW55n8XLtOk0bygAAd70DoIh5YJUYiIgeVUy2iahW061TDnGwzoxubmYBwtamImxtqsXLtes09bUHACR4+kB+5Z5VYiAielQx2SaiWu124TrlsMKEszbydhLDQ10AQSTGtetJ1g6HiOiRwmSbiGottUZAjFRb1KVpiJeVo7EekUiEEIl2Vv16PKtIEhGZEpNtIqq17soVUEikkKqUaNwmyNrhWFUTbykA4GaWlQMhInrEMNkmolrr6pVkAEDdtCQ4NQy0cjTW1bSBOwDtjiSaXO63TURkKky2iajWunJbuxNJQ2UmROLa/XaoS7bv+gQg//pdK0dDRPToqN1/XYioVruSrAQANHHk3tJhPtoLRB94+SHjUqyVoyEienSwgiQR1VrXVA6AHdDS3/L7a+uI7cR4XB5T+LOv1eLwcxbDTaNElliKGzdSULsX1RARmQ6TbSKqlXKVGtx18AAAtGlqvZ1InF0d8H9zulmtfx2RSIQQeyUuqKS4npiHntYOiIjoEcFlJERUK12+lwNBJIJndgYatGlg7XBsQjM/7VKSq/lSCIJg5WiIiB4NTLaJqFa6ULgTSeO0B7DzlVk3GBvRtrEMAHBDFgBVUrp1gyEiekQw2SaiWum/ezkAgDDkWDWObHkegr65j6Bv7iNbnmfVWNrUdQYA3Aqsj7zLMVaNhYjoUcFkm4hqpSvZ2re/Fh4iK0diO8K8pbDTqJHt5II7l+OtHQ4R0SOByTYR1TpKtYBbEm2Z9jbBblaOxnbYS0RoLNKWa//3nnVn/ImIHhVMtomo1rmRXAClWALn/Dw0CW9k7XBsSiuZdqb/Ujb/PBARmQLfTYmo1rlwMQEAEJISB6em9awcjW3RzfRfsfeCoGKxHyKi6mKyTUS1zulbcgBAM2TX+jLtxXVu6QMAuFonGNk34qwcDRFRzce/MkRU65zL0tbzCveVWDkS2xPmYw9XZT4K7B1w/vx9a4dDRFTjMdkmolpFnq/BHXtt5cjOrf2sHI22XHuX9Lvokn4XYjvrvyWLRSK0UWcAAE7dybZyNERENR/LtRNRrXLqRjoEkQhBqYmoH9HE2uHA2dUB2+Z2tXYYBjr5ivF3FnAmR2rtUIiIajzrT6MQEVnQPxe1lSNbyuNh5+Vu5WhsU+eWvgCAi24B0ChVVo6GiKhmY7JNRLXKmURt8tjBRWnlSGxXx3aBkKqUyHBxw7Vzd60dDhFRjWb2ZSSJiYn45ZdfcOzYMdy5cwcpKSnw8PBA+/btMXr0aLRp08bcIRARAQAKVAIuQVvMJqKxbcxqZ8vz0HqVtlrjxTF14CpzsnJEgKO9BM2zk/GvrA7+/jcZzSO4FzkRUVWZfWZ7w4YNiIqKwr1799C1a1e8+uqr6NChAw4dOoQRI0Zg//795g6BiAgA8F9iARQSO7jnZKF5p4bWDkevQOqAAqmDtcMw0MG5AABw+oHCypEQEdVsZp/Zbt26NTZu3IiOHTsa3H7mzBm88sormDt3Lnr37g17e3tzh0JEtdzxf5MAiNHiQTScmve1djg2rXOYJ36IBi7ADYIgQCQSWTskIqIayewz23369CmRaANAx44dERERAblcjuvXr5s7DCIinIrWbmXXVsiCyI57bJela/dGEAkaxHn4IP5GgrXDISKqsay69Z+dnZ3B/0sjCIIlwqEaQDcWOCZIp6JjQhAEnMt3ACRAp0CpzYyhonEIgmAzcck8nRCSlYJb7n449lcMRoQGWDukSuF7BRXHMUHFWepbO6sl2/Hx8Th+/Dh8fX0RGhpa5rkZGRkWiopqCo4JKq68MXEnQ4MMiQPslQqENXGDXC63TGDlyM7M0/8sz5RDhQIrRmOotTQXtwD8E52NfjbyfFUW3yuoOI4JKsrT09PsfVgl2VYqlXjvvfegUCgwbdo0SCRlf53r4eHB9YIEQPspNCMjg2OC9Co6Jq5cTwEAhMbHoM6r4bCTeVgqxDLZwQFAGgBA5i6zid1IdB4L88SOu8C/8Khxv3N8r6DiOCaoOEt9y2HxZFuj0WDmzJk4ffo0nn/+eQwaNKjc+4hEIv5ikAGOCSquvDFx8moaABe0yU6E1EdmsbjKI7YTo236/cKffWxqXPfs3hDYmIbb3gFIvJWIwNBAa4dUaXyvoOI4JsjSLJpsC4KAWbNmYffu3Xj22Wcxd+5cS3ZPRLXYmTQAEqCDl239kXVxc8S+uZ2tHYZRgb7OaJx5HbfcffH7kRiMqoHJNhGRtVmsgqRuRnv79u14+umnsWDBAojFLGBJROaXlKPGPYkLRIIGES19rB1OjdLdNR8AcPg+99smIqoKi2S7Go0GH3zwAXbs2IEBAwbg888/L3edNhGRqZyIyQEANEiKR2DXZlaOpmbp3c4XAHDS0R+qApa4JyKqLLMn20UT7X79+uGLL75gok1EFvXHv9qLI9slRMO+UR0rR2MoW56H5lHX0DzqGrLleeXfwcK6dmsI54I8ZDi74uTRm9YOh4ioxjH7mu2lS5dix44dcHZ2RnBwML777rsS5/Tu3RvNmnG2iYhMTxAE/JmkveK8m3OeTV4YleHkau0QSmUvlSCiIBmHHerj9/MpeKyPtSMiIqpZzJ5sx8XFAQByc3OxfPlyo+cEBQUx2SYis7iZpkICHCBVKdG1BddrV0Wv+g44LAf+zHG0dihERDWO2ZPtBQsWYMGCBebuhojIqMO3tCXaW8behN/EttYNpobqF9kIs3fk4LpnAB7cSUZgI19rh0REVGNwOxAieqT9/l86ACAiORoOYfWsHE3NVLe+JxpnJkMQifHbr9esHQ4RUY3CZJuIHlnp+RqcytJ+gfdEAAtZVEdPTxUA4Ld7KitHQkRUszDZJqJH1qHoPKhFYgQnxqFZ91Brh1OjDeyl/VbgH8/6yIxLtXI0REQ1B5NtInpk7buQBgDocutfuD8ZbuVojBNJRAiTP0CY/AFEEtudeW/f0h8BuRkosHfAL/uuWjscIvr/9u48PKoq3ff4d9eQhCIjEVCZjzERRGhRZlpkULsPiAqKikMUfRRRb4vDOd2n9bZyaO3T3Q4N6nPl0qDihCjdHkVbru1xYAyCERkEUcxIBJKQpDLUtPf9IyQmEHBg76pU+H2ep56q7LVr1bvhzc5bu1atJXEjqsu1i4hES33I5KMyEww3E5Prcad2jnVIbeqcksT7D7bPNwItGYbBBb5alpLGyj1Brox1QCIicUJXtkWkQ/qoMECD4abbwXKGjjsj1uF0CNMODSX5KLMf+ws1lERE5IdQsS0iHdKKjfsBGPHlFtImjYhxNB3DuYNPJqtqHyGPlxfe3BXrcERE4oKKbRHpcCrqI7y7t3HVyEuS/Xgy02Ic0dHVVtcz5D8/Z8h/fk5tdftbrr0lwzC48qQGAJZV+rAsK8YRiYi0fyq2RaTDWb61hpDh5rS9hYyadk6swzkmy4RvUzL4NiUDy4x1NN/v6kvPoFOggaLkTD7aWBrrcERE2j0V2yLSoViWxQt5jbOQTPpqMynj23exHW8yenThwoqvAHh29bcxjkZEpP1TsS0iHcone4N8HUogMRhg6uA0DI871iF1ONcObJzZ5X0rk31+LXIjInIsKrZFpENZmtc4S8Z52z+h94zxMY6mYxp+yRBySr8h7Hbz4j+LYh2OiEi7pmJbRDqMqgaTt/aEALg0VELiaT1iHFHH5E71Mc3cC8BLu4KY+qKkiMhRqdgWkQ5jxWcHCRhu+uwr4fyrNd2fk668tD+dG+oo9Xbmgx0HYx2OiEi7pWJbRDoEy7JYuq5xbu3JRZ+T9q/xUWwbLuhTtZ8+Vfsx4uiMnDn6TC4q2grAolXFMY5GRKT90nLtItIh5JfUs5POeMMhrp7YF8MVH5Vr59ROrP3d2bEO40czDIMbhnZhxUH4yEpjd0ktWT06xzosEZF2Jz7+GomIfI+FK/cAcN6ez+lz1dgYR3NiGHLNGIYX78QyXDy1fEeswxERaZdUbItI3NtbE+btuhQAbjzdgyvRG+OITgyG18MtZ/kA+Hs4k+Iyf4wjEhFpf1Rsi0jce+7dUiIuN4OKvuS8mfF1Vbu2up5RD33KqIc+bffLtbflwhlDOWtfAUGPl3kv74x1OCIi7Y6KbRGJa1W1IVYcTAZgZqYfd2p8jRu2TChI60pBWte4WK79cC6vh/8YaADwFl3Z9EV5jCMSEWlfVGyLSFx76oXPqfMm0qe8jEtnnx/rcE5IP79yOBcWbcUyXNz9xl5CEc27LSLSRMW2iMSt0sIKFlenAzC7ey3e9JTYBnSCMtxu5k7tS2ptDbsT0/nLf38d65BERNoNFdsiErf+95JtNCQkckZ5CVffMirW4ZzQeo0+g3uqG+fdfvJrN7u+jb/x5yIiTlCxLSJxafnft/NOWj9cpsm/jUjC5dWyAbF2/d0TGPbNDkJuD3Ne+ErLuIuIoGJbROJQ8YF67t/ZOL1fbu1uho3qHeOIBCChexcePi+ZToEG8t3pLPrv3bEOSUQk5lRsi0hciZgWs/+6E39iJ3L2FfHbO4bGOqTjYrige00l3Wsq42q59qPpP3Ukt1U2Dif5404XX3yxL8YRiYjEVgc4tYvIieT3/zefTYknkRgM8PhwL0npybEO6bh0Tu3E5gfOYvMDZ9E5tVOsw7HF//qPCxi8r4D6hERueHUvFWVVsQ5JRCRmVGyLSNxY9tYunqnvCsD9xtcMvuTcGEckbfGmdmbh9f04yV9FUWom1zy1HX95TazDEhGJCRXbIhIXlny4l3u+TALgiv07uPGeCTGOSI6l5xmnsvjCFHyBerZk9uL6R/OpP1gb67BERKJOxbaItGuWZfH4B/u5/9MIluFiyteb+dOvx2C4Osbpq7amgfEPbmT8gxuprWmIdTi2OmdYbxaP9pAYCrKhWz9u+cMGQn5NCSgiJ5aO8ddKRDqkQNjirr/v5c/5AQCu+eQ9nrhvON6UjjG2GcCKWOxMP4Wd6adgdcCVF38+ph9Pn23iiYR5/+Rsrnskj/L9/liHJSISNSq2RaRd+uJAiMuWFvFagYnLNLl97ZvM/e04Ent1j3Vo8iP9YmIWj/UP4omE+bjraYxbVMSLa77VPNwickJQsS0i7Yo/aDL3o4Nc+EIZn1W56NxQxyMfv8K9j11OUv8+sQ5PfqJp/5rNq0PDnHrwAOWdUvi3jSEmPb2bPZWhWIcmIuIoFdsi0i5YlsVbX9Yxdkkpz2z2E8Fg1I7NLMl7hauW3EZCz66xDlGO0/Dzsvjntd247fP38TXUsyXUiQsWF/HS+0VYusotIh2Uim0RiblNewNc/cpebl1ZQVk9nFKxj7kvzeexhK8Z+eK/40lPiXWIYpPUrFP57f+ZwWsJWxlY9CX17gTu22Iw4U/beDXvAMEOOG5dRE5snmi90JYtW1iwYAH5+fmEQiGysrLIzc3l4osvjlYIItKOVAdM/uebBp7bWMmGA40FliccYvqafzDTVUrP/7qKlHFDYhylOMHwehh892X87cti/rhwE893O4udCenMWdvAw6u/IndAEtf+/BS6dnbHOlQRkeMWlWJ7w4YN3HTTTXi9XiZNmkRKSgqrVq3i3nvvpaSkhFmzZkUjDBGJseLqMP/v6wbe3VHNum/DhA99uOaJhBm/ZT25NbsY+u/T6DzizBhHGl1p9U2zc2TGNI5o853ekwf/1JOZ//M5i15ez4peg9mfksafv4A/f7GXPmE/53W1mHFeDwb1S411uCIiP4lhOTxQLhwO88tf/pKysjKWLVvGgAEDAPD7/Vx11VXs2bOHlStX0rdv3zafX1lZSXp6OoZhOBmmxAnLsjh48KByIk6U1oRZWxxgzc6DrCsOUhT2tmrveaCMUV98ynSjjAHXjyd18qgf/f+qnOgYLNPkwFvrWP7uHl7t3JcvT+3bqj2reh8XdfLzs4HdGTyiL6emJxzz/1t5IYdTTsjhLMuKSi44fmV7/fr1FBYWMnXq1OZCGyA5OZnZs2czZ84cVqxYwd133+10KCJio4hpUdlg4g9a1IctaupCfFlYzfbSOnZVhPmyzsV+V1KLZ3hxmSYDinYzfNdnjPVUM3D06aT/cRKJ/3JqzI5D2gfD5aLrlNHMnjKaWw7WUPLBVlZ/UsrK2mTW9Mhmd2o3dtMNdgI795MaqOP0hkr6eEP0TPXQu5uPPr3S6NM3g5O7J+NSMSUi7YTjxXZeXh4AY8aMOaJt9OjRrfYRke9YloUFmFbjzbLAbGxo/LllW9P+LX5ubLMOtTXeIqaJGQhjhsJEgmFCDSFqG8L468PUNkSoDUSoDZrUBkxqQyZ1IYvaMNSFoSpicCDipjZiUGu5qHQnYhptfcc6ofHmApdpkrW3gEGFX3KOdZBhpyTQbXgOKb+5AW+3jKj9W0p88aSn0OfSkfS5FK4B9u0uY/n7hWwoDbLbTKIovSvViT42JfrYBBAGSg/dNlTjDZfTra6a7oEaMs0gndwWnTwGvgQXvkQPvk4eOvu8+Don4PO68CV58CW56dzJS6fOXjolevF4DLxeNx6vG6/bwONxkeB14XK7MdwucLvAMHSFVES+l+PF9jfffANAnz5Hzo+blpZGRkYGBQUFx+xDU0JJk6ZcsCyLRZ/6efYzP05mh2VB5EAVZiB49H0AyzCwMLAMAxMDDDAP/dy4nea2w7c1P88wvuurzSLWSe5Dtx+4awuJwQCdggGSQgFOqTxAv/oKTqOenAw3A3JO4qSx/0LSgGG4khJaPc+u3+uWORGP6moamP7oZwC8es9gfClJ3/OME0/X07oz+7TuzKZxuIl/TxnbdpazvbiWgoogJfVQanopS0jmQHI6IY+XktRMSo42Bj546HawrUYTCBw1FsMycUcieMwIhgWGZWFgHbqn1ePm57Tx2DjKmctokcdt7tviYcvthnX0frvVVvHQBy+TEmwg+fwh9Hj09qMeX0cW7+cKsV+HGUbi9zd+8Sclpe2pu5KTkykrKztmH1VVVbbHJfGtqqqKf37VwDdVEedfLCG58WJtHHGZJmDhOnRJ22VZrYsCC1yWicsy6RQKNt4iQZLCIXxmiE5muPFmhelEBB8ROhMh0xUmtbMXX0oCXdMS6JKRRGJmCq4uKbgyMnGl9m686tdCEAg21EFDnaPHHK/nCX91PfkZPQGoqKwkGOk4S9E7JtPHGaN8nNFGU7C2gb2FVRTv9VNabXIwYFIfNKkPRBrvQxYNEaiPGNTjIuDy0ODy0uD20OD20uBNIOT2EHG5MF1HvgG1DBdhj4sw3jZevX3am9KFsooAiQfKqHpnHb7fXo3hOnFn/o3Xc4U4IyPD+U9Zozb13/FIS0vTR3UCNL4LraqqIi0tjWcvTWPr/hA4em0bwlW1hEoPtNp2eDa6Gi9mN94bxqErXOByNU5mbwCGy2jexwUYRsvnGYD1XZurjT4O7WsYRvN+uIzm/t1uA8Nw4fK4wOVqLHpdjR93G4bReO9yYSR6MRK8GAmeDvEHt2VOxON5wkMiUAFAemo6yekqto9LOnTrcTKDbMiLSCRCJGwRCpmEIhHCIZNQ2CQcMQmFTMyIiWVajfdW470ZMTFNIBIB08S0gIiJZTbui2k1n7FanbmsI7e19bitJe5bXkdvq++uXpOeL9wDQNLpPXGfoPPWx/u5QuwXrU85HC+2k5OTAaipqWmz3e/3H/WqdxND4+LkMIZhkOQ1OPfUROdf7NQk6H9iTckWj+L1PNEy5ng9hvbseP5NPR4PHg8kamRPh6LfM4k2xy9rNU3p19a47KqqKiorK9sczy0iIiIiEu8cL7aHDh0KwOrVq49oW7NmDQDDhg1zOgwRERERkahzvNgeOXIkvXr14q233mLHjh3N2/1+P08//TQej4fLLrvM6TBERERERKLO8THbHo+HefPmcfPNNzNjxgwmT55McnIyq1atori4mLvuuot+/fo5HYaISLuVGDr6VHMiIhLfHF+uvcmWLVuYP38++fn5hEIhsrKyyM3NZcqUKcd8npZrl5a03K4cTjkhbVFeyOGUE3K4DjPPdpNBgwaxaNGiaL2ciIiIiEjMxf8kuyIiIiIi7VRcLGojItJR1fkDXP+nTQA8f985+JKjMHe8iIhEjYptEZEYMsMm6zJ6Nz8WEZGORcNIREREREQcomJbRERERMQhKrZFRERERByiYltERERExCEqtkVEREREHKJiW0RERETEIVFbrl1ERERE5ESjK9siIiIiIg5RsS0iIiIi4hAV2yIiIiIiDlGxLSIiIiLiEBXbIiIiIiIOUbEtIiIiIuIQTzRfbMuWLSxYsID8/HxCoRBZWVnk5uZy8cUX/+A+TNPkpZdeYtmyZRQUFODz+Rg+fDhz5syhb9++zgUvjjnevPjkk0947733yMvLo6SkhLq6Onr06MGECRO49dZbSU1NdfgIxG52nCtaCoVCXH755XzxxRf069ePf/zjHzZHLE6zKyf8fj+LFy9m1apVFBUV4fV66dWrFxMmTOCOO+5wKHpxih15UV1dzZIlS3jvvfcoLi4mISGBnj17ctlll3HFFVeQmJjo4BGInd544w02bdrE1q1b2bVrF6FQiEceeYSpU6f+qH7srjWjNs/2hg0buOmmm/B6vUyaNImUlBRWrVpFcXExc+bMYdasWT+onwceeIBXX32VrKwsxo4dS3l5OW+//TaJiYm88sorZGVlOXwkYic78mL06NFUVlZyzjnn0L9/fwzDIC8vj+3bt9O7d29eeeUVMjMzo3A0Yge7zhUt/eUvf+HZZ5+lrq5OxXYcsisnSktLyc3NpaioiFGjRtG/f3+CwSCFhYWUlpby5ptvOnwkYic78qK6upqpU6dSVFTEOeecw+DBgwkGg3z00UcUFhYyYsQIlixZgsulgQDxYPz48ZSUlJCRkYHP56OkpOQnFdu215pWFIRCIWvixInWwIEDrW3btjVvr6mpsSZNmmQNGDDA2rNnz/f2s27dOis7O9uaMWOGFQgEmrevXbvWysnJsa655honwheH2JUXzzzzjPXtt9+22maapvW73/3Oys7Oth588EG7QxeH2JUTLW3dutUaMGCA9fzzz1vZ2dnWRRddZHPU4iS7ciIcDlvTpk2zBg0aZK1bt67N15H4YVdeLFy40MrOzrYefvjhVtsDgYA1bdo0Kzs728rLy7M7fHHImjVrrOLiYsuyGmuD7Oxs6/XXX/9RfThRa0blrdr69espLCxk8uTJDBgwoHl7cnIys2fPJhwOs2LFiu/tZ/ny5QDcddddJCQkNG8fOXIkY8aMYePGjezZs8f+AxBH2JUXt9xyC926dWu1zTAMZs+eDcDGjRvtDVwcY1dONAkGg/z6179m8ODBXHvttU6ELA6zKyfeffddPv/8c2bOnMmIESOOaPd4ojqqUo6TXXlRVFQEwNixY1ttT0hIYPTo0QCUl5fbGLk4adSoUfTo0eO4+nCi1oxKsZ2XlwfAmDFjjmhrSuamfY5lw4YN+Hw+hgwZckRbU98qrOKHXXlxNE1/PN1u90/uQ6LL7px48sknKSgo4Pe//z2GYdgTpESVXTnx9ttvA/CLX/yCvXv38vLLL7Nw4ULeeecdamtrbYxYosGuvDj99NMB+Pjjj1ttD4VCrF27lqSkJM4+++zjDVfiiBO1ZlTeyn/zzTcA9OnT54i2tLQ0MjIyKCgoOGYfdXV17N+/n+zs7DaLp6YB602vJe2fHXlxLK+//jrw3YlX2j87c2LLli0sWrSIOXPm0K9fPzvDlCiyKye2bt0KwKZNm3jkkUcIBoPNbV26dOGJJ55g+PDh9gQtjrMrL6644greeOMNFi9ezNatWxk4cCChUIiPP/6YqqoqHn30Ubp37253+NJOOVVrRuXKtt/vByAlJaXN9uTkZGpqao7ZR1N7cnLyUfto+VrS/tmRF0ezY8cOnnrqKTIzM7n55pt/cowSXXblRDAY5De/+Q39+/dn5syZtsYo0WVXTjQNBZg3bx65ubl8+OGHrFu3jvvvv5+amhpuv/129u3bZ1/g4ii78iIpKYmlS5cyZcoU8vLyWLx4MUuXLm0eotLW1U3puJyqNfX1WulwioqKuPXWW4lEIjz22GN06dIl1iFJlD3xxBMUFBTw8MMPaxiRAGAdmnjr/PPP59577+Xkk0+mS5cuXHfdddxwww3U1NTw2muvxThKibaKigpuvPFGPvvsMxYuXMgnn3zCmjVreOihh1ixYgXTp0+nqqoq1mFKnItKsd30TuBo7zL9fv9R3502aWo/2ruJpu1Hezci7Y8deXG4kpIScnNzqaioYP78+W1+EUraLztyYtu2bTz77LPMmjWLnJwc22OU6LLrPNHUz/jx449oGzduHPDdUBNp/+zKiz/84Q98+umnzJ8/n7Fjx5KSksJJJ53E9OnTue+++ygqKuK5556zNXZpv5yqNaNSbDeNcWlr/FRVVRWVlZVtjrtqyefz0bVrV4qLi4lEIke0N42f0cI28cOOvGipuLiY6667jn379vHEE080/wGV+GFHTuzcuZNIJMKCBQvIyclpdQPYs2cPOTk5nHvuubbHL/az6zzRNG6/rUWumrYFAoHjiFSiya68+PDDD0lPT+eMM844oq3pYs22bduOL1iJG07VmlEptocOHQrA6tWrj2hbs2YNAMOGDfvefoYNG0ZdXR2bN28+oq2p76bXkvbPrryAxkL7+uuvZ9++fTz++ONMnDjRvkAlauzIib59+3L55Ze3eYPGKxeXX345l156qb3BiyPsOk80FU67d+8+oq1p2/FOGSbRY1deBINB/H5/qy/MNqmoqABoNf2bdHyO1Jo/embunyAUClkTJkywBg4caG3fvr15e8vJ57/++uvm7eXl5dbu3but8vLyVv1oUZuOxa68KCoqssaNG2cNGDDAevfdd6MWv9jPrpw4Gi1qE3/syonCwkJr4MCB1siRI62ysrJW/VxyySVWdna2tXbtWucPSGxhV17MnDnTys7Oth5//PFW2wOBQHPb0qVLHT0Wccb3LWoTzVozasu1r1+/nptvvhmv18vkyZNJTk5uXlb1rrvu4rbbbmved8GCBTz55JPccccd3Hnnna36uf/++1m+fLmWa+8g7MiLpuVZf/azn7U55ypwRB5J+2XXuaItOTk5Wq49DtmVE0uXLmXevHmkp6dzwQUXkJCQwAcffEBJSQlXXnklc+fOjfahyXGwIy927NjBNddcQ21tLYMGDWLIkCEEAgFWr15NUVERZ555Ji+//DKJiYmxOET5kZYvX86mTZsA2LVrF9u2bWPIkCHNQ4omTpzY/Ml3NGvNqC2ZNWLECF566SXmz5/PO++8QygUIisri1/96ldMmTLlB/czd+5ccnJyWLZsGUuXLsXn8zFu3DjNpRun7MiLkpISAPLz88nPz29zHxXb8cOuc4V0HHblxHXXXUePHj3461//ysqVK4lEImRlZTFr1iymT5/u4BGIE+zIi/79+7NixQqeeeYZ1q9fz4svvojb7aZ3797ceeed3HTTTSq048imTZv429/+1mrb5s2bm4eE9OjR4wcNM7W71ozalW0RERERkRON5tkWEREREXGIim0REREREYeo2BYRERERcYiKbRERERERh6jYFhERERFxiIptERERERGHqNgWEREREXGIim0REREREYeo2BYRERERcYiKbRERERERh6jYFhERERFxiIptERERERGH/H8FyqTtbwA+EAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Original vanilla parameterization\n",
"az.plot_dist(paternity_measurement_inference.posterior[\"p_father\"])\n",
"p_father_mean = paternity_measurement_inference.posterior[\"p_father\"].mean()\n",
"plt.axvline(p_father_mean, linestyle=\"--\", label=f\"Vanilla parameterization: {p_father_mean:1.2f}\")\n",
"\n",
"# Re-parameterization\n",
"az.plot_dist(paternity_measurement_lse_inference.posterior[\"p\"], color=\"C1\")\n",
"p_father_mean = paternity_measurement_lse_inference.posterior[\"p\"].mean()\n",
"plt.axvline(\n",
" p_father_mean, linestyle=\"--\", color=\"C1\", label=f\"Re-parameterization: {p_father_mean:1.2f}\"\n",
")\n",
"plt.xlim([0, 1])\n",
"\n",
"plt.legend()\n",
"plt.title(\"Different Parameterizations,\\nEquivalent results\");"
]
},
{
"cell_type": "markdown",
"id": "9ba9b678",
"metadata": {},
"source": [
"## Authors\n",
"* Ported to PyMC by Dustin Stansbury (2024)\n",
"* Based on Statistical Rethinking (2023) lectures by Richard McElreath"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "cc0bd5ef",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Last updated: Thu Feb 20 2025\n",
"\n",
"Python implementation: CPython\n",
"Python version : 3.12.9\n",
"IPython version : 8.32.0\n",
"\n",
"pytensor: 2.27.1\n",
"aeppl : not installed\n",
"xarray : 2025.1.2\n",
"\n",
"arviz : 0.19.0\n",
"xarray : 2025.1.2\n",
"scipy : 1.15.2\n",
"pytensor : 2.27.1\n",
"numpy : 1.26.4\n",
"pymc : 5.20.1\n",
"statsmodels: 0.14.4\n",
"matplotlib : 3.10.0\n",
"pandas : 2.2.3\n",
"\n",
"Watermark: 2.5.0\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -n -u -v -iv -w -p pytensor,aeppl,xarray"
]
},
{
"cell_type": "markdown",
"id": "e8e4f581",
"metadata": {},
"source": [
":::{include} ../page_footer.md\n",
":::"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "default",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}